
Causes of Architecture Changes: An Empirical Study

through the Communication in OSS Mailing Lists

Wei Ding
1,4

, Peng Liang
1*

, Antony Tang
2
, Hans van Vliet

3

1
State Key Lab of Software Engineering, School of Computer, Wuhan University, China

2
Faculty of Science, Engineering and Technology, Swinburne University of Technology, Australia

3
Department of Computer Science, VU University Amsterdam, The Netherlands

4
Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, China

tingwhere@whu.edu.cn, liangp@whu.edu.cn, atang@swin.edu.au, hans@cs.vu.nl

Abstract—Understanding the causes of architecture

changes allows us to devise means to prevent architecture

knowledge vaporization and architecture degeneration. But the

causes are not always known, especially in open source

software (OSS) development. This makes it very hard to

understand the underlying reasons for the architecture

changes and design appropriate modifications. Architecture

information is communicated in development mailing lists of

OSS projects. To explore the possibility of identifying and

understanding the causes of architecture changes, we

conducted an empirical study to analyze architecture

information (i.e., architectural threads) communicated in the

development mailing lists of two popular OSS projects:

Hibernate and ArgoUML, verified architecture changes with

source code, and identified the causes of architecture changes

from the communicated architecture information. The main

findings of this study are: (1) architecture information

communicated in OSS mailing lists does lead to architecture

changes in code; (2) the major cause for architecture changes

in both Hibernate and ArgoUML is preventative changes. (3)

more than 45% of architecture changes in both projects

happened before the first stable version was released, which

indicates that the architectures of the investigated OSS projects

are relatively stable after the first stable release.

Keywords-architecture change; cause of change; open source

software; mailing list; communication

I. INTRODUCTION

Software architecture (SA) represents “the fundamental
concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles
of its design and evolution” [1]. Systems continuously evolve
and change to be adapted to new uses, just as buildings
change over time [2], which consequently leads to
architecture changes. Understanding the causes of
architecture changes is important to help practitioners to
understand the knowledge of the design decisions that lead to
the architecture changes [3], and also allows researchers to
devise means to prevent architecture knowledge vaporization
and architecture degeneration [4]. The causes of architecture
changes are regarded as an essential element of architectural
design decision, which is a first-class entity to represent
architecture [5], and are used to develop related methods to
deal with specific architecture changes, for example,
architects analyze due to what cause the property of an

architecture is inhibited in order to transform the architecture
to satisfy non-functional requirements [6]; architectural
styles as analysis tools are used to analyze the causes of
architecture changes, and in turn to predict the effect of the
architecture changes [7]. Architectural knowledge
vaporization (e.g., design decisions and causes of
architecture changes) will lead to increased maintenance
costs [5]. To prevent this problem, developers (especially
architects) need a way to record and communicate the causes
of changes in architecture. With an explicit description of
architecture as well as their changes [8], software
maintainers can better understand the ramification of
architecture changes and thereby more accurately analyze the
impact and estimate costs of modifications [9]. But the
reality is that the rationale of architectural design decisions
(e.g., their causes) is often not available in SA documentation
[10], especially in OSS development when SA is rarely
documented (only 5.4% of 2000 investigated OSS projects
have some SA documentation) [11]. We conjecture that
causes of architecture changes are communicated between
developers through various media, especially in a distributed
development context when face-to-face communication is
difficult. Mailing list is an important social media for
knowledge sharing between knowledge providers and
knowledge seekers in OSS projects [12]. Our recent study
has shown that communication on architecture does exist in
the mailing lists of two popular OSS projects (Hibernate and
ArgoUML) [13], and OSS development mailing lists may act
as a potential source to extract and identify the cause
information of architecture changes in a project.

