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Abstract—A state machine that formalizes a distributed
mutual exclusion protocol called the Suzuki-Kasami protocol
is graphically animated. The network with which messages
are exchanged among nodes in the protocol is displayed as
follows: some limited number of messages in the network are
displayed and the others are depressed when there are many
messages in the network. We prepare one place dedicated
to the message that has been just put into the network by
a node (or just sent by a node) and one place dedicated
to the message that has been just received by a node (just
deleted from the network by a node). The main purpose of
graphically animating state machines is to make it possible
for humans to perceive characteristics or properties of the
state machines by observing their graphical animations. We
can guess some properties of the state machine formalizing the
Suzuki-Kasami protocol by observing graphical animations of
the state machine and confirm them by model checking, which
demonstrates that state machine graphical animations could
make humans perceive state machine properties.
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I. INTRODUCTION

Many kinds of information and communication technol-
ogy (ICT) systems can be formalized as state machines.
Some ICT systems, such as the Internet, have become im-
portant societal infrastructures, they must be highly reliable.
It is crucial to comprehend ICT systems better so as to make
them highly reliable. Because ICT systems can be formal-
ized as state machines, one possible way to comprehend
ICT systems is to understand state machines that formalize
the ICT systems. There may be multiple possible ways to
understand state machines, but one promising way to do so
would be to rely on human visual perception. Therefore,
Nguyen and Ogata[1] have developed a tool called SMGA
that generates graphical animations of state machines. Some
shared-memory mutual exclusion protocols and some com-
munication protocols have been tackled with SMGA so
far. But, ICT systems that are societal infrastructures are
often in the form of distributed systems. In this paper, thus,
a distributed mutual exclusion protocol called the Suzuki-
Kasami protocol [2] is tackled with SMGA.
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As all other distributed systems, the Suzuki-Kasami pro-
tocol uses a network with which messages are exchanged
among nodes. The network is expressed as an associative-
commutative collection (called a soup) of messages in a state
machine formalizing the Suzuki-Kasami protocol. Because
there may be a lot of messages in the network, it may be
impossible to display all of the messages on a limited space.
Our idea is to display a limited number of messages and
suppress the others. The message that has been just put into
the network (just sent by a node) or just deleted from the
network (just received by a node) is crucial information and
then we prepare one place dedicated to the one that has been
just put into the network and one place dedicated to the one
that has been just deleted from the network.

Understanding a state machine is to know properties the
state machine enjoys. The more state machine properties
we know, the better we understand the state machine. The
main purpose of SMGA is to make it possible for humans
to perceive characteristics or properties of a state machine
by observing graphical animations of the state machine.
Observing graphical animations of state machines, we could
guess some properties of the state machines [3]. We guess
some properties of the state machine formalizing the Suzuki-
Kasami protocol by observing its graphical animations
and confirm the properties by model checking. We use
Maude [4], a rewriting logic-based computer language, as
a specification language for state machines and a model
checker.

The rest of the paper is organized as follows: §II Prelim-
inaries, §IlI State Machine Graphical Animation (SMGA),
8§ IV Suzuki-Kasami Protocol, § V Specification of Suzuki-
Kasami Protocol, § VI Graphical Animations of Suzuki-
Kasami Protocol, § VII Confirmation of Guessed Properties
with Model Checking, § VI Related Work and §IX Con-
clusion.

II. PRELIMINARIES

A state machine M 2 (S,I,T) consists of a set S of
states, the set I C S of initial states and a binary relation
T C Sx S over states. (s,s’) € T is called a state transition
and may be written as s —); s’. The set Ryy € S of
reachable states w.r.t. M is inductively defined as follows:
(1) for each s € I, s € R and (2) if s € R and (s,s") € T,



then s’ € R. A state predicate p is called invariant w.r.t.
M if and only if p(s) holds for all s € Rp;. A finite
sequence S, ..., S;, Si+1,---, Sy Of states is called a finite
computation of M if sg € I and (s;,s;41) € T for each
1=0,...,n—1.

There are multiple possible ways to express states. We
express a state as a braced associative-commutative (AC)
collection of name-value pairs. AC collections are called
soups, and name-value pairs are called observable compo-
nents. That is, a state is expressed as a braced soup of
observable components. The juxtaposition operator is used
as the constructor of soups. Let oci,ocs,o0c3 be observ-
able components, and then oc; oce ocs is the soup of
those three observable components. A state is expressed
as {oc; ocg ocs}. There are multiple possible ways to
specify state transitions. We specify them as rewrite rules.
Concretely, we use Maude [4], a programming/specification
language based on rewriting logic. Maude makes it possible
to specify complex systems flexibly and is also equipped
with model checking facilities (a reachability analyzer and
an LTL model checker).

Let us consider as an example a test&set mutual exclusion
(or spin-lock) protocol whose pseudo-code is as follows:

Loop:
“Remainder Section”
rm : repeat while test&set(locked);
“Critical Section”
cs :locked := false;

locked is a Boolean variable shared with all processes
participating in the protocol. test&set(locked) atomically
performs the following: it sets locked to true and returns
the old value stored in locked. Each process is located
at either rm (Remainder Section) or cs (Critical Section).
Initially, each process is located at rm and locked is false.
When a process wants to enter Critical Section, it repeatedly
conducts test&set(locked) until false is returned and then
goes to cs. When it leaves the critical section, it sets locked
to false and goes back to rs.

