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Abstract— Bike-sharing systems have been adopted in many cities 
as a valid alternative to traditional public transports since they are 
eco-friendly, prevent traffic congestions, reduce the probability of 
social contacts which are probable in public means. On the other 

hand, they also bring some problems which include the irregular 
distribution of bikes on the stations/racks/areas and the difficulty of 
knowing in advance their status with a certain degree of confidence, 
whether there will be available bikes at a specific bike-station at 
certain time of the day, or a free slot for leaving the rented bike. 
Therefore, providing predictions can be useful for improving the 
quality of service. This paper presents a technique to predict the 
number of available bikes and free bike-slots in bike-sharing 

stations (which is still the best solution for e-bikes). To this end, a 
set features and predictive models have been compared to identify 
the best models and predictors for long-term predictions. The 
solution and its validation have been performed by using data 
collected in bike-stations in the cities of Siena and Pisa, in the 
context of Sii-Mobility National Research Project on Mobility and 
Transport and Snap4City Smart City IoT infrastructure. The 
Gradient Boosting Machine (GBM) offers a robust approach for the 

implementation of reliable and fast predictions of available bikes in 
terms of flexibility and robustness with respect to critical cases, 
producing long-terms predictions in critical conditions (when 
available bikes are few).  

Keywords- available bikes prediction, bike-sharing, machine 

learning, prediction models, smart city.  

I.  INTRODUCTION  

In recent decades, the city has become an increasingly large 

and complex body. The number of inhabitants living in urban 

areas is increasing. Today, about 55% of the world’s 

population lives in urban areas, and the figure is expected to 

rise to 68% in 2050, according to the "World Urbanization 

Prospects 2018", published by the United Nations 

Department of Economics and Social Affairs [1]. Today, 
transportation is one of the most important causes of certain 

gas emissions and thus of air pollution. In this context, bike-

sharing systems may represent a part of the solution. Bike-

sharing systems are widely used in many cities, offering a 

more sustainable alternative to public transport and reducing 

congestion. The station can be smart when they are capable 

to detect the presence of the bike, their status, and can release 

the bike. The alternative could be floating bike-sharing in 

which the bikes are more intelligent, and capable to 

communicate with the central management servers their 

position, etc., such as Mobike solution. Floating solution are 

still not very effecting in the case of e-bike since the recharge 

can be easier on racks.  

     In the context of this article, the solution with simple bikes 

(even e-bike) and smarter stations is addressed. The bikes can 

be typically released at any station providing that a free slot 

is available, this may create discomfort to the users when the 

station is full, and the user has to move to next and return by 
walk. One of the problems of bike-sharing is related to the 

irregular distribution of bikes among the various stations and 

the impossibility to know with a certain confidence to find a 

at least a bike at a desired station in a precise time slot of the 

day, or just few minutes in advance. The same for the 

possibility to find a free slot to leave the bike. Therefore, 

predicting the availability of bikes (as well as free slots) per 

station over time can be useful for managing the demands for 

bikes per station and to perform the redistribution in advance 

[2].  

In recent years, many researchers have studied urban bike-
sharing systems, mainly on four main areas of interest.  

The first area is the design of Bike-Sharing Systems. In [3], a 

mathematical model has been proposed to determine the 

number of docking stations needed, their locations and the 

possible structure of the cycle path network, as well as 

models to make predictions about possible routes taken by 

users between stations of origin and destination. The second 

area is related to the analysis of the behaviour and dynamics 

of a Bike-Sharing system. In [4] and [5], clustering and 

forecasting techniques have been used on the network of 

bike-sharing stations in Barcelona to obtain useful 

information to describe the city's mobility. In [6], the authors 
interpreted the system as a dynamic network by analysing 

how bicycle flows distribute spatially along the network. In 

[7], different bike-sharing services are analysed highlighting 

the differences in bike flows and routes.  