One of the characteristics of many successful OSS
projects is the existence of a SA [14]. Architecture change is
also a widespread phenomenon in OSS development, for
example, an investigation of the changes in Linux kernel’s
evolution indicates that most remarkable growth for a
“stable” version has been in the addition of new features and
support for new architectures rather than fixing defects [15].
To understand the causes of architecture changes [16][17],
we conducted an empirical study to extract, identify, and
analyze the architecture change information communicated
in the OSS mailing lists of two popular OSS projects:
Hibernate and ArgoUML based on the data (i.e., architectural
threads, which are a set of communication posts on the same
topic that contain architecture information in mailing lists)
we collected in [13]. The identified architecture changes in

* Corresponding author
This work is sponsored by the NSFC under Grant No. 61170025, 61472286.

(DOI reference number: 10.18293/SEKE2015-193)

mailing lists were further located and verified (confirmed) in
the source code of the two projects, and the causes of the
architecture changes were classified through the
communicated content in architectural threads. The goal of
this work is to provide a practical understanding of the
causes of architecture changes through communication in
OSS mailing lists: Does architecture communication in
mailing lists lead to architecture changes in source code?
What types of causes that lead to the architecture changes?
When do OSS developers communicate the causes of
architecture changes?

To answer these questions, we first extracted architecture
change information from the architectural threads of OSS
mailing lists and further classified the causes of architecture
changes with a top-down approach (i.e., using an existing
categorization of causes of architecture changes provided in
[16]), then checked and verified these changes against source
code. We conducted this study based on the architectural
threads collected in two popular OSS projects: Hibernate and
ArgoUML) [13], in which we identified 131 architectural
threads from 20,413 posts in the mailing list of Hibernate
from Jan 2002 to Aug 2014; and 200 architectural threads
from 26,439 posts in the mailing list of ArgoUML from Jan
2001 to Aug 2014. These architectural threads in Hibernate
and ArgoUML are used to extract, identify, and analyze the
causes of architecture changes. The results show that the
major cause for architecture changes in both Hibernate and
ArgoUML is preventative changes, which ease future
maintenance by restructuring or reengineering the system.

The rest of this paper is organized as follows. A brief
review of related work is discussed in Section II. The
methodology, including research questions and study
process, is described in Section III. The results of this study
are presented and discussed in Section IV. Threats to validity
are discussed in Section V. We conclude and outline the
future directions of this work in Section VI.

II. RELATED WORK

A. Cause of Architecture Change

The causes of architecture changes have been explored in
software development in various perspectives. The work in
[16] uses a systematic literature review to characterize
architecture changes from existing literatures. As part of the
Software Architecture Change Characterization Scheme
(SACCS), a general classification of causes of architecture
changes presented in [16] and another work [17] by the same
authors can be used as the basic categorization of the causes
of architecture changes in the two OSS projects in this study,
which is elaborated in Section III. The work in [18] analyzes
group interviews in various workshops for different levels of
participants, e.g., developers, testers, and architects in five
companies. The results validated a taxonomy of the causes
for architecture technical debt, a kind of architecture
inconsistency, which can be incurred and repaid by
architecture changes. The work in [19] uses various versions
of an ATM Simulator to observe and analyze what happens
when a system evolves and new requirements are added. The
results of this work show that changes in requirements may

lead to architecture changes and drift, and consequently
developers (architects) that do not fully understand the
design may take sub-optimal decisions, resulting in design
erosion. The authors also identified the causes of design
erosion, which can also be the causes for architecture change.

B. Communication through Mailing Lists in OSS Projects

Mailing lists in OSS development, as a rich source of
communication of development, have been investigated in
many studies. The work in [12] discusses the altruistic
sharing of knowledge between knowledge providers and
knowledge seekers in the developer and user mailing lists of
Debian project. The authors developed the Knowledge
Sharing Model (KSM) to show how knowledge can be
shared (communicated) in OSS mailing lists, and used email
exchanges between mailing list participants as quantifiable
measures of knowledge sharing activities in OSS
development. Some keywords in the subject of posts of
mailing lists are used to identify posting and replying posts,
e.g., “Re:”. The study in [20] examined the first posts of
newcomers in the mailing lists of four popular OSS projects:
MediaWiki, GIMP, PostgreSQL, and Subversion. The
authors found that knowledge communication (nearly 80% of
newbie posts received replies) was positively correlated with
their future participation. Mockus and his colleagues used
email archives of source code change history and problem
reports to quantify aspects of developer participation, core
team size, code ownership, productivity, defect density, and
problem resolution intervals, for two large OSS projects,
Apache and Mozilla [21]. These works pay attention to all
the posts and threads in a mailing list during a certain period,
while our study specifically extracts, identifies, and analyzes
architecture changes and their causes through the
communication in mailing lists.