The protocol is formalized as a state machine Mrg. When
there are three processes participating in the protocol, a state
in Stg is expressed as follows:

{(pclpl]l: 1) (pc[p2]: 2) (pclp3]: I3)
(locked: b)}

where li (for ¢ = 1,2,3) is either rs or cs and b is either
true or false. ITg consists of one state that is expressed as

follows:
{ (pclpll: rs) (pclp2]: rs) (pcl[p3]: rs)
(locked: false)}

which will be referred as ic. Tmg is specified by the
following two rewrite rules:

rl [enter] { (locked: false) (pc[I]: rs) OCs}

s locked s
false N
p2J p2 )

Figure 1. A picture of states in Stg

=> { (locked: true) (pc[I]: cs) OCs}

rl [exit]
=> { (locked:

{ (locked: B)
false)

(pclI]: cs)
(pc[I]: rs) OCs}

OCs}

Rewrite rules are defined with r1, while conditional ones are
defined with crl and their conditions are written after if.
enter and exit are labels (or names) given to the rules,
respectively. I is a Maude variable of process identifications,
B is a Maude variable of Boolean values and OCs is a
variable of observable component soups.

III. STATE MACHINE GRAPHICAL ANIMATION (SMGA)

SMGA [1] basically takes a finite computation of a state
machine and generates a graphical animation of the state
machine. For each state, a picture is designed and then we
get a series of pictures from a finite computation. Such a
series of pictures is regarded as a movie film. This is how
SMGA generates a graphical animation of a state machine.

We could design a picture of states in Stg as shown in
Fig.1 when there are three processes. Fig.2 shows a se-
quence of pictures for Mrg generated by SMGA. Observing
such a sequence of pictures or a graphical animation of a
state machine, we could guess some properties of the state
machine [3]. Observing the sequence of pictures shown in
Fig. 2, for example, we could guess the property that locked
is false if and only if there is no process in the critical
section, or equivalently locked is true if and only if there
exists a process in the critical section. The guessed property
is invariant with respect to Mrg. Such a guessed property
could be confirmed by model checking with Maude. We use
the Maude reachability analyzer (or the search command).
The following command can be used to confirm the guessed
property of Mrs:
search [1] in TS : ic

=>% {(locked: false) (pc[I]: cs) OCs}

Maude exhaustively searches the reachable states Rjs.q
from the initial state ic for a state that can match
{(locked: false) (pc[I]: cs) OCs} but does
not find any such states. This means that the guessed
property is invariant with respect to Mpg when there are
three processes.

IV. SuzUKIi-KASAMI PROTOCOL

The Suzuki-Kasami protocol is a distributed mutual ex-
clusion protocol [2]. The basic idea is that a node that
has a privilege is only allowed to enter its critical section,
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Figure 2. A sequence of pictures for Mg

and there exists one and only one privilege in the system.
The privilege is owned by a node, or is in the network
being transferred by a node to another. We suppose that N
nodes participate in the protocol and the natural numbers
1,...,N are used as their identifications. Let Node be
{1,...,N}. The N nodes have no memory in common
and can communicate only by exchanging messages. The
communication delay is totally unpredictable, namely that
although messages eventually arrive at their destinations,
they are not guaranteed to be delivered in the same order
in which they are sent. There are two kinds of messages

used in the Suzuki-Kasami protocol: request and privilege
messages. A request message is in the from request(j,n),
where j is the identification of the node that has sent the
message and n is a request number. A privilege message
is in the form privilege(q, a), where ¢ is a queue of node
identifications and a is a natural number array of size V.

The Suzuki-Kasami protocol consists of two procedures
P1 and P2 for each node 7 € Node. The procedures for
node ¢ are shown in Fig. 3.

request and have_privilege are Boolean variables.
request indicates whether or not node ¢ wants to enter its
critical section, and have_privilege indicates whether or
not node ¢ owns the privilege. queue is a queue of Node. It
contains the identifications of nodes that wait to enter their
critical sections. In and rn are natural number arrays of size
N. In[j] for each node j € Node is the sequence number
of node j’s request granted most recently. rn records the
largest request number ever received from each of the other
nodes. Node 7 uses rn[i] to generate the sequence numbers
of its own requests. For each node ¢ € Node, its rn is
always meaningful, while its queue and [n are meaningful
only when node ¢ owns the privilege. When the privilege
is in the network, queue and In contained in the privilege
message are meaningful. For each node ¢ € Node, initially,
request is false, have_privilege is true if ¢ = 1 and false
otherwise, queue is empty, and In[j] and rn[j] for each
j € Node are 0.

If node 7 wants to enter its critical section, it first calls its
own procedure P1, which sets request to true. If it happens
to own the privilege, it immediately enters the critical
section. Otherwise, it generates the next sequence number,
namely, incrementing rn[i], and sends the request message
request(i,rn[i]) to all other nodes. When it receives a
privilege message privilege(queue, In), it enters the critical
section. When it leaves the critical section, it sets In[é] to
its current sequence number rn[], meaning that the current
request has been granted, and updates queue such that if
there are nodes that want to enter their critical sections
and whose identifications are not yet in the queue, their
identifications are added to the queue. After that, if queue is
not empty, node 7 sets have_privilege to false and sends the
privilege message privilege(deq(queue),in) to the node
found in the front of the queue. Otherwise, node i keeps the
privilege. Finally, node ¢ sets request to false and leaves
procedure P1.