    The last area concerns the prediction of bikes availability 

[8]. In [4], four different predictive models to estimate the 

availability of bikes in stations have been compared. The 

authors used a Bayesian network to predict the status of a 

bike-station (full, almost empty or empty) using bike-station 

information and providing predictions at 2 hours, with an 

accuracy of 80%. In [5], ARMA (AutoRegressive Moving 
Average) models has been used to predict the number of 

vacancies one hour in advance, while in [1], the authors 

presented a model system for predicting bike traffic of a bike-

sharing network in Lyon.  
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A. Article Overview 

The main contribution of this paper consists in presenting 

a solution for real-time prediction of the available bikes on 

bike-sharing stations, and thus of the number of free slots by 

knowing the size of the station and the number of broken 

bikes. To this aim, a model has been identified to predict the 

availability of bikes 24 hours in advance (long-term 

predictions) with a resolution of 15 minutes, and thus also the 

free slots in the stations. Prediction of available bikes is a 

non-linear process whose dynamic changes involve multiple 

kinds of factors, coming from the context. To this end, the 
solution has been obtained by taking into account different 

cities, and locations, and despite the changes in Siena and 

Pisa in both cases the identified features and model have been 

the same, thus demonstrating the validity of the derived 

results. The precision obtained for long terms prediction have 

been much better than those provided in the literature.  

     The solutions have been implemented in the context of 

Sii-Mobility project and infrastructure (national mobility and 

transport smart city project of Italian Ministry of Research for 

terrestrial mobility and transport, http://www.sii-

mobility.org) solution based on Km4City model 
(https://www.km4city.org ) and Snap4City tools [9], [10], 

[11]. Sii-Mobility project aimed at defining solutions for 

sustainable mobility, suggesting bikes availability status to 

users at least 15 minutes/1 hour in advance to allow them to 

take a conscious decision, and maybe change their own plan. 

As a result, the solution has been capable to produce reliable 

prediction even 24 hours in advance.  

The paper is structured as follows. Section II provides a 

description of the bike-sharing data, and their 

characterization in terms of clustering in groups. In addition, 

the identification of several features at the basis of the 

predictive models is reported. In Section III, the machine 
learning approaches adopted to identify and validate the 

predictive models and framework are presented. Conclusions 

are drawn in Section IV. 

II. DATA DESCRIPTION AND FEATURE IDENTIFICATION 

As mentioned in the introduction, the main goal was to find 

a solution to predict the bikes availability in each bike-station 

(and by knowing the size of the bike-station and the number 

of broken bikes on rack, we can derive the number of free 

slots). Typically, the status of each station is checked and 

registered by the server every 15 minutes. The data refers to 

15 stations located in the municipality of Siena and 24 located 
in Pisa. In order to understand the typical time trend H24 

(multiple seasonality may be present, daily, weekly and 

seasons over year) of bikes availability per station located in 

Siena and Pisa cities. Since the service is evolving quite 

rapidly over time, the seasonal trends taken into account are 

those daily and weekly. We taken into account data from June 

2019 to January 2020 for Siena stations, and from December 

2019 to March 2020 for Pisa stations. A clustering approach 

has been applied in order to classify Pisa and Siena stations 

based on their trend of bikes availability, which is also 

correlated to the typical services in the neighbourhoods. In 

detail, the K-means clustering method has been applied to 

identify clusters. In K-means clustering, there is an ideal 

center point that represents a cluster. The clustering has been 

performed on the basis of the time trend H24, considering the 
normalized trend of bikes availability measures. The optimal 

number of clusters resulted to be equal to 3, and it has been 

identified by using the Elbow criteria [12]. In particular, each 

cluster represents a group of stations. The stations/racks 

belonging to Cluster 1 are typically characterized by a 

decrement of bike availability at lunchtime, and are mainly 

located close to the railway stations, airport, etc. Bike racks 

belonging to Cluster 2 are typically positioned in the central 

area of the cities and are characterized by an increment of the 

availability of bikes in the central part of the day (lunch 

hours, since most of the people are parking their bikes to get 

lunch). Cluster 3 presents an almost uniform trend in the bike 
availability and bike racks are mainly positioned in the 

peripheral areas of the city. 