III. METHODOLOGY

To explore the causes of architecture changes through the
communication in OSS mailing lists, we select and analyze
the mailing lists of two popular OSS projects: Hibernate and
ArgoUML, based on the data (i.e., architectural threads)
collected in our recent work [13]. In this section, we describe
the design of this study with following components: the
objective and research questions are presented in Section
III.A, the selection criteria of the OSS projects are described
in Section III.B, and the study process is elaborated in
Section III.C.

A. Objective and Research Questions

The goal of this study, formulated using the Goal-
Question-Metric (GQM) approach [22] is: to analyze
architecture changes through the communication in mailing
lists for the purpose of characterizing the causes of
architecture changes from the point of view of OSS
developers in the context of OSS development. We formulate
the following research questions (RQs) based on the
abovementioned goal.

RQ1: What are the causes that lead to architecture
changes in OSS development?

Rationale: Mailing lists have been used as a major
vehicle for the communication in OSS development [23].
Architecture information is communicated in the mailing
lists of OSS projects [13]. Some of them may discuss
specific architecture information, e.g., the causes of
architecture changes. With the existing categorization of
architecture changes provided in [16], we want to understand
in a practical perspective the causes of architecture changes
in OSS development through the communicated content
extracted from architectural threads. Knowledge and
understanding about the causes of architecture changes
(evolution) as well as their risks can facilitate the
development of strategies to mitigate these risks in software
evolution [24].

RQ2: What are the trends of causes that lead to
architecture changes in a time perspective?

Rationale: We intend to identify when various types of
architecture changes happened and their causes were
communicated in a time perspective. The answer of this
question would allow us to further identify the best timing
for performing treatments to various types of causes of
architecture changes, and help practitioners to understand
distribution of various causes of the changes in the
development lifecycle. To investigate the relationship
between causes of architecture changes and time point of
releases, the studied period of both OSS projects is divided
into two stages according to their first stable releases, i.e.,
ArgoUML v0.10

1
 and Hibernate v1.0 final

2
.

B. Selection Criteria of OSS Projects

Three criteria are used in this study to select OSS projects
that have mailing lists: (1) The duration of the project is
more than 10 years. (2) There are more than 1000 posts in
the development mailing list of the project, which provides
rich data to mine architecture information. (3) There are
more than 50 developers who ever used the mailing list,
which is meaningful to analyze the behavior of the
developers on communicating architecture information using
the mailing list.

Based on these selection criteria, we chose Hibernate and
ArgoUML as the OSS projects which mailing lists were
analyzed. Hibernate provides an Object/Relational mapping
(ORM) framework which implements the Java Persistence
API, and is popularly used in Java applications. Hibernate
has 20,413 posts in its development mailing list between Jan
2002 and Aug 2014, when the release version was evolved
from v0.9.1 to v4.3.6. Note that, the mailing list of Hibernate
was migrated from Sourceforge to JBoss in Aug 2006. The
mailing list of Hibernate in Sourceforge was initially
maintained by a core developer, but he did not continue this
administration effort after 11-Aug-2006

3
. Hence, the

investigated time period of the mailing list of Hibernate in
this study covers the time period of two mailing lists hosted
at Sourceforge and JBoss respectively. ArgoUML is a
popular open source UML modeling tool developed in Java.

1 http://argouml.tigris.org/servlets/NewsItemView?newsItemID=128
2 http://sourceforge.net/p/hibernate/mailman/message/5497028/
3 http://sourceforge.net/p/hibernate/mailman/message/13328372/

ArgoUML accumulates 26,439 posts in its development
mailing list between Jan 2001 and Aug 2014, when the
release version was updated from v0.8 to v0.34. The
information of the Hibernate and ArgoUML development
mailing lists are elaborated in TABLE I.