Whenever request(j,n) is delivered to node i, node 4
executes its own procedure P2. However, procedure P2 has
to be atomically executed. When node ¢ executes procedure
P2, it sets rn[j] to n if n is greater than rn[j]. Then, if
node ¢ owns the privilege, does not want to enter its critical
section, and the nth request of node j has not been granted,
that is, rn[j] = In[j] + 1, then it sets have_privilege to
false and sends the privilege message privilege(queue,in)
to node j.



try(i) <— rem | procedure P1

setReq(i) «— 11

requesting = true;

if =have_privilege then

ra[i] = rn[i] + 1,

sndReq(i) «— 14
endfor

forallj€ {1,..., N} — {i} do
send request(i, rn[i]) to node j;

wtPrv(i) <— 15
endif

wait until privilege(queue, In) is received,;
have_privilege = true;

exit(7) < ¢S

Critical Section;

cmpReq(i) < 16 | In[i] :=ra[i];

updQ(@) <— 17
endif
endfor

for allj € {1, ..
if (j € queue) A (rn[j] = In[j]+ 1) then
queue := enq(queue, j);

. N} — {i} do

chkQ(i) < 18

if queue # empty then

trsPrv(i) <« 19
endif

have_privilege = false;
send privilege(deq(queue), In) to node top(queue);

rstReq(i) <— 110 endproc

request = false;

// request(j, n) is received; P2 is indivisible.

procedure P2

recReq(i ) «—>

endif
endproc

ra[j] = max(rn[j], n);

if have_privilege N —request A (rn[j] = In[j] + 1) then
have_privilege = false;
send privilege(queue, In) to node j;

Figure 3.

V. SPECIFICATION OF SUZUKI-KASAMI PROTOCOL

Let Nat, Bool, Loc, NodeQueue, and NatNArray be the
set of all natural numbers, the set of the Boolean values (true
and false), the set of all locations, such as rem and 11, the
set of all queues of Node, and the set of all natural number
arrays whose sizes are N, respectively. A request message
addressed to node ¢ € Node by node j € Node is expressed
as msg(i,req(j, k)), where k € Nat, msg is used as the
constructor of messages and req is used as the constructor
of requests. A privilege message addressed to node ¢ € Node
is expressed as msg(%, priv(g, a)), where ¢ € NodeQueue,
a € NatNArray and priv is used as the constructor of privi-
leges. Let Req and Priv be {req(i,n)|i € Node,n € Nat}
and {priv(q,a)|q¢ € NodeQueue,a € NatNArray}, re-
spectively. The network is formalized as a soup of messages
that are request and privilege messages. The set MsgSoup
of all soups of messages is inductively defined as follows:
void € MsgSoup, for each ¢ € Node, » € Req, and p €

Suzuki-Kasami distributed mutual exclusion protocol in an Algol-like language

Priv, msg(i, ) € MsgSoup and msg(i, p) € MsgSoup, and
for each msi, msy € MsgSoup, ms; ; mse € MsgSoup.
A semicolon ; is used as the constructor of soups of
messages. void denotes the empty soup of messages and is
the identity of ;, namely that ms ; void = void ; ms = ms
for each ms € MsgSoup. Each message is also treated as
the singleton soup that only consists of the message.

The Suzuki-Kasami protocol is formalized as a state
machine Mgk, which is specified in Maude. P1 is divided
into 12 regions shown in Fig. 3. The 12 regions are referred
as the 12 locations, such as rem and 11. We suppose that
each node is at one of those 12 locations. Procedure P2 is
regarded as one region and then there are totally 13 regions
in the Suzuki-Kasami protocol. The 13 regions are given
names, such as try(i) and setReq(4), shown at the left-most
column in Fig.3. For each node ¢, there are 13 kinds of
transitions that corresponds to the 13 regions. The 13 region
names are used to refer to the 13 kinds of transitions. Let



