
An interval RSP-based ensemble model for big data
analysis

Wenzhu Cai, GengYuan Ao, YiGang Lin, Mark Junjie Li B

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
caiwenzhu2021@email.szu.edu.cn, jj.li@szu.edu.cn

Abstract—Ensemble learning for big data has been successful
in machine learning and has great advantages over other learning
methods. The ensemble model based on Random Sample Parti-
tion (RSP) is a prominent method of it. Although the RSP data
blocks have the consistent probability distribution function as the
whole data, there is some uncertainty in prediction results due
to the non-overlapping data between blocks. In this paper, we
propose a novel interval ensemble model based on RSP named
Inr-RSP, which maps prediction results to interval-valued data
by interval modeling and then uses the IAA aggregation method
to convert the interval-valued data into fuzzy sets to get a more
accurate and stable final result. The experimental classification
results from four real datasets also show that the performance
of this model is better than that of the traditional RSP ensemble
model. And the IAA method usage has a stronger ability to
capture uncertainty in prediction than the common majority
voting method.

Index Terms—Big data analysis, Ensemble learning, Random
Sample Partition, Interval Agreement Approach

I. INTRODUCTION

In recent years, due to the popularity of emerging technolo-
gies such as the Internet of Things (IoT), social media, and
mobile devices, the scale of data has exploded. Faced with
such massive amounts of data, how to efficiently process and
analyze them has become an urgent problem to be solved.
One of the biggest challenges in big data analysis is how
to perform complex computing tasks within a given amount
of computing resources. Previously, divide and conquer was
the main strategy for big data analysis and calculation, which
divide data into small subsets and then processed the sub-
sets independently [1]. The MapReduce [2] and Spark [3],
two distributed programming models, are also based on this
strategy to process massive data. However, due to the iterative
operation, the execution efficiency decreases, and the above
models are limited by available memory resources in the
calculation and analysis [4]. Therefore, the memory issue
becomes a problem for big data analysis.

This problem is mainly alleviated by sampling techniques.
Traditional sampling methods such as simple random sampling
[5], stratified sampling [6], reservoir sampling [7], and the
Record-Level Sampling (RLS) of the Hadoop Distributed
File System (HDFS) [8] in distributed architectures, are all
based on records. It becomes time-consuming and limited by
memory in big data because selecting records with equal prob-
ability requires scanning the entire data. Ensemble learning
is a common approach when using sampling techniques by

dividing the data into many subsets or fitting multiple mod-
els using different algorithms, which typically improves the
predictive performance of data mining and machine learning
algorithms [9]. Nevertheless, the traditional ensemble models
including Bagging [10] and Boosting [11] methods can not
avoid the bottlenecking of memory resources when using the
whole large dataset. Salman et al. propose an appropriate
analysis model for large-scale datasets call Random Sampling
Partition (RSP), which stores data as ready-to-use blocks of
non-overlapping random samples [12]. The generation of RSP
blocks is an offline operation, and each block has the consistent
probability distribution with the whole data, thus providing the
possibility of using a few blocks to approximate the whole big
data without the limit of memory.

The existing RSP model generates the RSP blocks using
the two-stage data processing (TSDP) [13] algorithm and
then obtains the approximate result by processing each block
respectively. Although RSP blocks have the consistent proba-
bility distribution with the big data, there is some uncertainty
in the prediction results due to the non-overlapping of the
data between the blocks. The common aggregation strategy
is majority voting [14], but it does not consider the effect of
the interval values. Besides, the number of learning models is
determined by the number of learning models, which is not
flexible.

In this paper, we propose an interval ensemble learning
model based on RSP named Inr-RSP, which takes into
account the uncertainty of the prediction results using interval
modeling and uses the Interval Agreement Approach (IAA)
to aggregate the final result. Experimental results show that
the Inr-RSP model can achieve more accurate and robust
classification with minimal information loss. Meanwhile, it
presents that a few RSP blocks are enough to achieve the
performance of the entire blocks and the number of learning
models can be independent of the number of blocks which
reduces model costs.