TABLE I. HIBERNATE AND ARGOUML DEVELOPMENT MAILING LISTS

OSS

Project

Mailing list URL Time
period

Num. of
Posts

Hibernate http://sourceforge.net/p/hibernate/ma
ilman/hibernate-devel/

Jan 2002 -
July 2006

8,913

http://lists.jboss.org/pipermail/hibern
ate-dev/

Aug 2006 -
Aug 2014

11,500

ArgoUML http://argouml.tigris.org/ds/viewFor
umSummary.do?dsForumId=450

Jan 2001 -
Aug 2014

26,439

The IEEE 1471-2000 standard suggests ten main

architecture elements for architectural description [25],

which were employed as the categorization of architecture

elements in our prior work to identify various architecture

elements documented in an architecture document [11]. In

this study, we also use this categorization to identify various

architecture information communicated in mailing lists.

C. Study Process

This study is conducted in three phases. The first phase
is data collection. We first identify the architectural threads
in the mailing lists from the two OSS projects selected in
Section III.B. We then extract and classify the causes of
architecture changes in the following steps:

Step1: Select 30 architectural threads as the data for a
pilot study;

Step2: Identify architectural threads that lead to
architecture changes by checking and verifying source code;

Step3: Extract architecture changes and further classify
the causes of architecture changes with a top-down approach
(i.e., following an existing categorization provided in [16]);

Step4: Review the identified and classified types of
causes of architecture changes by two researchers to partially
mitigate the threat of personal bias;

Step5: Repeat Step1 to Step4 on the rest architectural
threads in the mailing lists of Hibernate and ArgoUML.

The second phase is verification of architecture changes
in source code. The Classes, Packages, or architecture design
discussed in mailing lists are checked and located in source
code. A semi-automatic static code analysis tool Understand

4

is used to identify the changes of source code. Understand
can identify the existence of a specific Class or Package in
an Understand project compiled with OSS source code by
searching with the name of the Class or Package. The
difference between continuous releases in source code can be
used to locate and verify the changes of architecture. For
example, if a new Class discussed in an architectural thread
appears in a certain release, e.g., v1.0, but does not exist in a
previous version, e.g., v0.8, we can confirm that the

4 https://scitools.com/

http://argouml.tigris.org/servlets/NewsItemView?newsItemID=128
http://sourceforge.net/p/hibernate/mailman/message/5497028/
http://sourceforge.net/p/hibernate/mailman/message/13328372/
http://sourceforge.net/p/hibernate/mailman/hibernate-devel/
http://sourceforge.net/p/hibernate/mailman/hibernate-devel/
http://lists.jboss.org/pipermail/hibernate-dev/
http://lists.jboss.org/pipermail/hibernate-dev/
http://argouml.tigris.org/ds/viewForumSummary.do?dsForumId=450
http://argouml.tigris.org/ds/viewForumSummary.do?dsForumId=450
https://scitools.com/

communication in this architectural thread caused an
architecture change (i.e., adding the new Class).

The third phase is data analysis. Qualitative and
quantitative data of architecture changes are extracted from
architectural threads, and used to answer the research
questions. We manually checked architecture changes
discussed in each architectural thread in the mailing lists and
recorded the causes of architecture changes identified in the
threads in an Excel spreadsheet for further analysis.

IV. RESULTS AND DISCUSSION

A. Cause of Achitecture Change
Using a top-down approach by analyzing the extracted

architecture changes, we identified the categories of causes
of architecture changes. Architecture changes can be
classified in different perspectives. Cause of architecture
change is one of them. A recent literature review specifies
four categories of causes for architecture changes [16]: (1)
Perfective changes result from new or changed
requirements. These changes improve the system to better
meet user needs. (2) Corrective changes occur in response
to defects in software products. (3) Adaptive changes occur
when moving to a new environment, platform, or
accommodating new standards. (4) Preventative changes
ease maintenance by restructuring/reengineering the system.