rl [try] { (#req[I]: X) (pclI]l: rem) (tran: T) OCs}
=> {(#req[I]: (if X < M then X + 1 else X fi)) (pcl[I]: (if X < M then 11 else rem fi))
(tran: try(I)) OCs}
rl [setReq] {(pc[I]: 11) (request[I]: F) (tran: T) OCs}
=> {(pc[I]: 12) (request[I]: true) (tran: setReqg(I)) OCs}
rl [chkPrv] {(pc[I]: 12) (havePriv[I]: F) (tran: T) OCs}
=> {(pc[I]: (if F then cs else 13 fi)) (havePriv[I]: F) (tran: chkPrv(I)) OCs}
rl [incRN] {(pc[I]: 13) (rn[I]: RN) (idx[I]: K) (tran: T) OCs}
=> {(pc[I]: 14) (rn[I]: RN[I] := (RN[I]) + 1) (idx[I]: 1) (tran: incRN(I)) OCs}
rl [sndReq] {(pc[I]: 14) (idx[I]: K) (rn[I]: RN) (nw: NW) (tran: T) OCs}
=> {(pc[I]: if K == N then 15 else 14 fi) (idx[I]: if K == N then 1 else K + 1 fi) (rn[I]: RN)
(nw: (1if K == I then NW else msg(K,req(I,RN[I])) ; NW fi)) (tran: sndReg(I)) OCs}
rl [wtPrv] {(pc[I]: 15) (havePriv[I]: F) (In[I]: LN’) (queue[I]l: Q')
(nw: (msg(I,priv(Q,LN)) ; NW)) (tran: T) OCs}
=> {(pc[I]: cs) (havePriv[I]: true) (1In[I]: LN) (queuel[I]: Q) (nw: NW)
(tran: wtPrv(I)) OCs}
rl [exit] {(pc[I]: cs) (tran: T) OCs} => {(pcl[I]: 16) (tran: exit(I)) OCs}
rl [cmpReq] {(pc[I]: 16) (rn[I]: RN) (In[I]: LN) (idx[I]: K) (tran: T) OCs}
=> {(pc[I]: 17) (rn[I]: RN) (1In[I]: LN[I] := RN[I]) (idx[I]: 1) (tran: cmpReg(I)) OCs}
rl [updQ] {(pc[I]: 17) (idx[I]: K) (rn[I]: RN) (In[I]: LN) (queue[I]: Q) (tran: T) OCs}
=> {(pc[I]: if K == N then 18 else 17 fi) (idx[I]: if K == N then 1 else K + 1 fi)
(rn[I]: RN) (1n[I]: LN)
(queue[I]: if K =/= I and not (K \in Q) and (RN[K] == (LN[K]) + 1)
then put (Q,K) else Q fi) (tran: updQ(I))}
rl [chkQ] {(pc[I]: 18) (queue[I]: Q) (tran: T) OCs}
=> {(pc[I]: if empty?(Q) then 110 else 19 fi) (queue[I]: Q) (tran: chkQ(I)) OCs}
rl [trsPrv] {(pc[I]: 19) (havePriv[I]: F) (1In[I]: LN) (gqueue[I]: Q) (nw: NW)
(tran: T) OCs}
=> {(pc[I]: 110) (havePriv[I]: false) (1n[I]: LN) (queuel[I]: Q)
(nw: (msg(top(Q),priv(get(Q),LN)) ; NW)) (tran: trsPrv(I)) OCs}
rl [rstReq] {(pc[I]: 110) (request[I]: F) (tran: T) OCs}
=> {(pc[I]: rem) (request[I]: false) (tran: rstReg(I)) OCs}
crl [recReq] {(pcl[I]: L) (request[I]: F) (havePriv[I]: F’) (rn[I]: RN) (1In[I] LN)
(queue[I]: Q) (nw: (msg(I,reg(Jd,X)) ; NwW)) (tran: T) OCs}
=> {(pc[I]l: L) (request[I]: F) (havePriv[I]: if C then false else F’ fi)
(rn[I]: RN[J] = Max) (In[I]: LN) (queuel[I]: Q)
(nw: if C then (msg(J,priv(Q,LN)) ; NW) else NW fi) (tran: recReqg(I)) OCs}

if I =/=J /\ L =/=110 /\ L =/=18 /\ L =/= 17 /\

F’

if (RN[J])
and not (F)

< X then X else RN[J]
and Max == (LN[J])

Max :
C :

+ 1

fi /\

Figure 4. Rewrite rules specifying Tsk

us note that sndReq(é) and updQ(z) correspond to each
iteration of the loops at labels 14 and 17, respectively.

When there are three nodes, a state in Mgk is expressed
as follows:

{n(1) n(2) n(3) (nw: ms) (tran: t)}

where n (i) is as follows:

(#reqli]l: n) (pclil: l) (request[i]: bl)
(havePriv[i]l: b2) (rn[il: al) (In[i]: a2)
(queue[t]: q) (idx[z]: J)

and where ms is a soup of messages in the network, ¢ is
the transition that has been just taken, n is the number of
requests made by node i, [ is the location where node i is,
bl is the value of the node i’s request, b2 is the value of
the node i’s have_privilege, ¢ is the value of the node i’s
queue and j is the value of the node ¢’s j, a loop variable.
The state expression defines Sgk.

When there are three nodes, Isk consists of one state that
is expressed as follows:

{n(l) n(2) n(3) (nw: void) (tran: notran)}
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where not ran means that no transition has been taken and
n(I) is as follows:

(#req[I]: 0) c[I]: rem) (request[I]: false)
(havePriv[I]: (I == 1)) (rn[I]: ia)
(In[I]: ia) (queuel[Il]: empty) (idx[I]: 1)

where ia denotes the natural number array such that each
slot is O, 1is trueif I is 1 and false otherwise,
and empty denotes the empty queue.

Tsk is specified in terms of (conditional) rewrite rules
that are shown in Fig.4. The words starting with a capital
letter, such as X, I, T and OCs, are Maude variables.
Their types (or sorts) could be understood from the context.
For example, X, I, T and OCs are variables of Nat, Loc,
transition names and observable component soups, respec-
tively. RN [T ] (RN[I]) + 1 isthe array assignment
at index I. K \in Q is the membership predicate K € Q
over queues. put (Q,K) denotes the queue obtained by
putting K into Q at bottom. top (Q) is the top element
of Q. get (Q) denotes the queue obtained by deleting the
top from Q. What is called a matching equation' V' :=
where V is a fresh variable and 7" is a term, can be used
in rule conditions and is like let expressions in functional
programming languages.