II. RELATED WORKS

Big data Sampling is a technology that extracts a sample set
from a big dataset to facilitate data processing and analysis.
The distribution of the sample data is important to the machine
learning models. In the case of random sampling, the distribu-
tion of the predicted sampling is similar to that of the overall
data. Common sampling methods include Bernoulli Sampling
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[15], Simple Random Sampling [5], Stratified Sampling [6],
and so on [16]. Bernoulli Sampling [15] is to randomly select
a single sample with moderate probability from the total with
variable sample size and prone to sample bias. Simple Random
Sampling [5] takes a lot of work when the data size is large
or the distribution is more dispersed. Stratified Sampling [6]
provides greater statistical precision and reduces sampling
error. Similarly, the Bootstrap [17] method requires a large
number of replicate samples and traversing the full data each
time, which requires large enough memory resources. The
RSP model divides large data into ready-to-use disjoint blocks
whose distribution is consistent with that of the entire dataset.
The use of RSP models can build ensemble models with fewer
data, solving the problems of high computation and memory
limitation [12].

The aggregation functions of ensemble learning are methods
of combining multiple predictions into a final prediction result.
Some of the most classic methods are majority voting [14],
weighted voting [18], and stacking [19]. Majority voting [14]
is the most common and effective method. Papers [20]–[22]
applied the majority voting method to ensemble learning in
different applications, and the results of the studies indicated
that the majority voting method had a nice performance. In
recent years, fuzzy theory has been used to deal with uncertain
data, and interval-valued aggregation functions based on fuzzy
theory have been proposed for ensemble learning [23]. Paper
[24]–[27] proposed interval-valued aggregation functions to
capture the uncertainty of data and applied them to ensemble
learning. In particular, the Interval Agreement Approach (IAA)
[24] converts interval-valued data into fuzzy sets. The IAA
method addresses the limitations of the Interval Approach (IA)
[28] and the Enhanced Interval Approach (EIA) [29] which
only consider fuzzy sets of limited types and cannot handle
uncertain intervals. It considers the minimal assumptions of
interval data and does not rely on data preprocessing and
outlier removal.

III. PRELIMINARIES

In this section, we succinctly review the Random Sample
Partition data model and briefly describe the Interval Agree-
ment Approach.

A. Random Sample Partition (RSP)

Random Sample Partition is a distributed data model to
facilitate block-level sampling and support big data analysis
[12]. In this model, the statistical properties of the data set are
preserved in a group of small disjoint data blocks as ready-
to-use random samples (RSP blocks) from the entire data.
Each RSP block has consistent probability distribution with the
whole big data, allowing local results on different data blocks
to approximate the global results on the whole big data. Also,
it can address the limitation of memory and high computing
cost in large-scale data.

With the RSP model, a partitioning of D into k non-
overlapping random sample data blocks T = {D1, D2, ..., Dk}
in advance is represented as RSP blocks if:

•
⋃k

i=1 Di = D
• Di ∩Dj = ∅, where i, j ∈ {1, 2, ..., k} and i ̸= j
• E [Fi (x)] = F (x) , where i ∈ {1, 2, ..., k}

where Fi(x) is the sample probability distribution function of
a random variable x in Di. Accordingly, each block of T is
called an RSP block of D. Selecting an RSP block from T
equals directly extracting random samples from D. To analyze
large-scale data, using such Block-Level Sampling is more
efficient than Record-Level Sampling because it not requires
scanning the entire data.

The RSP-based ensemble model for big data analysis uses
a few selected RSP blocks to obtain approximate results.
First, a block-level sample is selected from the RSP. Second,
a sequential algorithm is applied parallel to each selected
RSP block. Third, the outputs of these blocks are combined
to produce an approximate result for the entire data (i.e.,
the majority voting in a classification task or the average
response in a regression task). The ensemble process for the
classification task is shown in Figure 1.

