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Abstract—Automatic protocol mining is a promising approach 

to infer precise and complete API protocols. However, the 

effect of the approach largely depends upon the quality of 

input object usage scenarios, in terms of noise and diversity. 

This paper aims to extract as many object usage scenarios as 

possible from object-oriented programs for automatic protocol 

mining. A large corpus of object usage scenarios can help with 

eliminating noise accurately and is likely to be diverse. 

Therefore, precise and complete protocols may be achieved. 

Given an object-oriented program p, generally, object usage 

scenarios that can be collected from a run of p is not more than 

the number of instances used in p. Relying on the inheritance 

relationship among classes, our technique can extract a 

maximum of n times more object usage scenarios from p, 

where n is the average inheritance depth of all object usage 

scenarios in p. In order to investigate the effect of our 

technique on mining protocols, we implement it in our 

previous prototype tool ISpecMiner and use the tool to mine 

protocols from several real-world applications. The 

experimental results show that our technique is promising to 

achieve complete and precise API protocols. In addition, 

protocols of classes that have not been used in programs can be 

also achieved, which is helpful for program documentation and 

understanding. 

Keywords-object usage scenario; mining API protocol; object-

oriented program; program verification 

I. INTRODUCTION 

Many application programming interfaces (APIs) 
impose protocols, that is, temporal constraints regarding the 

order of calls of API methods. For example, calling peek() 

on java.util.Stack without a preceding push() gives an 

EmptyStackException, and calling next() on 

java.util.Iterator without checking whether there is a next 

element with hasNext() can result in a 

NoSuchElementException. API clients that violate such 

protocols do not obtain the desired behaviors and may even 
crash the program [1].  

Automatic protocol mining [2]-[3] is a promising 
approach to infer precise and complete API protocols. 
These approaches first extract object usage scenarios from 
program applications statically or dynamically. Then, they 
take object usage scenarios as input and synthesize 
protocols based on sequential data mining techniques. 
However, the effect of these approaches largely depends 
upon the quality of input object usage scenarios: (1) noisy 
object usage scenarios will incur imprecision to mined 
protocols; and (2) in order to mine complete protocols, a set 
of diverse object usage scenarios is required. 

Instead of improving the quality of input object usage 
scenarios directly, our work aims to extract as many object 
usage scenarios as possible from object-oriented programs 
for automatic protocol mining. Since a large corpus of 
object usage scenarios can compensate the inaccuracy 
caused by noise and is likely to be diverse [4], precise and 
complete protocols may be achieved. Generally, the number 
of object usage scenarios that can be collected from a run of 
an object-oriented program is less than or equal to the 
number of instances used in the program. Therefore, if a 
class is seldom used in a program, we will achieve 
insufficient object usage scenarios. Although feeding 
protocol miners more programs can mitigate the problem to 
some extent, much time overhead will be incurred.  

Our technique is based on the following heuristic for 
object-oriented programs. Let c1 and c2 be two classes. If c2 
inherits from c1, c2 will inherit the set of public methods 
(we omit other kinds of methods, e.g. protected methods 
and private methods, because API protocols always 
consider public methods of classes) M of c1 as well as the 
temporal constraints regarding the order of calls of methods 
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in M. Or in other words, c2 should not violate the temporal 
constraints regarding the order of calls of methods in M 
imposed by c1 even if it overrides the inherited methods. 
Consequently, given an object usage scenario u of class c2, 
u should comply with the API protocols of c2 as well as that 
of c1. Based on the above analysis, we derive an extra 
object usage scenario 'u  from u, which consists of methods 

inherited from c1. The extra object usage scenario is used to 
synthesize protocols of class c1. Theoretically, given an 
object-oriented program p, our technique can maximally 
extract n times more object usage scenarios from p than 
general approaches, where n is the average inheritance 
depth of all object usage scenarios in p. To investigate our 
technique’s feasibility and effectiveness, we implemented it 
in our previous dynamic program specification mining tool 
ISpecMiner and used the tool to conduct experiments. 
Results of the experiments show that our technique is 
promising to achieve complete and precise protocols. 

