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Abstract

In the biological field, having a visual and interactive
representation of data is useful, particularly when there is
a need to investigate a large amount of multilevel data. It
is advantageous to communicate this knowledge intuitively
because it helps the users to see the dynamic structure in
which the correct connections are interacting and extrapo-
lated. In this work, we propose a human-interaction system
to view similarity data based on the functions of the Gene
Ontology (Cellular Component, Molecular Function, and
Biological Process) for Alzheimer’s and Parkinson’s dis-
ease proteins/genes. The similarity data was built with the
Lin and Wang measures for all three areas of gene ontology.
We clustered data with the K-means algorithm and then we
have suggested a dynamic and interactive view based on
SigmaJS with the aim of allowing customization in the in-
teractive mode of the analysis workflow by users. In this
way we have obtained a more immediate visualization to
capture the most relevant information within the three vo-
cabularies of Gene Ontology. This facilitates to obtain an
omic view and the possibility of carrying out a multilevel
analysis with more details which is much more useful in or-
der to better understand the knowledge of the end user.

Index terms— Protein Visualization, Gene Ontology,
Clustering

1 Introduction

The importance of having an omic vision is becoming
increasingly important to define biological systems at an
increasingly detailed level. Omic sciences aim to produce
useful knowledge that can be used to characterize and inter-
pret a biological system [17]. For omic sciences we refer
to the wide range of biomolecular disciplines characterized
by the suffix -omics including genomics, transcriptomics,

proteomics, and metabolomics. In this sense, technological
innovation aids the growth of complex system biology by
allowing researchers to investigate various intrinsic and ex-
trinsic influences and events at the base of life. Biological
data is multidimensional and highly interdependent. The
current challenge is to gain a more detailed integrative view
of the dynamics of cellular processes in a cell or an organ-
ism rich in biological and spatial-temporal information [18].
Clear visualization methods can provide more immediate
access to their content information.

The visualization of biological data has become increas-
ingly relevant in Biosciences, as O’Donoghue et al. [13]
point out because it helps researchers to interpret heteroge-
neous data more quickly. One of the most current issues in
omic data analysis is the inability to investigate relation-
ships between multi-omic states to incorporate them and
combine higher-level expertise [22].

In this paper, we report the preliminary results we ob-
tained regards visualization of the similarity of the proteins
based on the protein annotations. Protein similarity visual-
ization not based on sequence alignment can be tricky due
to inter-class dissimilarities and inter-class similarity [1].
Clustering and Machine Learning algorithms could fail to
good abstract interdependencies between the objects [7].
This fact often does not allow to generates a clear visual
representation of the information.

Our idea is to show how a dynamic graph generation
aided by a human can help abstract functional relation-
ships between proteins to generate a clear data visualiza-
tion where a standard clustering algorithm fails. For this
contribution, we focused on two diseases: Alzheimer and
Parkinson.

Alzheimer’s disease (AD) is a form of degenerative de-
mentia that occurs after 65 years. In this pathology, there
is a deposition of an Aβ peptide B with the formation of
senile plaques and the intracellular aggregation of tau pro-
tein [4]. Parkinson’s disease (PD) is the second most com-
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mon neurodegenerative disorder in the senile age in which
neuronal loss is found in the substance nigra and formation
of α-synuclein aggregates that are neuropathological [14].
These pathologies show similar neurodegeneration mech-
anisms supported by scientific evidence with genetic, bio-
chemical, and molecular studies. Pathological pathways in-
volving α-synuclein and tau proteins, oxidative stress, mi-
tochondrial dysfunction, iron pathway, and locus coeruleus
are among these findings [21]. They were chosen as an ex-
ample for our search workflow because of this overlapping
between their pathological mechanisms. This aspect intro-
duces intra-class, and extra-class overlaps able to fool stan-
dard clustering methods.

The paper is structured as follows. In Section 2 we
describe the most important related works in the exam-
ined field. In Section 3 we explain the conducted experi-
ments and in Section 4 we discuss respectively the dataset,
methodology, and performance measures which we have
used in our research. Finally, we expose the visual results in
Section 5 and the conclusions with future work in Section 6.