 

 
(a) 

 
(b) 

Figure 1.  Working days/weekend trends of the (a) “Curtatone” bike-

sharing stations in Siena and (b) “Stazione F.S” stations in Pisa 

municipality 

 

For example, in Siena municipality “Terminal Bus” station 

that is a bike-sharing station positioned near by the train 

station in Siena, “Ospedale” station positioned near the 

Hospital, “Due Ponti” station positioned near the bus 

station/terminal, “Curtatone” station positioned near the 

stadium and “Napoli” positioned in residential areas. In Pisa 

municipality “Comune Palazzo blu” station is near the 

municipality building, “Ospedale Cisanello” station 
positioned near the Hospital, “San Rossore F.S” station 
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positioned near the train station San Rossore, “Stazione F.S” 

station positioned near the central train station and 

“Marchesi” station near the educational buildings. 

Moreover, we have also detected some changes in the typical 

trends from working days and weekends as shown in Figure 
1. Figure 1(a) reports the comparison between the trendsd 

for working days and weekends for “Curtatone” station in 

Siena, while Figure 1(b) shows the trends of working 

days/weekends for “Stazione F.S” in Pisa. 

A. Feature Identification 

With the aim of developing a prediction model, a set of 
features have been identified and tested. We analysed a large 

number of features for selecting the best, with the aim of 

conquering a higher precision with respect to the state-of-the-

art solutions mentioned above. So that the hypothesis has 

been verified in the results reported in this paper for the case 

of bike-station status predictions. Features belonging to the 

Baseline (time series) category refer to aspects related to the 

direct observation of bike status over time as in [13]. Date 

and time when measures are taken, working day or not, 

number of bikes on racks, etc., belong to this category. 

Typically, the values are recorded every 15 minutes. Please 
note that the temporal window for the training is not based 

only on 15 minutes, but the measures over months are taken 

every 15 minutes. Features describing the differences over 

time. Usually, the trend of number of bikes is similar from 

one week to another for the same day (e.g., Monday to 

prev/next Monday), in the same month for example. Thus, 

two other features have been included in the model for 

capturing: (i) the difference between the number of bikes 

captured at the same time in the previous time slot of previous 

week (dPw); (ii) the difference between the number of bikes 

captured at the same time in the successive time slot of 

previous week (dSw). The value of the number of bikes 
related to the previous week respect to the observed one at 

the same time has been considered as additional feature 

(PwB).  
Category Feature 

Baseline-
Historical 

Available Bikes in the past 

Time, month, day 

Day of the week 

Weekend, Holiday 

Previous week (PwB) 

Previous day  (PdB) 

Diff. from 
actual 
values and 

prev. 
observatio
ns 

Previous observation’s difference of the previous 
week (dPw) 

Subsequent observation’s diff. of the previous week 
(dSw) 

Previous observation’s difference of the previous 
day (dPd) 

Subsequent observation’s difference of the previous 
day (dSd) 

Previous observation’s difference between the 
previous week and two weeks earlier (dP2w) 

Previous observation’s difference between the 
previous day and two days earlier (dP2d) 

Real-time 
weather 

and 
weather 
forecast  

Max Temperature 

Min Temperature 

Temperature 

Humidity  

Rain 

Pressure 

Wind Speed 

Cloud Cover Percentage 

Sunrise 

Sunset 
Table 1.  Overview of the feature used in the prediction models  

 

Features belonging to the real time weather and weather 

forecast collected every 15 minutes (i.e., temperature, 

humidity and rainfall). Please note that, according to our 
analysis, the significant values for the weather are those 

related to the current time and the hour just before measured 

bike availability time. For example, in order to predict the 

number of available bikes at the rack at 3 pm, the weather 

features at 2 pm and at the current time are relevant. Thus,  

the weather conditions influence the decisions on using the 

bike or other transportation means. Similarly, the weather 

forecast influences the plan to get the bike.  

The data collected from historical values of each bike rack 

are in practice all the data in the learning window (several 

weeks or months) of the past has described in Section II. For 
each time sample, the features of Table 1 are collected and 

when needed estimated and stored. When the long terms 

prediction is performed 24 hours in advance, the 

training/learning is performed once a day for each bike rack. 