We intend to identify whether architecture
communication in mailings lists lead to architecture changes
by checking source code in continuous releases. For
example, when a new Class is suggested by a developer in a
mailing list, we will check the name of this Class in the
following releases and verify whether this Class is added or
not. If the answer is “Yes”, we can further extract the cause
of this architecture change from the discussion in the
architectural thread of the mailing list. The extracted causes
of architecture changes can be directly mapped to the
abovementioned four categories of causes for architecture
changes with the top-down approach (i.e., following an
existing categorization provided in [16]). The percentages of
the four types of causes of architecture changes in Hibernate
and ArgoUML are showed in TABLE II.

TABLE II. PROPORTIONS OF FOUR TYPES OF CAUSES OF ARCHITECTURE

CHANGES IN HIBERNATE AND ARGOUML

OSS

Project

Perfective

changes

Corrective

changes

Adaptive

changes

Preventative

changes

Hibernate 25.7% 5.7% 20.0% 48.6%

ArgoUML 43.3% 10.8% 2.7% 45.9%

The proportions of the four types of causes of

architecture changes before and after the first stable releases
of Hibernate and ArgoUML are showed in TABLE III. The
abbreviations BFR and AFR represent two stages as
described in the rationale of RQ2, i.e., before and after the
first stable version was released. Note that, the sum of the
percentages of ArgoUML shown in TABLE II and TABLE
III exceeds 100%, because one architecture change may be
caused by several types of reasons (e.g., adaptive change and
perfective change).

TABLE III. PROPORTIONS OF FOUR TYPES OF CAUSES OF ARCHITECTURE

CHANGES BEFORE AND AFTER THE FIRST STABLE RELEASE IN HIBERNATE

AND ARGOUML

OSS Project Perfective

changes

Corrective

changes

Adaptive

changes

Preventative

changes

BFR Hibernate v1.0

(45.7%)
17.1% 5.7% 0.0% 22.9%

AFR Hibernate v1.0

(54.3%)
8.6% 0.0% 20.0% 25.7%

BFR ArgoUML v0.10

(89.1%)
35.1% 8.1% 2.7% 43.2%

AFR ArgoUML v0.10

(13.5%)
8.1% 2.7% 0.0% 2.7%

Answer to RQ1: There are four types of causes of
architecture changes in OSS development: perfective
changes, corrective changes, adaptive changes, and
preventative changes, which cover all the types of causes of
architecture changes in [16]. As shown in TABLE II, the
major cause for architecture changes in both Hibernate and
ArgoUML is preventative changes.

Answer to RQ2: Perfective changes and preventative
changes are the main causes of architecture changes before
the first stable releases in both Hibernate and ArgoUML. As
shown in TABLE III, after the first stable version was
released, the causes of architecture changes of Hibernate are
mixed, e.g., adapted to JDK5 (adaptive change) and
redesigning Hibernate to be more event-oriented
(preventative change); the causes of architecture changes of
ArgoUML are mostly perfective changes, e.g., adding a data
interface for a new component.

B. Discussion of Study Results

Categorization of causes of architecture changes: All
the causes of architecture changes in Hibernate and
ArgoUML can be mapped to the four categories of causes of
architecture changes provided in [16] and no new category
was identified, which empirically validates that this existing
categorization does work with OSS projects.

Stable and maintainable architecture: As shown in
TABLE III, 45.7% architecture changes in Hibernate and
89.1% architecture changes in ArgoUML happened before
the first stable version. It implies that the major part of the
architectures was formed and became stable in the initial
stage of the two projects. As illustrated in TABLE II,
preventative changes are the major cause for architecture
changes in both projects. It is not a surprising result.
Preventative changes are made to easy future maintenance
and evolution. OSS developers tend to make preventative
changes (anticipation) in order to achieve a maintainable and
evolvable architecture (e.g., refactoring architecture design to
be prepared for new or changed requirements). Corrective
and adaptive changes are in a small proportion in all
architecture changes. The reasons are diverse, potential
defects and environmental changes can be prevented and
mitigated through preventative changes, or corrective
changes are communicated in other sources (e.g., JIRA).