2 Related work

In the literature, several web interfaces can query the
terms of the Gene Ontology. The Gene Ontology (GO) is
a bioinformatics project that supports the standardization of
biological information about attributes of genes and gene
products through the use of ontology. It is structured as an
acyclic oriented graph where each GO-term is identified by
a word or strings and a unique alphanumeric code [6].

QuickGO allows us to find and display GO terms and
generate a list of correspondence results based on the user’s
question. This tool returns a directed acyclic graph (DAG)
containing a single GO term and its associated terms and an-
notations. It is designed with JavaScript, Ajax, and HTML.
Statistics with interactive graphs and views of term location
tables are available on the fly, indicating which words are
frequently noted simultaneously. The user can create a sub-
set of annotations based on different parameters (Specific
protein, Evidence Codes, Qualifier Data, Taxonomic Data,
Go Terms) and download them [2].

GOrilla1 identifies enriched GO terms in ordered lists
of genes using simple, intuitive, and informative graphics,
without explicitly requiring the user to provide targets or
background sets. It is a GO analysis tool that employs a
statistical approach with flexible thresholds to identify GO
terms significantly enriched at the top of a classified gene
(very useful when genomic data can be represented as a
classified list of genes). The analysis’s results are presented
in the form of a hierarchical structure that allows for a clear
view of the GO terms [5].

1Gorilla: http://cbl-gorilla.cs.technion.ac.il

Blast2GO (B2G)2 is an interactive platform that supports
non-model species functional genomic research. It is a data
sequence-based tool that combines high-performance anal-
ysis techniques and evaluation statistics with a high degree
of user interaction. Similarity searches produce results on
direct acyclic graphs [3].

NaviGO3, in order to measure the similarity or rela-
tion between the terms of the GO, use six different scores:
Resnik, Lin, and the relevant semantic Similarity score for
semantic similarity, and Co-occurrence Association Score
(CAS), PubMed Association Score (PAS), and Interaction
Association Score (IAS) for GO associations. A Funsim
score for functional similarity is also introduced [20].

More recently, the open-source software AEGIS allows
us to visually explore the GO data in real-time, taking into
input the entire dataset GO. Any Go terms can be chosen as
the anchor and have a root, leaf, or waypoint, represented
with a DAG. Each source can include all the descendants of
the anchor term, the leaves will only include the ancestors,
and the Waypoint anchors will constitute a DAG consisted
of both ancestors and descendants [24].

3 Experimental setup

We explored two ways to calculate semantic similarity.
We calculated the similarity for all three ontology gene do-
mains, both for Alzheimer’s and Parkinson’s proteins, sep-
arately. For this first experiment, we considered both Lin’s
similarities and Wang’s method. For simplicity, in this work
we only show the results concerning the similarity of Lin
while the future tool will allow user the setting of both mea-
sures. Subsequently, we clustered the data obtained for both
similarity measures in about BPs, CCs, and MFs domains
for AD and PD with the K-means algorithm, trying with
n=3 and n=5 clusters.

4 Methods

In this work, we have used the R environment4, a free
software environment for statistical computing and graph-
ics, and SigmaJS, a JavaScript library dedicated to graph
drawing5. We used the standard SigmaJS renderer to show
the graph view.

4.1 Datasets

Protein datasets for AD and PD were downloaded from
UNIPROT [16]. Data cleaning has been carried out, remov-
ing all duplicates. Furthermore, for each UNIPROT protein

2Blast2GO: https://www.biobam.com
3NaviGO: https://kiharalab.org/web/navigo/views/goset.php
4R: https://www.r-project.org
5SigmaJS: https://sigmajs.org

http://cbl-gorilla.cs.technion.ac.il/
https://www.biobam.com/
https://kiharalab.org/web/navigo/views/goset.php
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ID, the reference gene has been obtained and linked to the
STRING, removing all the proteins which were not mapped
in this database. STRING database allows us to consider
any protein-protein interactions (PPI) based on a score cal-
culated on experimental evidences [15]. We have recovered
a total of 216 genes for AD and 137 genes for PD.