To perform the training more often is not producing better 

results, and it is very computational expensive.   

III. PREDICTION MODELS 

In this section, number of machine learning techniques are 

considered and compared to identify the best solution to 

predict the bikes availability at bike-sharing stations/racks 

and to identify the features that could be the best predictors 

for the purpose. During our research study a number of 
techniques have been discharged since they did not produce 

satisfactory results -- e.g., Bayesian Regularized Neural 

Network that achieves an R-squared 

(https://en.wikipedia.org/wiki/Coefficient_of_determination 

) about 0.4 for each bike-sharing station. On the other hand, 

among the techniques we have presented here the comparison 

of the most effective solutions, which are Random Forest 

(RF) [14], Gradient Boosting Machine (GBM) [15] and the 

more traditional statistical approach such as Auto-

Regressive Integrated Moving Average approach (e.g., 

ARIMA) [16]. The accuracy of each model has been 
evaluated in terms of R-squared, MASE (Mean Absolute 

Square Error), RMSE (Root Mean Square Error), and 

processing time considering the representative station per 

cluster. The RMSE is calculated as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑛
𝑖=1

𝑛
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The MASE is calculated as follows: 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛 (|𝑞𝑡|), 𝑡 = 1, … , 𝑛 

and 

𝑞𝑡 =
𝑜𝑏𝑠𝑡 − 𝑝𝑟𝑒𝑑𝑡

1
𝑛−1

 ∑ |𝑛
𝑖=2 𝑜𝑏𝑠𝑖− 𝑜𝑏𝑠𝑖−1|

 

where 𝑜𝑏𝑠𝑡 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 , 𝑝𝑟𝑒𝑑𝑡 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡, 𝑛 is the number of the values 

predicted over all test sets (96 daily observations per 7 days). 

The MAE (Mean Absolute Error) is estimated as follows: 

𝑀𝐴𝐸 =
∑ |𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑑𝑖|

2𝑛
𝑖=1

𝑛
 

Note that, MASE is clearly independent on the scale of the 

data. When MASE is used to compare predictive models, the 

best model is the one presenting the smaller MASE. 

A. Experimental Results 

In the general framework, three different approaches were 

tested, i.e., RF, GBM, and ARIMA models applied on the 

features presented in Table 1. In detail, for GBM a regression 

tree with a maximum depth of 9 was used as a basic learner 

and the total number of trees was increased to 500 while the 

minimum number of observations in each leaf was increased 

to 5. The learning-rate has been set to 0.1. Note that, 

determining the optimal (hyperparameter) settings for the 
model is crucial for the bias-reduced assessment of a model’s 

predictive power. The choice of GBM parameters has been 

obtained by a hyperparameter tuning implementation. 

Different combinations of parameter values have been tried 

on dataset (see Table 2).  

Hyperparameter Type Start End Default 

n.tree Integer 100 10000 100 

shrinkage Numeric 0.01 0.3 0.1 

interaction.depth Integer 3 10 1 

bag.fraction Numeric 0.1 1 0.5 

Table 2.  Hyperparameter ranges and types for GBM model 

 

The RF has been set with number of trees composing the 

forest equal to 500 and the candidate feature set equal to 1/3 

of the number of the data set variables.  

The ARIMA model has been executed as multi-step forward 

with updated iteration technique: the forecast was computed 

one hour in advance. Then, the training set is updated with 

the observations recorded in the predicted hour and a new 

forecast is executed for the next hour. The comparison of the 

needed processing time per each bike-sharing station, among 

the models considered above, is also relevant and it is 
reported in Table 5.  

