
DefDroid: Securing Android with Fine-Grained
Security Policy

Chao Huang
School of Software

Shanghai Jiao Tong University
Shanghai, China

bujingyun beta@sjtu.edu.cn

Shuohong Wang
School of Computer Science

Fudan University
Shanghai, China

sh wang@fudan.edu.cn

Haiyang Sun
Faculty of Informatics

Università della Svizzera italiana
Lugano, Switzerland
haiyang.sun@usi.ch

Zhengwei Qi
School of Software

Shanghai Jiao Tong University
Shanghai, China

qizhwei@sjtu.edu.cn

Abstract—Android occupies the absolute dominant position
in mobile operating system and has the largest market share.
Meanwhile, Android faces the risk of malicious insiders leaking
sensitive information. In this paper, we present DefDroid, a
repackaging tool for enforcing security policies by modifying
Android applications without root privilege. The main advantages
of DefDroid are that it provides a user-friendly interface to
configure fine-grained policies and it supplies multiple deploy-
ment methods. We have implemented policies aimed at three
types of services of Android system, i.e., content provider, file
system, and network. We choose 74 arbitrary applications from
Android market and the experimental results show that the
successful rate of repackaging applications is about 94.6% which
effectively improve the privacy security of Android system while
the increased overhead can be tolerated.

Keywords—Android; permission restriction; repackage; bytecode

instrumentation

I. INTRODUCTION

Android OS (developed by Google) spreads around the
world and becomes one of the most important mobile oper-
ating systems. According to data from the International Data
Corporation (IDC), Android occupies 84.4% of Smartphone
OS Market Share in the second quarter of 2014 [1]. There
are more than 1 billion Android devices activated around the
global and Android is the dominant mobile OS in the world
[2].

According to the report of The Wall Street Journal [3],
antivirus software only catches 45% of malware attacks and
55% malware behaviors are missed. In Android ecosystem,
sensitive information leakage is a serious problem due to the
rapid expansion of Android mobile phone customers. The
native Android permission system follows an ‘all or nothing’
policy to restrict applications’ access to privileged resources.
That is to say, an application cannot be successfully installed
unless all permissions it applies for are allowed. This coarse-
grained access control system brings terrible security problem
and privacy leakage.

To overcome the issue, companies and researchers come up
with several methods [4]–[6] to provide fine-grained security
policy for Android which can be divided into three types.
The first approach is native library rewriting which imposes
fine-grained access control by intercepting the native calls.
However, it does not allow security administrator to write

and deploy unified security policies according to different
requirements of companies. The second one is fine-grained
access control that can be achieved by modifying the Android
operating system. The defect of it lies in that it demands
root privilege and it is unable to get more high-level, un-
formed information. The last approach is based on bytecode
instrumentation technique, which makes it possible to obtain
detailed information of application behaviors at Java level
and protect sensitive information at greater extent. However,
there is no satisfactory method based on this technique (to
our knowledge). Consequently, we propose a novel policy
enforcement system using this technique.
Our Approach To protect sensitive information of Android
system, we propose a novel and deployable tool with fine-
grained security policy. DefDroid does not need root privilege,
which avoids modifying the Android operating system. On the
contrary, security policies provided by DefDroid are imple-
mented into arbitrary applications by repackaging applications
itself. The repackaging applications can be installed on users’
mobile devices after signing them with valid keys. The poli-
cies provided by DefDroid are implemented into applications
through bytecode instrumentation. DefDroid translates user-
defined security policies into instrumentation code and inserts
these codes into specific code snippets to enforce security.

Theoretically, DefDroid is able to monitor all interaction
with Android operating system except invocation of native
code. DefDroid enables much more fine-grained policy en-
forcement than original permission model of Android and
other solutions, such as FireDroid [4] and Aurasium [5]. There
are three groups of policies and each group represents a service
of Android operating system, i.e., content provider, file system,
and network.

The main contributions of this paper are that
• We develop fine-grained policies to protect different types

of sensitive information in Android system, such as
protection of specific contacts and sandbox of file system.

• We provide groups of policies to customers so that users
can customize policies to protect their sensitive infor-
mation without knowing too much about implementation
details.

• We show a workable solution to deal with bytecode
instrumentation and repackaging applications.

DOI reference number: 10.18293/SEKE2015-162



Fig. 1. Architecture of DefDroid

• We propose a scheme for companies who need to manage
information security of multiple users’ mobile device.