This paper describes how to interpret four rewrite
rules sndReq, wtPrv, trsPrv and recReq. The other
rules can be interpreted likewise. Rewrite rule sndReq
says that when node I is located at 14, the message
msg (K, req(I,RN[I])) is put into the network, where
the message is addressed to node K, unless K equals I be-
cause I does not need to send itself the message. Moreover,
if K equals N, node I moves to 15 and otherwise it stays 14.
Rewrite rule wtPrv says that when node I is located at 15

'In general, a matching equation is in the form T'1 := T'2, where T'1
and T2 are terms.

A picture of states in Sgk

and there is a privilege message msg (I, priv(Q,LN))
addressed to I, node I receives it, enters the critical
section and sets its have_privilege to true. Rewrite rule
trsPrv says that when node I is located at 19, it puts
a privilege message msg (top (Q) , priv (get (Q), LN))
in the network, where the message is addressed to the node
top (Q), and sets its have_privilege to false. Rewrite
rule recReq says that when there is a request message
msqg (I, req(J, X)) addressed to node I in the network
and the designated condition is fulfilled, then node I puts a
privilege message msqg (J, priv (Q, LN)) in the network
and sets its its have_privilege to false. Among the desig-
nated condition is that node I is not located at 17, 18 or
110. This is because otherwise a livelock may occur [5],

(61, [7].

VI. GRAPHICAL ANIMATIONS OF SUZUKI-KASAMI
PrROTOCOL

Fig.5 shows a picture of states in Sgkx when there are
three nodes participating in the Suzuki-Kasami protocol.
There is a pane (called the nw pane) located in the left upper
corner where the messages in the network are displayed.
Under the nw pane, there is a pane (called the nw (received)
pane) where the message that has been just received by a
node (or just deleted from the network) is displayed. Under
the nw (received) pane, there is a pane (called nw (sending)
pane) where the message that has been just sent by a node
(or just put into the network) is displayed. For each node
1 = 1,2, 3, there are places to display the node i’s request,
7, have_privilege and rn. There is always exactly one
queue that is meaningful and then there is one place to
display the meaningful queue. There is always exactly one
In that is meaningful and then there is one place to display
the meaningful [n. If there is a node whose have_privilege
is true, its queue and In are displayed there. If there is
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4),3:3) (IN[3]: (1:2), (2 2), 3 3) (queue[1]: 3| empty ) (queue[2]: 1| 3| empty ) (queue[3]: 1 | 2 | empty ) (ax[1]: 1) (idx[2]
3) (i3] 1)

nw rem " 12 13 14

15
msg(1. req(2. 5)) - msg(3. req(2. 5)) @)@)

tran: sendReq(2)
110 19 @ 18 7 3 cs

@ request: true @request true
lax: 1 ldx: 1

havePrillege: true havePrillege: false

o)
nw (received) QZ/ request: true
lax: 1
havePrillege” false

RN RN RN

o34 | [aoesnsa | [0 9434

nw (sending)

N |(:4),(2:4.3:3

queuel 3| empty

msg(3, req(2. 5))

State 243 - (nw: msg(1, req(2, 5)) : msg(3. req(2, 5)) ) (tran: sendReq(2) ) (¥req[1]: 6 ) (#req[2]: 5 ) (#req[3]. §) (pc[1]: 19)
(pcl2]: 15) (pe[3]: 15 ) (requesting[1]: true ) (requesting[2]: true ) (requesting[3]: true ) (havePriv[1]: true ) (havePrivi2]: false )
(havePriv[3]: faise ) (m[1]: (1:4), (2:4). 34 ) (m[2]: (1:4). (2:5).3:4) (m[3]: (1:4), (2:4). 34 ) (In[1]: (1:4), (2:4). 3"
3)(In[2]: (1:3). (2:4).3:3) (N3] (1:2). (2: 3). 3 3) (queue[1]: 3 | empty ) (queue(2]: 1] 3| empty ) (queuel3]: 12|
empty ) (di{1]: 1) (dxf2]: 1) (Ak[3]: 1)

nw rem il 2 13 14 15
msg(1, req(2. 5)) ; msg(3, req(2, 5)) @)fNBD
msg(3. priviempty, (1:4), (2:4),3:3)) =
tran: transferPriv(1)
10 @ 19 18 7 16 cs

@ request: true
lax: 1

havePrilege: false

Ide 1 Idx 1
havePrilege: false havePrillege: false
RN RN RN

‘(124).(2'4).324 ‘ ‘(1'4).(2'5)_324 ‘ ‘(1.4}.(2:4).3.4

N —

queuel

nw (received)

nw (sending)

msg(3, priviempty, (1 4), (2:4), 3 3))

State 244 - (nw: msg(1, req(2, 5)) ; msg(3, req(2, 5)) ; msg(3, priviemply, (1 4), (2 4), 3 : 3)) ) (tran: transferPriv(1) ) (#req[1]:
6) (#req[2]: 5 ) (#req[3]: 5 ) (pe[1]: MO ) (pe[2]: 15 ) (pe[3]: 15 ) (requesting[1]: true ) (requesting[2]: true ) (requesting[3]: true )
(havePriv[1]: faise ) (navePriv[2]: faise ) (havePriv[3]. faise ) (M[1]: (1:4), (2:4).3: 4 ) (mM[2): (1:4). (2:5). 3 4) (M[3]: (1 -
4),(2:4),3:4)(n[1]:(1:4),(2:4),3:3)(In[2]:(1:3),(2:4),3:3)(In[3]: (1:2),(2:3),3:3)(queue[1] 3| empty )
(queuef2]: 1| 3 | empty ) (queuef3]: 1|2 | empty ) (idi{1]: 1) (idx[2]: 1 ) (idx[3]: 1)

nw rem n 12 13 4 15
msg(1, req(2. 5)) : msq(2. req(2, 5)) e
()

tran: waitPriv(3)