Fig. 1. The RSP-based ensemble model for big data analysis

B. Interval Agreement Approach (IAA)

The Interval Agreement Approach is a novel approach to
generating fuzzy sets from interval-valued data and is accu-
rately modeled by aggregating collective information captured
by intervals [24]. An interval is denoted as Ā = [lĀ, rĀ],
where lĀ shows the left endpoint and rĀ represents the right
endpoint. Let A =

{
Ā1, ..., Ān

}
be a set of intervals and a

Type-1 Fuzzy Set (T1 FS) named A in IAA. The membership
function µA of A is defined as:

µA = y1/

n⋃
i1=1

Āi1

+ y2/

(
n−1⋃
i1=1

n−1⋃
i2=i1+1

(
Āi1 ∩ Āi2

))
+ . . .

+ yn/

(
1⋃

i1=1

. . .

n⋃
in=n

(
Āi1 ∩ . . . ∩ Āin

))
(1)



where yi = i/n. Equation(1) represents the common nota-
tion of membership for fuzzy sets and / refers to the degree
of membership rather than division. That means a value of µA

shows the number of that value within all the intervals in A.
When the yi is equal to 1, it indicates that all intervals are
intersected.

There are two ways to simplify equation(1). One is that the
membership of any value x can be calculated as the count of
intervals which x contained like

µA(x) =
1

n

n∑
i=1

µĀi
(x)

where µĀi
(x) =

{
1 lĀi

≤ x ≤ rĀi

0 else

(2)

The other way to show the membership function is to
subtract the number of left endpoints less than x in A from
the number of right endpoints in A less than x as

µA(x) =
1

n

(
n∑

i=1

(
lĀi

≤ x
)
−

N∑
i=1

(
rĀi

≤ x
))

(3)

Thus, A Type-1 Fuzzy Set can be generalized over µA(x).

IV. PROPOSED MODEL

In this section, we introduce the new interval RSP-based
ensemble model named Inr-RSP which uses interval modeling
and the IAA aggregation method to capture the uncertainty of
prediction results and decrease the information loss. The main
process of Inr-RSP is shown in Figure 2.

A. Generate RSP

Let D be a multivariate data set of N records and M features
where N is large. A partitioning of D into k small disjoint
data blocks {D1, D2, ...., Dk} is regarded as a generation of
RSP. The two-stage data processing (TSDP) algorithm for
generation is as [13]:

• Sequentially cut D into p non-overlapping subsets called
a partition of D. Each subset has the same size with
n records. Randomize each subset into i.i.d and cut it
into an RSP of k parts independently to generate P data
blocks.

• From each RSP block, select its corresponding RSP
block, for 1 to k, to generate a new data block. Repeat
this merging operation k times to generate a new partition
{D1, D2, ...., Dk}, which is an RSP of D.

The RSP model generates ready-to-use non-overlapping
data blocks with consistent probability distribution of the
entire data. It only needs to be executed once, which achieves
Write-Once-Use-Many-Times(WOUM) strategy.

B. RSP Blocks Sampling
In this part, select g blocks from RSP data blocks

T = {D1, D2, ..., Dk} without replacement to form a sample
set S as

S = {D1, D2, ..., Dg}
where g ≤ k. Thus, memory and communication costs

depend on g, not k. The sampled RSP blocks are the same as
the samples of the whole big data used for the following big
data analysis.

C. Build Different Models
According to the analysis task, the base model can choose

different learning models for the same task or one learning
model with different parameters. For example, different
base models, e.g. decision tree, support vector machine, and
logistic regression, can be used if the task is classification.

D. Generate Uncertain Intervals and Aggregate
The key idea of the proposed model is capturing uncertainty

by uncertain intervals from different data samples and models.
Firstly, the selected RSP blocks are processed in different built
models. In this part, intermediate results {Resulti j}gj=1 can
be generated for each model i. Then, to avoid the influence
of outliers on the results, we used Tukey’s Test to process the
intermediate result. Consider DLi as Q1i − k ∗ 1.5 and ULi

as Q3i + k ∗ 1.5, the uncertain interval for each model i is
shown as:

Ii = [DLi, ULi] (4)

where the Q1i is the first quartile of {Resulti j}gj=1 and Q3i
is the third quartile of {Resulti j}gj=1 for model i. Also, k is
the difference between Q3i and Q1i.