II. DEFDROID SYSTEM DESIGN

The main idea of our proposal is that modifying source code
of Android applications can completely enforce fine-grained
permission policies and block malicious behaviors, although
there are several problems need to be solved.

DefDroid system is made up of several components, as
shown in Fig. 1. In order to implement security policies,
a convenient way to define these policies is necessary. So,
we create a configure file to edit and store security policies.
The Policy Service (PS) is made up of configure files. All
security policies written in the files are divided into two
parts, namely Global policies and Private policies. The Global
policies store security policies that influence all applications
in private Android market. Private Android Market (PAM) is
an Android application download platform inside the company
or non-public Android market that serves specific customers.
Applications in private Android market are repackaged and
inserted relevant code. Policy Deployment Service (PDS) is
the middle component of DefDroid. PDS gets configure file
of PS and parses it to related code. Then, PDS transmits
this policy information to Instrumentation component. Also,
PDS takes the task of publishing Android package file to
PAM. More specifically, PDS reads modified ‘classes.dex’
file, and other related files and compresses them to Android
package file. Bottom layer is made up of Instrumentation
part and Android System part. Instrumentation component
contains instrumentation code, instrumentation engineer (IE),
and DiSL. Instrumentation code is Java code based on gram-
matical rules of DiSL converted from PDS. IE is the core
module to implement bytecode instrumentation. IE compiles
instrumentation code to Java bytecode and inserts it into
specific code snippets. The whole policies are divided into
three parts, i.e., content provider, file system and network.
Content provider is the standard interface that connects data

in one process with code running in another process [7]. A
lot of sensitive information must be accessed through content
provider, such as contact list, sms information, and media
data. Policies aimed at content provider can effectively control
information leakage in mobile phone. File system manages
files and data stored in Android operating system. Policies
of file system are able to protect data of storage devices,
especially non-encrypted sensitive documents. Network is an
important part of sensitive information protection. In several
scenarios, some URL addresses are not allowed to be accessed
because of security issues. Instrumentation of network service
is able to enforce relevant policies.

III. IMPLEMENTATION DETAILS

In this section, we introduce the implementation details of
DefDroid. Different from FireDroid [4] which monitors appli-
cations’ interactions with the OS, DefDroid implements fine-
grained permission policies of sensitive resource by bytecode
instrumentation. Other related work, such as Aurasium [5] is
proposed to solve it by replacing Android system libraries.

We use DiSL as our instrumentation tool. DiSL (domain-
specific language for instrumentation) [8] is a domain-specific
language especially designed for dynamic program analy-
sis and is primarily designed to manipulate and transform
bytecode. We decompress the Android package file and get
‘classes.dex’ file and invoke several functions of dex2jar [9]
to convert the file to ‘classes.jar’. After instrumentation is
finished, we use Android dx tool [10] to convert jar file to
dex file. Finally, we compress all related files into Android
package file and sign applications with users’ private keys
before publishing to Android market.

For deploying fine-grained policies, there are two alterna-
tives adapted in DefDroid. One is static policies. This means
relevant instrumentation codes are going to carry out these
policies. The other is dynamic policies. The approach will
insert some codes in the application, these codes are able to
get specific operations on sensitive resources from the server.
Policy makers can rewrite data in the server to deploy security
policies rapidly.

The configure file that contains policy setting is an xml
format file, as shown in Fig. 2. We develop a component in
PDS to parse the configure file. The ‘Global’ tag and ‘Private’
tag determine the scope of policies, and the ‘name’ attribute
of ‘Private’ tag is the name of affected application. The next
level contains three kinds of tags, i.e., ‘ContentProvider’,
‘FileSystem’, and ‘Network’. Policies of DefDroid are mainly
aimed to harden protection of sensitive resource of these three
parts.

A. Content provider

Content provider is the standard interface to manage sensi-
tive data, such as audio, images, and personal contact infor-
mation. So, if we monitor ‘ContentResolver’ object, we can
monitor all operations aimed at content providers. The Con-
tacts provider, one of content providers, stores all information
about contacts of mobile phones. DefDroid provides contacts



<?xml version="1.0" encoding="UTF-8"?>

<Global>

<ContentProvider>

<Contacts groupName="Company"

operation="all">false<Contacts>

</ContentProvider>

</Global>

<Private name="applicationName">

<FileSystem>

<File filePath="file path"

operation="read">true<File>

<File extension="doc"

operation="write">false<File>

</FileSystem>

<NetworkSystem>

<network url="www.baidu.com" >false<Contacts>

</NetworkSystem>

</Private>

Fig. 2. Example of configure file.

sandbox for specific fields. For example, most contacts have
their own grouping, such as home, friend, and company, and
DefDroid can block operations of contacts in specific group, as
shown in Fig. 2. After being deployed, applications that have
access to contact list are only enforced to operate on contacts
in the ‘company’ group and other contacts are invisible.