The contributions of this paper are: 

 A technique that can extract more object usage 
scenarios from object-oriented programs than 
existing approaches. 

 A formal discussion about how many more object 
usage scenarios can be collected by our technique. 

 Investigation of the effect of our technique on 
mining API protocols. 

II. PRELIMINARY 

In this section, we present some preliminaries that our 
work is based on. 

DEFINITION 1 (Object Usage Scenario). Let c be a class. An 
Object Usage Scenario (OUS) of c is a method call 
sequence, all methods in the sequence are called on a same 
instance of c. Assume that s is an instance of class c. We 
use ous(s) to denote an object usage scenario of c, each 
method of which is called on s. Furthermore, we use OUS(c) 
to denote the set of object usage scenarios of class c, each 
element of which is an object usage scenario of an instance 
of c. 

Consider the Java program illustrated in Figure 1, which 

makes use of classes FileInputStream and 

FileOutputStream. Let’s assume that the loop iterates only 

once. We will achieve the following OUSs regarding 

instance fis and fos respectively: 

 ous(fis): <FileInputStream(), read(), close()> 

 ous(fos): <FileOutputStream(), write(), close()> 

As we can see, an OUS u of class c represents a use case 
about how client programs should use methods of c. 
Therefore, through extracting common patterns from a set 
of OUSs of c, we can infer protocols of class c. 
Additionally, given an object-oriented program p, OUSs 
that can be collected from a run of p is less than or equal to 
the number of instances used in p. In Section 3, we will 
show that our technique can extract multiple times more 
OUSs than general approaches. 

III. OUR TECHNIQUE 

In object-oriented programs, classes have inheritance 
relationships among them. Consider the Java programs 

illustrated in Figure 2, the four classes A0, A1, A2 and A3 

have the following inheritance relationships: class A1 

inherits from A0, class A2 inherits from A1 and class A3 

inherits from A2. Since a subclass will inherit public 

methods of its superclasses, the above classes have the 
public methods listed in Table I. Our approach is based on 
the following heuristic. 

HEURISTIC 1. Let r be a class. M is the set of public 

methods of r. We use 
M

r
  to denote the API protocol 

regarding methods in M imposed by class r. Assume that c 
is a subclass of r, which should inherit all methods in M 

from r. We have 
M M

c r
 ° , where °  represents that 

1)   FileInputStream fis = new FileInputStream("filepath");

2)   FileOutputStream fos = new FileOutputStream("filepath");

3)   byte[] buffer = new byte[1024];

4)   int count = 0;

5)   while ((count = fis.read(buffer)) != -1) 

6)   {

7)       fos.write(buffer, 0, count);

8)   }

9)   fis.close();

10) fos.close();  

Figure 1. Java program example. 

public class A0{

public A0(){}

public void m01(){}

public void m02(){}

public void m03(){}

}
 

(a) 

public class A1 extends A0{

public A1(){}

public void m11(){}

public void m12(){}

public void m13(){}

}
 

(b) 

public class A2 extends A1{

public A2(){}

public void m21(){}

public void m22(){}

public void m23(){}

}
 

(c) 

public class A3 extends A2{

public A3(){}

public void m31(){}

public void m32(){}

public void m33(){}

}
 

(d) 

Figure 2. Program examples of inheritance relationship. 

TABLE I. PUBLIC METHODS OF CLASSES WITH INHERITANCE RELATIONSHIPS. 
METHODS INHERITED FROM SUPERCLASSES ARE IN ITALIC. 

Class Public methods 

A0 m01, m02, m03 

A1 m01, m02, m03, m11, m12, m13 

A2 m01, m02, m03, m11, m12, m13, m21, m22, m23 

A3 
m01, m02, m03, m11, m12, m13, m21, m22, m23, 

m31, m32, m33 



protocol 
M

c
  is equivalent to or stricter than 

M

r
 . Or in 

other words, the implementation of a subclass should not 
violate API protocol imposed by its superclasses. 