9 8 7 6 cs

"®

()

@ request: true
ldx: 1

havePrilege: frue

™
nw (received @ request. true N2 ) request: true
‘ : ldc 1 k—/ lax: 1
msg(3, priviempty, (1 :4), (2:4),3:3)) havePrilege: false havePrilege: false
RN RN RN
‘(|:4),(2 4).3:4 ‘ ‘(1 4).(2:5).3:4 ‘ ‘(1'4).(2:4)_3'4

nw (sending)
IN | (1:4).(2:4).3:3

queue | empty

State 245 - (nw: msg(1, req(2, 5)) ; msg(3, req(2, 5)) ) (tran: waitPriv(3) ) (#req[1]: 6 ) (#req[2]: 5 ) (#req[3]: 5 ) (pc[1]: 10 )
(pcl2]: 15 ) (pe[3]: cs ) (requesting[1]: true ) (requesting[2]: true ) (requesting[3]: true ) (havePriv{1]: false ) (havePriv[2]: false )
(havePrivi3]: true ) (M[1]: (1: 4), (2:4), 3:4) (M[2J: (1:4). (2:5). 3:4 ) (M[3]: (1:4). (2:4).3:4) (N[1}: (1:4), 2:4).3:
3)(n[2]: (1:3). (2:4). 3:3 ) (N[3]: (1:4), (2:4). 3:3) (queue[1]: 3 | emply ) (queue[2]: 1|3 | empty ) (queue[3]: empty )
(idx[1]: 1) (idx[2]: 1) (a3 1)

Figure 6. A sequence of pictures for Mgk (1)

a privilege message in the network, namely that there is
no node whose have_privilege is true, then nothing is
displayed there because you can see the meaningful queue
and In in the privilege message in the network. There are 12
panes that correspond to the 12 locations, such as rs and 11.
There is one more pane in the picture where the transition
that has been just taken is displayed.

Fig. 6 shows a sequence of four pictures for Mgk. The
four pictures correspond to four consecutive states State 242,
State 243, State 244 and State 245 in a finite computation of
Mgk . State 242 goes to State 243 by rewrite rule sndReqg
(or sendReq (2)), State 243 goes to State 244 by rewrite
rule trsPrv (or transferPriv (1)) and State 244 goes
to State 245 by rewrite rule wtPrv (or waitPriv (3)).
Taking a look at the first picture (of State 242) immediately
makes us recognize that node 1 is located at 19, node 2 is
located at 14, node 3 is located at 15, node 1 owns the privi-
lege, there is one message denoted msg (1, req(2,5)),
the rule sendReqg(2) (or sndReqg(2)) has been just
taken and so on. What is displayed as the content of [n is
(1 : 4), (2 : 4), 3 : 3, which says that In[1] is

4, In[2] is 4 and In[3] is 3, meaning that the node 1’s fourth
request has been granted, the node 2’s fourth request has
been granted and the node 3’s third request has been granted.
What is displayed as the content of queue is 3 | empty,
which says that there is one element in queue and the
element is 3, meaning that node 3 has been waiting to enter
its critical section.

Taking a look at the second picture (of State 243) makes
us recognize that the rule sendReqg (2) (or sndReq(2))
has been just taken, the message msg (1, req(2,5)) has
been just put into the network and node 2 has just moved to
15 from 16. Taking a look at the third picture (of State 244)
makes us recognize that the rule transferPriv (1)
(or trsPrv(l)) has been just taken, the message
msg (3, priv(empty, (1 : 4),(2 : 4),3 : 4))
has been just put into the network and node 1 has just
moved to 110 from 19. Taking a look at the fourth picture (of
State 245) makes us recognize that the rule waitPriv (3)
(or wtPrv (3)) has been just taken, the privilege message
has been just received by node 3 (or just deleted from the
network) and node 3 has just moved to cs from 15.



nw rem

msg(1, req(2, 5)) ; msg(1, req(3, 1)) @BD @%

msg(2. req(3. 1)) . msg(3, req(1, 1))

msg(3. req(1. 2)) . msg(3, req(1. 3))

msg(3. req(1. 4)) : msg(3, req(2, 1))
msg(3, req(2, 2)) ; msq(3, req(2, 3)) 10 10 18 7 3 cs

msg(3, req(2. 4)) ; msg(2, req(2, 9))

@ request: true
lax: 3

havePrilege: false

.
Ide 1 Idx 1

havePrilege: true havePrillege: false

RN RN RN

nw (received)

[a-92:4 | [a:02:5 | [2:1

nw (sending)

N [(1:4)2:4

queue | empty

State 149 - (nw: msg(1, req(2, 5)) : msg(1, req(3, 1)) ; msg(2, req(3, 1)) ; msq(3, req(1, 1)) ; msg(3, req(1, 2)) ; msg(3, req(1, 3))
S msg(3. req(1, 4)) : msg(3. req(2, 1)) : msg(3, req(2. 2)) : msg(3. reqi2. 3)) : msg(3. req(2. 4)) : msg(3. req(2. 5)) ) (tran: try(1) )
(#req[1]: 5) (#req[2): 5 ) (#req[3]: 1) (pe[1]: 11 ) (pel2]: 15 ) (Pe[3]: 14 ) (requesting[1]: false ) (requesting[2]: true )
(requesting[3]: true ) (havePriv[1]: true ) (havePriv[2]: faise ) (havePriv[3]: faise ) (M[1]: (1:4),2 - 4 ) (M[2]: (1 4),2- 5 ) (m[3]
3:1) (1] (1:4).2:4) (n[2): (1 :3).2: 4 ) (n[3]: i ) (queue1]: empty ) (queue[2]: empty ) (queue[3]: empty ) (idx{1]: 1)
(1ex[2]: 1) (idx[3]: 3)

Figure 7.