ARIMA Model Results  

Siena Bike-Sharing Stations MASE RMSE 

Curtatone 1.23 1.58 

Napoli 0.51 1.10 

Terminal Bus 1.15 1.32 

Due Ponti 0.52 1.15 

Ospedale 0.23 1.39 

Pisa Bike-Sharing Stations MASE RMSE 

C.Marchesi 0.51 1.21 

Comune Palazzo Blu 0.27 1.33 

Ospedale Cisanello 0.86 1.13 

San Rossore F.S. 1.01 1.22 

Stazione F.S. 0.10 2.22 

Table 3.  ARIMA multi-step forward (short term online predictions) 

with updated iteration results in terms of MASE and RMSE per 

station in Siena 

 

Table 3 shows the results for the ARIMA model for the main 

bike-sharing stations in Siena and Pisa. ARIMA model 

cannot be used for medium-long term forecasts due to the 

large errors produced. An approach to cope with this problem 

could be to apply the forecasting ARIMA technique as a 

multi-step forward to make 24-hour predictions (96 time 

slots). In other words, compute 24 forecasts (i.e., 1 hour in 

advance per 24 times): the real observations recorded in that 

hour (four slots of 15 minutes) are inserted into the training 

set, and the prediction for the next hour is computed with the 

new information. Therefore, the model needs to be trained 
every hour (see Table 5), so that 24 times per day per 15/20 

bike-sharing stations per city, which is computationally more 

expensive than the others. For this reason, the solution has 

been discharged, despite to the fact that for the ARIMA, the 

obtained accuracy in terms of MASE is better than those 

obtained by machine learning techniques presented in Tables 

4 and 6. Please remind that, the goal was to find a 

computationally viable solution to make satisfactory 

predictions in terms of precision for several different cases. 

As a further step, the comparison has been focused by 

considering RF and GBM on the whole set of bike-sharing 
stations in Siena (Table 4), exploiting all features presented 

in Table 1. The comparison of the predictive models has been 

estimated on a training period of 7 months. Figure 4 reports 

the GBM predicted values vs real in a 96 time slots (24 hours) 

for “Curtatone” station in Siena city, which is a typical result.  
“Curtatone” Station RF GBM 

R2 0.86 0.78 

MAE 2.42 2.41 

MASE 0.82 0.79 

RMSE 2.90 3.16 

“Napoli” Station RF GBM 

R2 0.92 0.81 

MAE 2.22 1.35 

MASE 1.10 0.87 

RMSE 1.50 1.45 

“Terminal Bus” Station RF GBM 

R2 0.91 0.89 

MAE 3.51 3.37 

MASE 2.62 2.52 

RMSE 2.2 2 

“Due Ponti” Station RF GBM 

R2 0.96 0.95 

MAE 2.22 1.85 

MASE 1.10 0.92 

RMSE 2.60 2.35 

“Ospedale” Station RF GBM 

R2 0.87 0.79 



MAE 2.23 2.35 

MASE 0.88 0.92 

RMSE 2.59 2.35 

Table 4.  Machine Learning Models results and comparison for 

different Siena stations 

 

MASE and RMSE error measures have been estimated on a 
testing period of 1 week after the 7th January 2020. This 

comparison has highlighted that in Siena stations GBM 

approach achieved better results in terms of MASE, MAE 

and RMSE even if RF turned out to be the better ranked in 

terms of R-squared.  

 

 
Figure 2.  GBM predicted values vs real in a 96 time 

slots (24 hours) for “Curtatone” station in Siena 

 

Table 5 shows that almost all the approaches may produce 

predictions every hour for the next hour in a reasonable 

estimation time. On one hand, in order to produce satisfactory 
predictions, the ARIMA approach needs to re-compute the 

training every hour (even if the online training can be seen as 

an alternative it is also a computational cost). This is a quite 

expensive cost of about 30s for each bike-sharing station, due 

to the fact that the charging stations can be hundreds. On the 

other hand, machine learning models (i.e., GBM and RF)  

provide predictive models with 96 values in advance with 

quite satisfactory results, they produce better results with less 

effort with respect to ARIMA. GBM processing time is quite 

low and results in terms of error measure are better respect 

the RF. GBM model can be considered the best solution for 
a real-time application. 