As mentioned before, IAA is used to generate a Type-1
Fuzzy Set (T1 FS), which is able to capture variation in the
opinion of a particular decision model and divergence between
the individual views of a group of decision models. Using
uncertain intervals Ii and equation(2), a T1 FS is defined as:

A = {((li, ri), ui)}zi=1 (5)

where li is the left point, ri is the right point and u is the
membership function value of regions.

E. Defuzzification of Fuzzy Sets
There are many defuzzification methods to calculate the

centroid of the Type-1 Fuzzy Sets. In this part, the computation
approach of [30] is used to acquire the centroid as follows:

c =
u1 ∗ (l1 + r1) + u2 ∗ (l2 + r2) + · · ·+ uz ∗ (lz + rz)

2(u1 + u2 + · · ·+ uz)
(6)

where c is the centroid which will be applied as the final result.
For binary classification, if the centroid is equal to or upper
than 0.5, the final class will be class zero, and if it’s not, it is
class one. Similarly, the multiclass classification result is the
primary class, and the other case is the secondary class.



Fig. 2. The Inr-RSP ensemble model for big data analysis

V. EXPERIMENTS AND RESULTS

To demonstrate the classification performance of the pro-
posed model for big data analysis, we conducted several
experiments on four datasets. First, we show the character-
istics of datasets, experiment settings, and evaluation methods
used in our experiments. Then, we evaluate the performance
of the proposed model in classification, compared with the
traditional RSP analysis model and interval RSP model which
are applicable to majority voting. Also, we run our model on
different sampling sizes, the various number of selected RSP
blocks and learning models to obtain the sensitivity of the
proposed model.

A. Datasets

We evaluate the proposed model on four datasets from
the University of CaliforniaIrvine (UCI) 1 machine learning
repository. As the optimization problem is an ensemble
learning under big data, the number of records in the selected
datasets is relatively large. In general, each of the four
datasets differs in size, features and classes. The properties
are described in Table I.

B. Experiment settings

The experiments focus on the classification task, so the
decision tree is used as the base classifier. To generate different
classifiers, with M as the number of features in each data, each
decision tree is generated by abandoning a random feature

1https://archive.ics.uci.edu/ml/index.php

TABLE I
PROPERTIES OF THE DATASETS USED IN EXPERIMENTS

Dataset Records(N) Features(M) Classes
Covertype 581,012 54 7
Watch acc 3,777,046 5 18

SUSY 5,000,000 18 2
HIGGS 11,000,000 28 2

that has not been ignored. Therefore, the maximum number
of classifiers m cannot exceed the number of data features.

Notably, the classifiers’ outputs in Inr-RSP are main class
probabilities, not labels. For binary classification, the specified
primary class is class Zero, and the secondary is class One.
Also, the proposed model is suitable for multiclass classifi-
cation. Consider the class of maximum probabilities as the
primary class and the second maximum as the secondary.
The multiclass classification ensemble problem is converted
to determine the main classification class.

We use the abbreviations below for simplicity. RSP is to
represent the traditional RSP analysis model which processes
the RSP blocks independently and then aggregates them by
majority voting method. Then, using interval RSP to present
interval modeling of RSP blocks and aggregation by majority
voting. Finally, Inr-RSP is proposed by this paper to represent
the interval modeling of RSP blocks but aggregation using the
IAA.

In Inr-RSP, the maximum number of classifiers is equal to
the number of data features. In the preliminary experiment,
to facilitate fair comparisons with other models, the size



of each RSP block n, the number of RSP blocks(g=5) and
classifiers(m=5) are fixed for each dataset. In the parameter
influence experiment, each dataset is divided into two RSP
block sizes. The number of RSP blocks varies from 2 to
20 with intervals of 2, and the number of classifiers differs
according to the data features. Each experiment only changes
one parameter to reflect the influence of the parameter. To
eliminate chance, the experiments are repeated 10 times and
the average results are reported.