Role of core developers: Core developers refer to those
that are actively involved in high levels of communication
and knowledge sharing in development [26] (i.e.,
architecture information communication in this work), e.g.,

GK
5
 in Hibernate and AC in ArgoUML. In this study, we

find that 68.5% architecture changes are made by the top two
core developers in Hibernate, and 75.7% architecture
changes are conducted by the top three core developers in
ArgoUML, according to the core developers identified in
[13]. These results show that core developers dominate the
changes of architecture. These core developers also act as the
role of architect in the two OSS projects.

C. Implications for Researchers and Practitioners

For researchers: The results of this study empirically
show that architecture communication in OSS mailing lists is
correlated with architecture changes in source code. One of
the merits of the architecture information communicated in
mailing lists is that it contains rich design rationale
information about architecture (e.g., cause information about
architecture changes), which is particularly useful to enrich
architectural design decisions [27] and architecture
documentation [28]. Another promising benefit of
architecture changes classification in a cause perspective is
that it allows researchers to develop a common approach to
deal with the changes with similar causes, instead of
addressing each change individually (e.g., the purpose of
requirements changes classification [29]). To support the
approach, a tool for addressing various types of architecture
changes can be developed, e.g., certain architecture changes
are better addressed by resolving their conflicts with related
design decisions [19].

For practitioners: Participants of OSS projects may use
the study results to guide them to trace architecture changes
from mailing lists. As we have discussed in Section IV.B,
architecture changes frequently happened before the first
stable version was released. For example, if a new developer
of an OSS project wants to get the basic knowledge about the
architecture design in order to have a preliminary
understanding of the system, s/he can check the architectural
threads that suggest, negotiate design, and interpret design
implementation through the mailing list during the early
stage of development before the first stable release.

V. THREATS TO VALIDITY

The threats to the validity of this study are discussed
according to the guidelines in [30].

Construct validity in this study focuses on whether we
extracted architecture information from the mailing lists,
identified architecture changes, and interpreted the results of
this study correctly. To mitigate the bias on architecture
information definition, we chose the architectural description
model in IEEE Standard 1471-2000 [25] as a benchmark
model to identify the threads that contain architecture
information in mailing lists. To identify architecture changes,
we compare the changed Classes/Packages between
continuous releases in source code using Understand tool,
which mitigates the bias on confirming architecture changes.
There is a risk that the results of this study might be affected

5 Only the abbreviations of the developers’ names are provided due

to the privacy concern.

by the interpretation of the criteria for extracting and
identifying architecture information and architecture changes
by different researchers. A pilot data extraction was
conducted by two researchers to mitigate the bias on
understanding and identifying architecture changes. We
admit that some causes of architecture changes at the system
level are too abstract to be verified in source code by the
identification method used in this study. This threat can be
mitigated with an understanding of the code structure
through the communication with core developers (architects).

Internal validity focuses on the avoidance of
confounding factors that may influence the interpretation of
the results of a study. There is a risk that the scope of
architecture changes might be affected by the identification
method used in this work. To mitigate this potential issue, we
used the changed Classes/Packages to identify the
architecture changes in source code by Understand tool.
Some architecture changes at the system level discussed in
architectural threads were excluded from analysis, because
they are too abstract and we could not verify them in source
code. We employed a descriptive statistics method to present
the results of this study, and the threats to internal validity
are minimized. We did not intend to establish any causal
relationship between architecture changes and other aspects
(e.g., change time) of OSS development in this study.

External validity refers to the degree to which our
findings from this study can be generalized. In order to
improve the generalizability of the study results and findings,
we chose two popular and representative OSS projects that
have mailing lists based on the selection criteria in Section
III.B. Studying the mailing lists of more OSS projects based
on the selection criteria can also alleviate this threat.

Reliability focuses on whether the study yields the same
results if other researchers replicate it, which in this work is
related to the collection and analysis of architecture changes
as well as their causes. By making explicit the process and
criteria of data collection and data analysis of this study in
Section III, and using Understand (a third-party tool) for
verifying architecture changes, this threat is mitigated.