Processing Time ARIMA RF GBM 

Average training 

time 
30.9 sec 410.3 sec 21.8 sec 

Training 

frequency 

1 time per 

hour 
1 time per day 1 time per day 

Training period 1 months 7 months 7 months 

Forecast window 1 hour 1 day 1 day 

Table 5.  Forecasting Models comparison in terms of processing time  

 
Figure 3 shows the GBM model feature relevance [15] for 

“Curtatone” bike-sharing station in Siena (a similar figure 

could be presented for Pisa while it has been omitted for the 

lack of space). The most important features are those related 

to Time, Day of the Week and Weather category as Air 

pressure, humidity and temperature. The same features 

relative influence has been obtained for the other stations in 

Siena municipality. This result shows that exists a strong 

dependence between bicycle use and weather conditions. For 

this reason, the only use of data related to bike-sharing station 

are not enough and cannot produce satisfactory and flexible 

results. In addition, to confirm the strong dependence with 

weather features, a new model exploiting baseline feature 
only has been trained for “Curtatone” station in Siena. 

Results show that the R2 decreases to 0.48 while error 

measure RMSE increase to 2.90.  

 

 
Figure 3.  GBM model features relative influence for “Curtatone” 

station considering all features presented in Table 2. 

 

The experiment above has been performed without applying 

feature selection. As additional analysis, a recursive feature 

elimination approach (RFE) based on RF was applied as a 

dimensionality reduction measure. The RFE technique 

implements a backward selection of the features by ranking 

their importance to an initial model using all predictors. The 

RFE selection method [17] is a recursive process that grades 
feature according to a certain degree of importance in order 

to filter unnecessary features and achieve a better 

performance of GBM model.  

The RF-RFE optimization procedure has been applied to find 

the best performing subset of features, before applying the 

GBM model. The RF-RFE method identified a subset of 18 

features (see Figure 4), in particular:  Time, Air Pressure, 

Day of the Week, Wind Speed, Cloud Cover Percentage, 

Hour, Air Temperature, Air Humidity, Sunset, Max 

Temperature, Min Temperature, Sunrise, Visibility, dP2d, 

dP2w, pwB, pdB. 

 
Figure 4. RF-RFE performance profile across different features subset 

sizes in terms of RMSE (the black point represents the best subset size 

of features, that is equal to 18) 

 

Results from the GBM model trained on the identified subset 

of features have not shown a better accuracy with respect to 
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those presented in Table 4. In conclusion, the features 

presented in Table 1, are those strictly necessary to obtain the 

best GBM performance in terms of R-square MASE and 

RMSE. In order to produce predictions, two GBM models 

have been trained to test the capabilities in predicting bike 
rack status in the next 15 and 30 minutes, respectively.  

 

Predictions MASE RMSE 

15 minutes 1.02 2.8 

30 minutes 1.27 2.98 
Table 6.  GBM model predictions 15 and 30 minutes for “Curtatone” 

station, where the MASE and RMSE have been computed with respect 

to the true values by using 10 consecutive predictions. 

 

Table 6 reports GBM models results for predictions showing 

that the RMSE does not improve much (passing from 2.9 to 

2.8 for the 15 minutes), and the MASE seem to be worst with 

respect to the results presented in Table 4 (the precision 

decreases with the distance from the last actual value, such as 

for ARIMA solutions). In these cases, the online learning has 

been performed at every time slot of 15 minutes, which is 

very expensive. It means that, in a perspective of online 

prediction and similar cost of a traditional method as the 
ARIMA, which can be preferable since the results in terms of 

error measures (in particular in terms of MASE) are better 

(see Table 3). 

 

The same machine learning models presented above have 

been applied and compared on the bike-sharing stations of 

Pisa, considering all the features presented in Table 1. Note 

that, the amount of data available for the city of Pisa is lower 

than for Siena municipality. The comparison of the predictive 

models has been estimated on a training period of 3 months 

(from 1st December 2020 to 1st March 2020). Table 7 reports 

the results of the comparisons of RF and GBM models for 
five representative stations presented in Section II. Contrary 

to the results achieved for stations in Siena, RF approach 

achieved slightly better results in terms of R-squared, MASE, 

MAE and RMSE in all five representative stations in Pisa, 

while the training period for the RF model remains 

significantly longer than for GBM. MASE and RMSE error 

measures have been estimated on a testing period of 1 week 

after the 1st March 2020. 