4.2 Gene Ontology

The Gene Ontology is based on two types of relation-
ships between objects: instances and part of. Three con-
sidered all the organisms share biological domains and that
constitute structured and controlled vocabularies:

• Biological Process: refers to all those events that take
place within an organism resulting from an orderly set
of molecular functions;

• Cellular Component: concerns the location of the en-
tity in question at the level of cellular and/or subcellu-
lar structures;

• Molecular Function: describes the processes that oc-
cur at the molecular level.

We have identified these domains with the following
acronyms: biological process (BP), cellular component
(CC), and molecular function (MF). We have recovered
from UNIPROT6 all the GO terms belonging to these three
fields both for Alzheimer’s and Parkinson’s diseases with
UniProt package in R.

4.3 Distance Metrics

We used two types of metric to calculate pairwise se-
mantic similarities: Lin and Wang similarities with the
GOSemSim package in R [23].

4.3.1 Lin’s measure

Lin measure is based on information content (IC). The neg-
ative log of a concept’s probability is formally known as
information content (IC). This method computes the ra-
tio between the amount of “common information” and the
amount of “total information” in the descriptions regards an
object pair. This ratio corresponds to the similarity between
two objects [10].

In this case, this approach can measure the similarity of
the knowledge content of the GO terms for each protein
dataset referring to the two diseases. The frequency of two
GO words involved and their closest common ancestor in a

6UniProt: https://www.uniprot.org

particular corpus of GO annotations are used in the estima-
tion. The most basic definition two concepts share as an an-
cestor is suggested by the term Least Common Subsammer
(LCS) [12]. So, we can consider the following Equation 1:

simlin =
2 ∗ IC(lcs(c1, c2))
IC(c1) + IC(c2)

(1)

where c1 and c2 are two concepts, IC is the information
content and lcs is the function that computes the least com-
mon subsammer. In our experiment, c1 and c2 reflect the
concepts represented by the GO terms referring to the BP,
CC, and MF domains. The similarity is measured across all
proteins in the pathological reference dataset, both for AD
and PD.

4.3.2 Wang measure

The Wang method is based on a graph-based semantic sim-
ilarity. The GO terms are converted into a numeric value by
aggregating the terms of their ancestors in a GO graph [19].

Given two GO terms, A and B, we can represent DAGA =
(A, TA, EA) and DAGB = (B, TB , EB), where Tn is the set
of GO terms including the term n and all of its ancestor
terms in the GO graph while En are the semantic relations
represented as edges between the GO terms. The seman-
tic similarity between these two terms are calculated as in
Equation 2:

SGO(A,B) =

∑
t∈TA∩TB

SA(t) + SB(t)

SV (A) + SV (B)
(2)

where SA(t) and SB(t) denote the S-value of a GO term t
related to term A and term B.

Wang measures the semantic meaning of GO term n,
SV(n), after obtaining the S-values for all terms in DAGn

with the Equation 3 below:

SV (n) =
∑
t∈Tn

Sn(t) (3)

4.4 K-means

K-means is one of the most common and widely used
partitioning clustering algorithms because it divides a set of
objects into K clusters based on their attributes [11]. A clus-
ter is simply an aggregation of data based on similarities.
The division into K clusters is done a priori, based on the
goal to be achieved or using heuristic techniques, and the
clusters represent the number of centroids required by the
dataset. As the name implies, a centroid is a real or imagi-
nary point that represents the cluster’s center and is updated
with each algorithm iteration.

The procedure is composed by four steps:

• Step 1: determine the value of K;

https://www.uniprot.org/


• Step 2: randomly select K points as initial centers of
the clusters;

• Step 3: assign each new point to the cluster with the
closest Euclidean distance to its center. Formally, if ci
is a centroid of the set of centroids C then each point
x will be assigned to a cluster based on:

arg min
ci∈C

dist(ci, x)
2 (4)

where dist (.) represents the Euclidean distance;

• Step 4: recalculate the updated cluster centers by aver-
aging the points associated with each cluster:

ci =
1

|Si|
∑
xi∈Si

xi (5)

where Si is the cluster’s set of points.