VI. CONCLUSION AND FUTURE WORK

In this empirical study, we analyzed the architecture
information communicated in architectural threads of the
mailing lists of two popular OSS projects: Hibernate and
ArgoUML, and located and verified architecture changes by
comparing the differences between the source code of
continuous OSS releases. Four types of architecture changes
in a cause perspective are classified. The main findings of
this work are: (1) architectural information communicated in
OSS mailing lists does lead to architecture changes in code;
(2) the major cause for architecture changes in both
Hibernate and ArgoUML is preventative changes. (3) more
than 45% of architecture changes in both projects happened
before the first stable version was released, which indicates
that the architectures of the investigated OSS projects are
relatively stable after the first stable release.

The results of this study provide several promising
research directions: (1) The results and findings of this work

can be further validated through a survey with the core
developers of the two OSS projects; (2) As we mentioned in
Section IV.C, a tool for a certain type of causes of
architecture changes can be developed to deal with similar
architecture changes based on the results of this work; (3)
Other sources in OSS development, e.g., forums, commit
data [31], and blogs [32], may also contain information about
architecture changes and their causes. We may explore the
possibility to identify architecture changes and their causes
from these sources.

REFERENCES

[1] ISO/IEC/IEEE, ISO/IEC/IEEE Std 42010-2011 International
Standard, Systems and software engineering - architecture
description, 2011.

[2] D. E. Perry and A. L. Wolf, "Foundations for the study of software
architecture", Software Engineering Notes, ACM, vol. 17, no. 4, pp.
40-52, 1992.

[3] J. Bosch, "Software architecture: The next step", in: Proceedings of
the 1st European Workshop of Software Architecture (EWSA), St
Andrews, UK, Springer, pp. 194-199, 2004.

[4] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer, "Tool
support for architectural decision", in: Proceedings of the 7th working
IEEE/IFIP Conference on Software Architecture (WICSA), Mumbai,
India, IEEE, pp. 44-53, 2007.

[5] A. Jansen and J. Bosch, "Software architecture as a set of architectural
design decisions", in: Proceedings of the 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Pittsburgh, USA,
IEEE, 2005.

[6] J. Bosch and P. Molin, "Software architecture design: evaluation and
transformation", in: Proceedings of the 6th IEEE Conference and
Workshop on Engineering of Computer-Based Systems (ECBS),
Nashville, USA, IEEE, pp. 4-10, 1999.

[7] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. barbacci, and H.
Lipson, "Attribute-based architecture styles", in: Proceedings of the
1st Working IFIP Conference on Software Architecture (WICSA),
San Antonio, USA, Springer, pp. 225-243, 1999.

[8] W. Ding, P. Liang, A. Tang, and H. van Vliet, "Knowledge-based
approaches in software documentation: A systematic literature
review", Information and Software Technology, Elsevier, vol. 56, no.
6, pp. 545-567, 2014.

[9] D. Garlan, "Software architecture: A roadmap", in: Proceedings of the
the 22th Conference on Software Engineering, Future of Software
Engineering Track (ICSE), Limerick, Ireland, ACM, pp. 91-101,
2000.

[10] R. Weinreich, I. Groher, and C. Miesbauer, "An expert survey on
kinds, influence factors and documentation of design decisions in
practice", Future Generation Computer Systems, Elsevier, vol. 47, no.
6, pp. 145-160, 2015.

[11] W. Ding, P. Liang, A. Tang, H. van Vliet, and M. Shahin, "How do
open source communities document software architecture: An
exploratory survey", in: Proceedings of the 19th International
Conference on Engineering of Complex Computer Systems
(ICECCS), Tianjin, China, IEEE, pp. 136-145, 2014.

[12] S. K. Sowe, I. Stamelos, and L. Angelis, "Understanding knowledge
sharing activities in free/open source software projects: An empirical
study", Journal of Systems and Software, Elsevier, vol. 81, no. 3, pp.
431-446, 2008.

[13] W. Ding, P. Liang, A. Tang, and H. van Vliet, "Communicating
architecture information in open source software development using
mailing lists", in: Proceedings of the 9th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), Beijing, China, IEEE, 2015. (under review)

[14] A. Brown and G. Wilson, "The Architecture of Open Source
Applications", Creative Commons, 2012.