B. File System

File system of Android operating system is similar to Linux
system. Android has external storage and it’s necessary to
add permissions for write/read access to external storage in
AndroidManifest.xml. It is ubiquitous that applications have
access to external storage, however, users who use their mobile
phones frequently are more likely to store critical files in
external storage of mobile devices. Hence, external storage
is not safe.

DefDroid is able to manage files in external storage, as
shown in Fig. 2. The policy means files with ‘doc’ extension
are unwritable for applications. The value of ‘filePath’ will be
appended to root path of external storage to get the absolute
path of the file. And the policy will be aborted when the file
is not found in the absolute path.

C. Network

Network is the most complicated interface in Android
framework. Malware and virus widely exist in network. Build-
ing website blacklist to block website access is a workable way
to protect mobile device and improve the security.

DefDroid is able to manage network access through URL
address in external storage, as shown in Fig. 2. The ‘url’
attribute of ‘network’ tag stores website address and the policy
means that accessing website by the URL are forbidden.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation result
of DefDroid. We implement security policies presented in

TABLE I. EVALUATION RESULTS OF REPACKAGING

Type of App Total Repackaged Success Rate
content provider 37 35 94.6%

file system 22 21 95.5%
network 15 14 93.3%

Section III. We evaluate repackage performance and execu-
tion time before and after instrumentation. Our evaluation is
conducted on a Google Nexus 7 Tablet running Android 4.4.2.

We download 74 applications from Android market, the
functions of these applications correspond to policy model of
DefDroid as introduced in Section III. There are 37 contacts
applications, 22 file-related applications, and 15 network-
related applications in total. Different applications are enforced
different types of policies. For contacts applications, the policy
is designed so that applications are only allowed to operate
on contacts in ‘Company’ group. For file-related applications,
we enforce a policy to prohibit write access of the applica-
tions to ‘data.txt’ file on the external storage. For network-
related ones, applications are forbidden to visit website of
“www.baidu.com” according to the policy.

As shown in Table I, there are altogether 4 applications
failed to be repackaged. The reason is that the translator tool
dex2jar still has several bugs resulting in several bytecodes
translated from Dalvik bytecode not recognized by DiSL.
Considering that the probability of this circumstance is very
small, we ignore these questionable applications in our test
set.

The experimental results of repackaging contacts applica-
tions, file-related applications and network related applications
are shown as histograms in Fig. 3(a), 3(b), 3(c) respec-
tively. The blue bins show the number of snippets modified
by bytecode instrumentation (the left vertical axis displays
their values) and the red ones show the execution time of
repackaging each application (the right vertical axis displays
their values). And the numbers on horizontal axis list each
application of the corresponding type.

As shown in Table II, we measure the execution time
of original and modified code snippets. The experimental
results present the increased overhead caused by policies of
DefDroid. For contacts, we need to query contacts table in
database multiple times to get group id by group name and
check if the contacts required by the applications are in this
group. It definitely increases execution time compared with
original code, and therefore we record these information of
group id to avoid querying database repeatedly when requir-
ing multiple contacts. According to the experimental results
and user experience of modified applications, the overhead
increases but can be tolerated. For policies of file system and
network, we provide two modes of policy deployment, which
are local and network respectively. Applications are forced to
obtain data from Internet when implementation information is
stored on servers, which will substantially increase execution
costs. Therefore, it is recommended to store implementation
information locally.