The procedure repeats steps 3 and 4 until a convergence is
achieved.

The algorithm ensures speed of execution while leaving
the data free to group and move away. Due to the goal of
this research, we limited the max number of clusters to five.
No PCA techniques were used. Figures 2 and 3 report how
the GO objects are partitioned regarding the BP features for
both diseases. The axis reports the distance between each
item to its centroid. We used cluster and factoextra
packages in R to perform clusterization. It is hard to read
this kind of visualization due to arbitrary parameter values
that the final user can assign to the number of the cluster.

4.5 Dynamic Distance-Graph

We propose a dynamic build cyclic distance graph
(DCDG) to visualize and transfer knowledge regarding the
GO terms. Our goal is to provide a clearer visualization
of the GO interconnections than other visualization meth-
ods like clustering or partitioning. We used a web-based
workspace built with Javascript and SigmaJS to allow the
user to explore this interconnection. Workspace is designed
to be as clean as possible. It starts as an empty web app with
a single callable overlay menu on the upper left corner, al-
lowing users to search the entry point protein into datasets.

The BP, CC, and MF distance matrices, calculated be-
fore the execution of the k-means algorithm, were used as
datasets. When selected, the entry protein becomes the root
of the graph. Users can click on each graph node to show
a context menu (as depicted in Fig. 1) in which it is possi-
ble to choose extension (explosion) operation for the node
itself.

We defined three kinds of extensions for this contribu-
tion, each of them related to one dataset: BP, CC and MF,

Figure 1: The contextual menu is available for each node.

whose definitions are those intended by the three vocabu-
laries of the GO. The distance between each node pairs is
written on the arcs between them. Also, the distance value
is used to separate nodes into spaces.

The ForceAtlas2 algorithm is used to avoid overlapping
between near nodes. In particular, we used ForceAtlas2 em-
bedded into SimgaJS [9]. ForceAtlas2 is a layout algorithm
for force-directed graphs. This algorithm allows us to posi-
tion each node depending on the other nodes using the dis-
tances between them as edge weights. Just because of this
condition, the position of a node must always be confronted
with the other nodes. The fundamental advantage of using
ForceAtlas2 for the representation of protein graphs is to
have an easier view of the structure because the structural
proximity present in the original datasets is converted to vi-
sual proximity.

In order to better empathize the functionality distance
between GO, we defined a spatial distance SD with the fol-
lowing equation. Given two nodes, A and B and their own
distance d:

SD = loge(d) (6)

where d is the distance and the loge is the natural logarithm
with base the number of Nepero.

Note that SD is used only for graphical purposes in the
rendering routines. Figure 5 shows no linear proportional-
ity into edge lengths: see the distance between (Q8IZY2,
Q9BS0) and (Q93045, Q9BS0). Still, for graphical pur-
poses, we defined a threshold th i as the mean of all the
distances into the dataset i used for node expansion. As an
example, given the node Q9BXS0 (see figure 5), the thresh-
old th Q9BXS0 is the mean of the edge’s weight between
Q9BXS0 and the related nodes. When the distance SD be-
tween two node A and B is greater than th i, then node A
and B are considered belonging to a different cluster. A
dotted line renders each class separation.



(a) K = 3 (b) K = 5

Figure 2: K-means for BP for Alzheimer’s disease with Lin’s measure.

(a) K = 3 (b) K = 5

Figure 3: K-means for BP for Parkinson’s disease with Lin’s measure.

5 Results

5.1 K-means visualization

We represented the images related to Alzheimer’s and
Parkinson’s diseases and calculated with Lin’s measure for
convenience. We have found that clustering with the K-
means algorithm produces visually misleading and uninfor-
mative overlaps. In Figures 2 and 3 is shown what happens
when the data of Alzheimer ans Parkinson diseases for only
BP component is clustered with n=3 and n=5.