Fig.7 shows another sequence of two pictures for Mgk.
The two pictures correspond to two consecutive states State
149 and State 150 in another finite computation of Mgxk.
State 149 goes to State 150 by rewrite rule recReq (or
receiveReq(1)). If it is possible to display all messages
in the network on the nw pane, SMGA does so. Otherwise,
a limited number of messages are displayed on the nw
pane and the others are depressed. In the first picture (of
State 149), all messages in the network are displayed on
the nw pane. msg (1, req(2,5)) is received by node 1
and msg (2, priv (empty, (1 4),2 4)) is put
into the network by node 1. Then, it is impossible to
display all messages in the network on the nw pane.
Therefore, 10 messages out of 12 ones are displayed on
the nw pane and the two messages msg (3, req(2,5))
and msg (2, priv(empty, (1 : 4),2 4)) are
depressed in the second picture (of State 150). Instead of
displaying the two messages, “. . .” is displayed on the nw
pane in addition to the 10 messages.

VII. CONFIRMATION OF GUESSED PROPERTIES WITH
MODEL CHECKING

Observing some graphical animations of Ssk, we guess
that there is always at most one node at cs, 16, 17, 18 or 19
at any given moment. This is true in the six pictures shown
in Fig. 6 and Fig.7. The guessed property can be confirmed
by model checking with Maude as follows:

search [1] in SK : ic

=>% {(pc[I]: cs) (pc[J]: cs) OCs}
search [1] in SK : ic
=>% {(pc[I]: cs) (pc[J]: 16) OCs}
search [1] in SK : ic
=>% {(pc[I]: cs) (pcl[J]: 17) OCs}
search [1] in SK : ic
=>% {(pc[I]: cs) (pcl[J]: 18) OCs}
search [1] in SK : ic
=>% {(pc[I]: cs) (pc[J]l: 19) OCs}

nw rem

msg(1, req(3, 1)) ; msg(2, req(3, 1)) @3> @3)

msg(3. req(t. 1)) msg(3. req(1. 2)) =

msg(3, req(1, 3)) : msg(3, req(1. 4))

msg(3. req(2. 1)) : msg(3, req(2. 2))
( (

tran: receiveReq(1)

msg(3, req(2, 3)) ; msq(3, req(2, 4)) 1o 19 18 7 16 cs

@ request: faise
dx: 1

havePrillege: false

@ request: true
lax: 3

havePrillege: false

)
nw (received) @ requ?dsl: true
X 1

msg(1. req(2, 5)) havePrilege: false

RN RN RN
[a:02:5 | [a:92:5 | [eo
nw (sending)
U —
msg(2, priv(empty, (1 4)2 : 4))

queue |

State 150 - (nw: msg(1, req(3, 1)) ; msg(2, req(3, 1)) ; msg(3, req(1, 1)) : msg(3, req(1, 2)) ; msq(3, req(1. 3) ; msg(3, req(1, 4))
: msg(3. req(2, 1)) : msg(3. req(2, 2)) : msg(3. req(2. 3)) : msg(3. req(2. 4)) : msg(3, req(2, 5)) : msg(2, priv(empty, (1:4).2: 4))
) (tran: receiveReq(1) ) (#req[1]: 5 ) (#req[2]: 5) (#req[3]: 1) (pe[1]: 11) (pe[2]: 15 ) (pe[3]: 4 ) (requesting[1]: faise )
(requesting[2]: true ) (requesting[3]: true ) (havePriv[1]: false ) (havePriv[2] faise ) (havePriv[3]: false ) (m[1]: (1-4),2-5)
(2] (1:4)2:5) (m[3]: 3 1) (n[1]: (1 : 4.2 4) (n[2]: (1 3).2 4) (n[3]: ia ) (queue[1]: empty ) (queue(2): empty )
(queue[3]: empty ) (iax[1]: 1) (idx[2]: 1) (dx3]: 3)

A sequence of pictures for Mgk (2)

search [1] in SK : ic
=>% {(pc[I]: 16) (pc[J]l: 16) OCs}
search [1] in SK : ic
=>% {(pc[I]: 16) (pc[J]l: 17) OCs}
search [1] in SK : ic
=>% {(pc[I]: 16) (pc[J]l: 18) OCs}
search [1] in SK : ic
=>% {(pc[I]: 16) (pc[J]l: 19) OCs}
search [1] in SK : ic
=>% {(pc[I]: 17) (pc[J]l: 17) OCs}
search [1] in SK : ic
=>% {(pc[I]: 17) (pc[J]: 18) OCs}
search [1] in SK : ic
=>% {(pc[I]: 17) (pc[J]l: 19) OCs}
search [1] in SK : ic
=>% {(pc[I]: 18) (pc[J]: 18) OCs}
search [1] in SK : ic
=>% {(pc[I]: 18) (pc[J]l: 19) OCs}
search [1] in SK : ic
=>% {(pc[I]: 19) (pc[J]l: 19) OCs}

For example, the first search command tries to find a
reachable state in which there are two processes at cs
simultaneously. Maude does not find any reachable states
from ic that match any of those patterns. Therefore, the
guessed property is invariant with respect to Mgk when
there are three nodes and each node enters its critical section
once.