We make the heuristic based on the following literature: 
From the perspective of data abstraction and hierarchy [5], 
a subtype is one whose objects provide all the behavior of 
objects of another type (the supertype) plus something extra. 
Furthermore, we have the following substitution property: If 
for each object o1 of type S there is an object o2 of type T 
such that for all programs P defined in terms of T, the 
behavior of P is unchanged when o1 is substituted for o2, 
then S is a subtype of T [6]. The above data abstraction and 
hierarchy principles are supported by linguistic mechanisms 
in many object-oriented programming languages, such as 
Simula 67, CLU, Smalltalk and Java. A typical case in Java 
language is the exception handling mechanism: In Java 
programs, a method can incur exceptions through the throw 
statement. What is interesting is that, when a method is 
reimplemented in a subclass, the exceptions thrown in 
superclasses should be inherited. For example, assume that 

E is the set of exceptions thrown by method m01 defined in 

class A0 (shown in Figure 2). When we overwrite method 

m01 in class A1, all exceptions in E should also be thrown, 

that is, a subclass should not violate restrictions on 
exceptions imposed by its superclasses. Our case is similar 
to the exception handling mechanism in Java language. 
What is different is that, we consider constraints regarding 
order of calls of methods rather than exceptions. Whatever, 
according to the data abstraction and hierarchy principle, 
we have the following conclusion: a subtype should not 
violate the API protocol imposed by its supertype regarding 
inherited methods, otherwise the substitution property 
cannot be satisfied. What may occur is that the subtype has 
a stricter restriction than supertypes on the order of calls of 
inherited methods. 

According to Heuristic 1, given an OUS u of class c, if 
u can be accepted by the API protocol of c, u should also 
comply with the protocol of the superclasses of c regarding 
inherited methods, because the protocol imposed by c is 
equivalent to or stricter than that imposed by superclasses. 
Consequently, we can derive an extra OUS from u, which 
consists of calls of inherited methods. We call the derived 
OUS inherited sub-OUS, which can be used to mine 
protocols of the superclasses of c. Formally, we give the 
following definitions. 

DEFINITION 2 (Sub-OUS). Given an OUS u, OUS 'u  is a 

sub-OUS of u, if it satisfies the following requirements. 

 Each method call in 'u  is included in u. 

 Let m1 and m2 be two method calls in 'u , the 

temporal relationship between m1 and m2 should be 
consistent in 'u  and u, that is, if m1 precedes m2 in 

'u , m1 should also precede m2 in u. 

DEFINITION 3 (Inherited Sub-OUS). Given an OUS u of 
class c which consists of calls of inherited methods and 
those defined in c itself, 'u  is a sub-OUS of u, each 

element of which is a call of method inherited from a 
superclass 'c  of c, we call 'u  an inherited sub-OUS of u 

from 'c  and denote it by ( , ')isub OUS u c . 

For example, given an OUS u: <m01, m11, m03, m02, 

m12, m31, m32, m20, m23, m33> of class A3, according 

to Definition 3, we can derive the following inherited sub-
OUSs. 

 isub-OUS(u, A0): <m01, m03, m02> 

 isub-OUS(u, A1): <m01, m11, m03, m02, m12> 

 isub-OUS(u, A2): <m01, m11, m03, m02, m12, 

m20, m23> 

As we can see, the above inherited sub-OUSs are sub-
OUS of u. In addition, they consist of methods inherited 

from superclass A0, A1 and A2 respectively. Based on 

Heuristic 1, the inherited sub-OUSs should satisfy the API 

protocols of class A0, A1 and A2 respectively. 

Consequently, aside from OUS u which can be used to mine 

protocol of class A3, we will achieve three additional OUSs. 

In addition, given an OUS u of class c, the number of 
inherited sub-OUSs of u is less than or equal to the 
inheritance depth of c. On the other hand, each instance in 
an object-oriented program will generate an OUS. 
Therefore, given an object-oriented program, the extra OUS 
(inherited sub-OUS) collected by our technique is 
maximally n times the number of instances defined in the 
program, where n is the average inheritance depth of all 
OUSs (excluding inherited sub-OUSs) in the program. 