5.2 DCDG visualization

For our test, we considered the G9BXS0 protein from
the similarity matrices obtained and we identified the pro-
teins of his neighbor to build our view of node expansion.
Before testing DCDG view, we carried out a simple statistic
of the common GO terms, even in this case for the only BP
component, between this root protein and its neighbors. We

represented them with a Venn diagram [8] (see Fig. 4), on
the basis of GO Lin’s similarity matrix.

This view allows us to evaluate which elements are com-
mon among the different sets of the terms GO for all the
selected proteins. It is clear that a simple statistics of the
terms does not make useful information beyond the simple
observation that there are terms, even if minimal, common
to all five sets of the Terms Go of each protein. Instead, in-
troduce similarity based on the information content of the

Figure 4: Venn Diagram for G9BXS0.



Figure 5: The result of Q9BX80 expansion by BP dataset.

GO terms is useful for expanding knowledge regarding bio-
logical aspects that would be omitted by a simple statistical
analysis.

Figure 5 shows the BP expansion related to node
G9BXS0, a protein produced by COL25A1 gene for Homo
Sapiens organism with the DCDG view. This protein in-
hibits the fibrillization of β-amyloid peptide which consti-
tutes amyloid plaques present in Alzheimer’s disease. It
also assembles the amyloid fibrils in aggregates which are
resistant to the demerger mechanisms.

The DCDG view allows the user to see and understand
immediately the proteins belonging to the two distinct BP
classes: CLASS 1, related to many biological processes
such as signaling pathway and positive and negative regula-
tion of cellular and chemical complexes and CLASS 2, con-
cerning the organization of fibrils, microtubules, and struc-
tures of the cytoskeleton.

Figure 6 highlights the successive expansion of Q8IZY2
and Q9P0L2 proteins. Due to distances, a new class was
identified by the system (CLASS 3). The visualization
clearly states, from a point of view of biological meaning,
that the added third class emphasizes further involvement
of proteins indicated in different biological processes com-
pared to previous classes. In particular, this class intervenes
in broader biological regulation processes involving energy
homeostasis and cell cycle regulation systems.

6 Conclusion

In this paper, we explored an alternative way to graphi-
cally view the relationships between the GO terms based on
their information content. In particular, we have proposed
a human interaction-based viewing system that allows the
users to have a complete omic vision of data. In particu-
lar, by ensuring the direct representation of the inter-class

and intra-class correlations between involved proteins. The
strategy proposes an instrument to investigate the GO with
a customizable and flexible approach providing information
to a more general or selective level.

We presented a distance cyclic distance graph (DCDG)
as a GO terms visualization approach to immediately repre-
sent interconnection between elements. The prototype was
written as a web app by using the SigmaJS framework.

We used two similarity methods on the three GO vo-
cabularies (Biological Process, Cellular Component, and
Molecular Function) for two neurodegenerative diseases,
Alzheimer’s and Parkinson’s diseases: Lin’s and Wang’s
Methods. Thanks to these metrics, we built three different
distance matrices (BP, CC, and MF) for each condition.

We explored the differences between the standard cluster
view and the proposed DCDG view. The datasets were clus-
tered using the K-means algorithm to show a classic cluster-
ing plot. Also, we use the proposed DCDG method to plot
the same information into a graph view.

By applying a classic display of clustering, visually was
not possible to recover the information immediately, also
due to the problem of overlapping of some clusters ele-
ments. On the other hand, the display with DCDG allows
a more immediate understanding of the interactions present
between the proteins based on the similarity representative
of the three vocabularies of the GO. The existence of well-
outed protein clusters in a system is one of the purposes of
our work as it represents a fundamental topological char-
acteristic to understand the entire network of connections.
This subdivision makes it possible to view the existing rela-
tionships between proteins and provides a tool which meets
the need to identify and understand why some structural el-
ements are grouped at different levels (cellular, biological
and molecular) of in-depth.

As future work, we plan to improve the web-based tool
prototype into a web app for exploring protein data based
on the proposed assumptions in this research study, guaran-
teeing user-target customization of the tools available.
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