 
“C. Marchesi” Station RF GBM 

R2 0.90 0.84 

MAE 2.43 2.77 

MASE 0.78 0.89 

RMSE 2.91 3.36 

“Comune Palazzo Blu” Station RF GBM 

R2 0.94 0.91 

MAE 1.91 2.25 

MASE 0.95 1.16 

RMSE 2.32 3.01 

“Ospedale Cisanello” Station RF GBM 

R2 0.92 0.91 

MAE 1.18 2.02 

MASE 0.90 1.01 

RMSE 2.32 2.60 

“San Rossore” Station RF GBM 

R2 0.91 0.86 

MAE 3.59 4.01 

MASE 1.16 1.25 

RMSE 4.08 4.94 

“Stazione F.S” Station RF GBM 

R2 0.94 0.92 

MAE 5.11 5.65 

MASE 0.73 0.92 

RMSE 5.21 6.15 
Table 7.  Machine Learning Models results and comparison for 

different Pisa stations 

 

Also, the feature relative influence of RF model for Pisa 

shown that weather category variables are no longer the most 

influential in forecasting available bikes. The most important 

features are those related to the previous days/week 

information: in order of importance, are PwB, PdB, Time, 
Day of the Week, Hour, DP2d followed by Air Pressure, Air 

Humidity and Air Temperature. In the case of “Stazione F.S”, 

the error trend was also evaluated based on the different times 

of the day. The results are shown in the Table 8. 

 

“Stazione F.S” Station MAE MASE RMSE 

Night  5.54 1.94 6.58 

Morning 4.83 0.56 5.98 

Afternoon 4.93 0.98 6.05 

Evening 5.52 0.85 6.31 
Table 8.  RF results for “Stazione F.S” station in Pisa per times of the 

day 

As additional result, the same model has been trained for 

“Stazione F.S” bike-sharing station exploiting baseline 

feature only. The trained model seems not to be much worse 
in terms of prediction errors than the RF model results 

presented in Table 8. The RF predicted values vs real value 

in 24 hours for “Stazione F.S” station in Pisa, number of free 

bikes is reported in Figure 5. Results in terms of R2, MASE, 

MAE and RMSE are respectively 0.88, 0.76, 4.67 and 5.54.  

 

 
Figure 5. RF predicted values vs real in 24 hours for “Stazione F.S” 

station in Pisa, number of free bikes. 

 



IV. CONCLUSIONS 

In this paper, we proposed machine learning methods to 

predict bike availability for each station in bike-sharing 

systems. The proposed methods use a model which takes high 

dimensional time-series data from each station and uses real-

time and forecast weather information as input to perform 

long term prediction the next 24 hours bikes availability for 

each bike-sharing station. The proposed solution 

demonstrated that in case of prediction (1 hour in advance), 

the ARIMA models may outperform in short time the 

predictions obtained using the RF and GBM algorithms. 

However, ARIMA model cannot be used for medium-long 

term forecasts because the iterative forecasting model should 
be trained at least 24 times per day per several bike-sharing 

stations per city. To this aim, RF and GBM algorithms have 

been considered as alternative finding a satisfactory 

computationally viable solutions to make medium-long term 

predictions that produce satisfactory results in terms of 

precision and able to suit for several cases.  

In the models, we have considered several features, such as 

the historical data, difference in days and weeks, and the 

weather conditions and forecast. In almost all predictive 

models, the baseline/historical data and weather information 

have demonstrated high predictive capabilities in explaining 
the number of available bikes. The weather features have 

improved the accuracy of forecasting available bikes. Please 

note that, despite the changes in Siena and Pisa in both cases 

the identified features and model have been the same, thus 

demonstrating the validity of the derived results. The entire 

approach resulted to be very flexible and robust with respect 

of the sporadic lack of data samples. The predictive models 

can produce predictions 24 hours in advance, while they are 

provided on mobile applications, 30 minutes, 1 hour in 

advance directly, and if requested also a day in advance as 

possible general trend. The solution has been deployed as an 

additional feature on Smart City Apps in the Tuscany area to 
encourage sustainable mobility 

https://play.google.com/store/apps/details?id=org.disit.tosca

na .  
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