[15] M. W. Godfrey and Q. Tu, "Evolution in open source software: A
case study", in: Proceedings of the 16th International Conference on
Software Maintenance (ICSM), San Jose, CA, IEEE, pp. 131-142,
2000.

[16] B. J. Williams and J. C. Carver, "Characterizing software architecture
changes: A systematic review", Information and Software
Technology, Elsevier, vol. 52, no. 1, pp. 31-51, 2010.

[17] B. J. Williams and J. C. Carver, "Examination of the software
architecture change characterization scheme using three empirical
studies", Empirical Software Engineering, Springer, vol. 19, no. 3, pp.
419-464, 2014.

[18] A. Martini, J. Bosch, and M. Chaudron, "Architecture technical debt:
Understanding causes and a qualitative model", in: Proceedings of the
40th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA), Verona, Italy, IEEE, pp. 85-92,
2014.

[19] J. van Gurp and J. Bosch, "Design erosion: Problems and causes",
Journal of Systems and Software, Elsevier, vol. 61, no. 2, pp. 105-
119, 2002.

[20] C. Jensen, S. King, and V. Kuechler, "Joining free/open source
software communities: An analysis of newbies' first interactions on
project mailing lists", in: Proceedings of the 44th Hawaii International
Conference on System Sciences (HICSS), Kauai, USA, IEEE, pp. 1-
10, 2011.

[21] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two case studies of
open source software development: Apache and Mozilla", ACM
Transactions on Software Engineering and Methodology, ACM, vol.
11, no. 3, pp. 309-346, 2002.

[22] V. R. Basili, "Software modeling and measurement: The
Goal/Question/Metric paradigm", University of Maryland at College
Park, 1992.

[23] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen,
"Communication in open source software development mailing lists",
in: Proceedings of the 10th International Working Conference on
Mining Software Repositories (MSR), San Francisco, USA, IEEE, pp.
277-286, 2013.

[24] O. P. N. Slyngstad, J. Y. Li, R. Conradi, and M. Ali Babar,
"Identifying and understanding architectural risks in software
evolution: An empirical study", in: Proceedings of the 9th
International Conference of Product Focused Software Development
and Process Improvement (PROFES), Monte Porzio Catone, Italy,
Springer, pp. 400-414, 2008.

[25] IEEE, IEEE Std 1471-2000, Recommended Practice for Architectural
Description of Software Intensive Systems, 2000.

[26] S. A. Licorish and S. G. MacDonell, "Understanding the attitudes,
knowledge sharing behaviors and task performance of core
developers: A longitudinal study", Information and Software
Technology, Elsevier, vol. 56, no. 12, pp. 1578-1596, 2014.

[27] M. Shahin, P. Liang, and M. R. Khayyambashi, "Architectural design
decision: Existing models and tools", in: Proceedings of the Joint 8th
Working IEEE/IFIP Conference on Software Architecture & 3rd
European Conference on Software Architecture (WICSA/ECSA),
Cambridge, UK, IEEE, pp. 293-296, 2009.

[28] A. Jansen, P. Avgeriou, and J. S. van der Ven, "Enriching software
architecture documentation", Journal of Systems and Software,
Elsevier, vol. 82, no. 8, pp. 1232-1248, 2009.

[29] N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting
technique to classify requirements change", in: Proceedings of the
12th IEEE International Requirements Engineering Conference (RE),
Kyoto, Japan, IEEE, pp. 240-248, 2004.

[30] M. Höst, P. Runeson, M. C. Ohlsson, B. Regnell, and A. Wesslén,
"Experimentation in Software Engineering", Springer, 2012.

[31] J.S. van der Ven and J. Bosch, "Making the right decision: supporting
architects with design decision data", in: Proceedings of the 7th
European Conference on Software Architecture (ECSA), Montpellier,
France, Springer, pp. 176-183, 2013.

[32] D. Pagano and W. Maalej, "How do open source communities blog?",
Empirical Software Engineering, Springer, vol. 18, no. 6, pp. 1090-
1124, 2013.