C. Evaluation Methods

To get convincing results, we use the same testing data to
test models for proposed and compared models. Also, using
the following two matrices, Accuracy and Kappa, to measure
the performance of classification tasks.

Accuracy =
TP + TN

TP + FN + TN + FP
(7)

where TP is the number of true positive predictions, TN is the
number of true negative predictions, FP is the number of false
positive predictions, and FN is the number of false negative
predictions. It shows the proportion of accurate results among
the total number of testing.

Kappa =
Po − Pe

1− Pe
(8)

where Po is the overall accuracy and Pe is the chance
consistency error. It represents the percentage of errors
reduced if the classification were completely random.

D. Preliminary Results

Table II shows the four classification matrices results of
the proposed Inr-RSP model compared with the interval RSP
model and the RSP model both aggregated by majority voting
method in four datasets. For fair comparisons, we used the
same sampling size, the number of selected RSP blocks, and
the number of learning models for each model. That is, the
difference in the results is the performance improvement.

As seen in Table II, both interval ensemble models are
superior to the RSP model in most datasets, which means
that interval modeling can combine multiple predictions into
more accurate interval predictions to preserve the uncertainty.
Also, the Inr-RSP ensemble model using the IAA aggregation
method successfully outperforms the contrast model in all
datasets because the IAA algorithm can well consider the
impact of interval values and process uncertain data, which
can also transform interval values into more stable and
reliable results, so as to make more accurate and robust
classification and minimize information loss.

E. Influence of Parameters

In this section, we experiment with the sensitivity of Inr-
RSP to changes in parameters, including the RSP sampling
size, the number of selected RSP blocks, and the number of

classifiers. Note that in evaluating the selected parameters, all
other parameters remain fixed during the experimental run.

1) RSP sampling size n:
Figures 3 and 4 present the classification accuracy of the Inr-

RSP model on four datasets for two different RSP sampling
sizes n (shown as solid lines). As n affects the amount of data,
too small n will not allow the classifier to capture enough
specific patterns, and so large n may increase the risk of
overfitting. It is observed that the RSP sampling size affects the
accuracy of the Inr-RSP model, a larger value of n generally
leads to better classification.

2) Number of RSP blocks g:
Figure 3 also shows the classification accuracy of the Inr-

RSP model on four datasets for different RSP block numbers.
Since the traditional RSP model has the same number of
classifiers as the blocks, it is not compared without fixed m. As
shown in Figure 3, the classification accuracy of the proposed
Inr-RSP model increases with the number of RSP blocks at a
fixed m = 5 and maintains convergence at a certain number of
blocks, indicating that a stable model can be built with a few
blocks. In contrast, most of the Inr-RSP models aggregated
by the majority voting method are unstable and have poor
accuracy as it does not consider the uncertainty of interval
data.

3) Number of classifiers m:
Figure 4 represents the classification accuracy of the Inr-

RSP model on four datasets for distinct classifier numbers.
Because the number of classifiers in the traditional RSP
model is the same as the number of blocks, only display the
results of g=5 and m=5. The results show that the accuracy
of the Inr-RSP model does not have a significant effect so
fewer classifiers can build a stable model but no limit to the
number of blocks. Meanwhile, it outperforms the comparison
model when the g increases.

VI. CONCLUSION

This paper presents a novel ensemble model for big data
named Inr-RSP, which better captures the uncertainty of the
traditional RSP-based ensemble model through interval model-
ing and interval aggregation methods. The Inr-RSP model uses
the IAA aggregation method to transform the interval-valued
data generated by RSP data blocks interval modeling into
fuzzy sets and then obtains the final result through centroid
calculation. This model can reduce information loss and obtain
more accurate and robust ensemble results. The new model
outperforms the traditional RSP model on four real datasets
and is also superior to the majority voting method using the
IAA.
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