Observing some graphical animations of Sgk, we also
guess that there is a privilege message in the network if and
only if there is no node located at cs, 16, 17, 18 or 19 at
any given moment. This is true in the six pictures shown in
Fig. 6 and Fig. 7. The guessed property can be confirmed by
model checking with Maude as follows:

in SK : ic

(msg (I, priv(Q,A)) ;
(pc[J]: cs) OCs}
search [1] in SK : ic

=>* {(nw: (msg(I,priv(Q,A)) ;

search [1]

=>% {(nw: NW) )

NW) )



(pc[J]: 16) OCs}

search [1] in SK : ic

=>x {(nw: (msg(I,priv(Q,A)) ; NW))
(pc[Jd]: 17) OCs}

search [1] in SK : ic

=>x {(nw: (msg(I,priv(Q,A)) ; NW))
(pc[J]: 18) OCs}

search [1] in SK : ic

=>* {(nw: (msg(I,priv(Q,A)) ; NW))
(pc[J]: 19) OCs}

For example, the first search command tries to find a
reachable state in which there is a privilege message in the
network and a process is located at cs simultaneously. Maude
does not find any reachable states from ic that match any
of those patterns. Therefore, the second guessed property
is also invariant with respect to Mgk when there are three
nodes and each node enters its critical section once.
Observing some graphical animations of Ssk, we also
guess that there exists a node whose have_privilege is true
if and only if there does not exist any other node at cs, 16, 17,
18 or 19 at any given moment. This is true in the six pictures
shown in Fig.6 and Fig.7. The guessed property can be
confirmed by model checking with Maude as follows:

search [1] in SK : ic

=>x {(pc[I]: cs) (havePriv[J]: true) OCs}
such that I =/=J
search [1] in SK : ic

=>x {(pc[I]: 16)
such that I =/=J
search [1] in SK : ic

=>% {(pc[I]: 17) (havePriv[J]:
such that I =/=J

search [1] in SK : ic

=>% {(pc[I]: 18) (havePriv[J]:
such that I =/=J

search [1] in SK : ic

=>% {(pc[I]: 19) (havePriv[J]:
such that I =/=J

(havePriv[J]: true) OCs}

true) OCs}

true) OCs}

true) OCs}

For example, the first search command tries to find a
reachable state in which a process is located at cs and
some other process have_privilege is true simultaneously.
Maude does not find any reachable states from i c that match
any of those patterns. Therefore, the third guessed property
is also invariant with respect to Mgk when there are three
nodes and each node enters its critical section once.

VIII. RELATED WORK

A graphical user interface for Maude-NPA has been
developed [8]. Maude-NPA is a high-level security protocol
analysis language and system implemented on the top of
Maude. The graphical user interface is dedicated to Maude-
NPA and then cannot be used for our purpose, namely that
graphical animations of state machines can be displayed,
helping humans guess properties of the state machines based
on the graphical animations.

Specification animation has been actively studied. Spec-
ification animation means making formal specification exe-

cutable by translating formal specifications into executable
programs because most formal specification languages are
not executable. Specification animations have been used
to inspect formal specifications[9], to monitor software
through formal specification animation [10], to validate for-
mal models by refinement animation[11] and to make a
specification-based testing better [12]. Maude is inherently
executable and then it is unnecessary to translate Maude
specifications into executable programs.

May Thu Aung, et al. [13] uses a mutual exclusion proto-
col called Qlock to conduct a case study in which some prop-
erties of Qlock have been guessed by observing graphical
animations of Qlock generated with SMGA, model checked
with Maude and theorem proved with CafeOBJ[14]. One
piece of our future work is to theorem prove the properties
guessed in this paper with CafeOBJ.

Computer networks have been grown and intricate. Social
networking service (SNS) has been used by many people
over the world and then networks constituted of those
SNS users have become very complex. Visualization is
one promising way to comprehend such complex networks
and then network visualization has been intensively studied.
Tools, such as Gephi[15] and Cytoscape [16], have been
developed. Some visualization techniques used in those tools
could be used for our purpose. Because state machines
cannot be necessarily expressed as networks, however, those
network visualization tools cannot be directly used to graph-
ically animate state machines.

IX. CONCLUSION

We have described graphical animations of the Suzuki-
Kasami protocol with SMGA. Observing them has made
us guess some properties of the state machine formalizing
the Suzuki-Kasami protocol. We have used the Maude
reachability analyzer (the search command) to confirm that
the guessed properties are invariant with respect to the state
machine when there are three nodes and each node enters its
critical section once. The case study demonstrates that state
machine graphical animations could make humans perceive
state machine properties. Another piece of our future work
is to generate graphical animations of some other distributed
protocols, such as Paxos [17], guess some properties of those
protocols by observing the graphical animations, confirm the
guessed properties by model checking and theorem prove
them.
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