0 5 10 15 20 25 30 350

125

250

375

500

625

750

N
um

 o
f r

ep
ac

ka
ge

d 
ap

p

0 5 10 15 20 25 30 35 0

2

4

6

8

10

12

14x 104

E
xe

cu
tio

n 
tim

e 
(\m

s)

Num of repackaged app
Execution time

(a)

0 2 4 6 8 10 12 14 16 18 20 220

100

200

300

400

500

600

N
um

 o
f r

ep
ac

ka
ge

d 
ap

p

0 2 4 6 8 10 12 14 16 18 20 220

1

2

3

4

5

6

7x 104

E
xe

cu
tio

n 
tim

e 
(\m

s)

Num of repackaged app
Execution time

(b)

0 2 4 6 8 10 12 140

10

20

30

40

50

60

N
um

 o
f r

ep
ac

ka
ge

d 
ap

p

0 2 4 6 8 10 12 14 0

1

2

3

4

5

6x 104

E
xe

cu
tio

n 
tim

e 
(\m

s)

Num of repackaged app
Execution time

(c)

Fig. 3. Evaluation results of repackaging applications. (a). Evaluation results of repackaging contacts applications. (b). Evaluation results of repackaging
file-related applications. (c). Evaluation results of repackaging network-related applications.

TABLE II. OVERHEAD MEASUREMENTS OF DEFDROID’S POLICIES

Original(/ms) DefDroid(/ms) Overhead
Group field sandbox

of contacts 9 23 60.9%

File system restriction 2 2 0%
157 98.7%

URL restriction
of network 168 168 0%

318 47.2%

V. RELATED WORK

In this section, we present an overview of the related work
that aimed to deal with information leakage and malware
detection.

Programing analysis has been applied to detect malicious
applications in Android market. TaintDroid [11] is proposed
and obtains good experiment results by employing dynamic
taint analysis. Malware detection is able to clean malware
applications in Android market. But malware that has already
been installed in mobile devices are still doing malicious
attacks.

Modifying Android application to enforce permission con-
trol policies through bytecode instrumentation is another ap-
proach to protect sensitive information. Aurasium [5] enforces
policies by replacing Android’s standard C libraries with
Aurasium native libraries and bytecode instrumentation,

Ptrace is a tool used to track processes and modify system
call. FireDroid [4] provides a fine-grained policy model by
monitoring Android process with ptrace. Meanwhile, Fire-
Droid contains a policy language to simplify policy making
process. However, deploying FireDroid system is a difficult
task, considering the high risk of rooting Android system.

VI. CONCLUSION

In this paper, we present DefDroid, a novel fine-grained
permission control solution including policy server and appli-
cation repackaging tool, which is able to act as defender of
malware and malicious behaviors of applications for billions
of Android mobile platform users. We implement DefDroid
without rooting device, which reduces the potential risk of
sensitive information leakage and is more acceptable to cus-
tomers. The experimental results show that DefDroid increases
overhead of applications compared with the original version.

However, considering the protection of sensitive information
that DefDroid provides, the performance reduction can be
tolerated.

VII. ACKNOWLEDGMENT

This work is supported by NSFC (No. 61272101), Na-
tional R&D Infrastructure and Facility Development Program
(No. 2013FY111900), and NRF Singapore CREATE Program
E2S2. We thank support from Shanghai Key Laboratory of
Scalable Computing and Systems for this research.

REFERENCES

[1] Smartphone OS Market Share, Q3 2014. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[2] Android still the dominant mobile OS with 1 billion active users.
[Online]. Available: http://www.engadget.com/2014/06/25/google-io-
2014-by-the-numbers/

[3] Symantec Develops New Attack on Cyberhacking. [Online]. Available:
http://www.wsj.com/news/articles/SB10001424052
702303417104579542140235850578

[4] G. Russello, A. B. Jimenez, H. Naderi, and W. van der Mark, “Firedroid:
hardening security in almost-stock android,” in Proceedings of the 29th
Annual Computer Security Applications Conference. ACM, 2013, pp.
319–328.

[5] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications,” in Proceedings of the 21st USENIX
Conference on Security Symposium, ser. Security’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 27–27.

[6] A. Bartel, J. Klein, M. Monperrus, K. Allix, and Y. L. Traon, “Improving
privacy on android smartphones through in-vivo bytecode instrumenta-
tion,” arXiv preprint arXiv:1208.4536, 2012.

[7] Content Providers. [Online]. Available: http://developer.android.com/
guide/topics/providers/content-providers.html

[8] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi,
“Disl: a domain-specific language for bytecode instrumentation,” in
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development. ACM, 2012, pp. 239–250.

[9] Dex2jar. [Online]. Available: https://code.google.com/p/dex2jar/
[10] Android apktool. [Online]. Available: http://code.google.com/p/

android-apktool/
[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. 2010, pp. 1–6.

[12] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 2011,
pp. 639–652.