IV. FORMAL ANALYSIS OF THE EFFECT OF OUR 

TECHNIQUE 

In this subsection, we analyze the effect of our 
technique formally. 

Let’s assume that p is a Java program. It subsumes the 
following OUSs u1, u2, …, um, which have an inheritance 
depth of d1, d2, …, dm, respectively. Given an OUS u of 
class c, we call inheritance depth of c the inheritance depth 
of u. It must be noted that the number of inherited sub-
OUSs of u is less than or equal to its inheritance depth. 
Therefore, the maximum total number of additional OUSs 
(inherited sub-OUSs) that can be collected by our technique 

from p is d1 + d2 + … + dm. Let d  be the average 

inheritance depth of all OUSs (excluding inherited sub-

OUSs) included in p. We have 
1 2 m

d d d m d     . 

Based on the above analysis, we reach the conclusion that 
our technique can extract maximally n times more OUSs 
from an object-oriented program, where n is the average 
inheritance depth of OUSs (excluding inherited sub-OUSs) 
in the program. 



V. EXPERIMENTS 

To evaluate our technique, we implemented it in our 

previous prototype tool ISpecMiner and used the tool to 

conduct experiments. In this section, we first introduce 

ISpecMiner. Then, we present subjects that are used in our 

evaluation. Finally, we compared API protocols achieved 
under our technique and general approaches. 

A. Prototype Tool ISpecMiner 

ISpecMiner [7] is a dynamic program specification 

mining tool developed based on Java 1.6. It leverages Java 

agent [8] technique as well as Javassist [9], [10] to extract 

OUSs from Java application programs dynamically, and 
then infers class temporal specifications (API protocols). 

The most distinguishing characteristic of ISpecMiner is that 

it describes program specifications using a probabilistic 
model extended from Markov chain. Probabilistic models 
have an inherent ability to tolerate noises. Furthermore, 

since ISpecMiner learns program specifications in an online 

mode, mined specifications can be evolved persistently. As 
a result, more universal program specifications can be 
achieved.  

The number of OUSs that ISpecMiner extracts from a 

Java program is near the number of instances of classes 

used in the program. In this work, to prepare ISpecMiner 
for our experiments, we implemented our technique in it. In 
the remainder of this section, we denote original 

ISpecMiner and ISpecMiner with our technique by 

ISpecMiner-Ⅰ and ISpecMiner-Ⅱ respectively. The latest 

version of ISpecMiner can be obtained at the URL 

http://www.ispecminer.com. 

B. Subjects 

The subjects used in our experiment are shown in Table 
II, which are real-world Java programs. These programs are 
selected based on the following criteria: 

 Open source software. Though ISpecMiner is a 

dynamic specification mining tool and source code 
is not necessary, it is helpful for us to figure out 
problems encountered in experiments and validate 
results. 

 Large-scaled software. Large-scaled software 
contains a large number of OUSs, which is helpful 
for our comparison test. 

 Applications coming from various domains. 
Applications from various areas may avoid the 
biases introduced in our experiments. 

C. Investigation of API protocols 

In order to investigate the effect of our method, we used 

ISpecMiner-Ⅰ and ISpecMiner-Ⅱ to mine API protocols 

from several real-world Java programs respectively, and 
then compared the achieved protocols. The subject 
programs are shown in Table II, each of which was run with 

manual input data. We configured ISpecMiner-Ⅰ and 

ISpecMiner-Ⅱ to instrument classes illustrated in Table III 

and their superclasses. The reasons we selected these 
classes are as follows: (1) they are commonly used in 
various kinds of Java programs; and (2) they have an 
inheritance depth greater than zero. Thus, an OUS of these 
classes will derive at least one inherited sub-OUS. It is 
worth noting that we exclude the common superclass 

java.lang.Object of all classes in Java when counting 

inheritance depth. Take for example, class 

java.io.FileInputStream, which has two superclasses 

java.io.InputStream and java.lang.Object. According 

to our counting method, it has an inheritance depth of one.  

Experimental results are illustrated in Figure 3. We 

present the API protocols of class InputStreamReader, 

InputStreamWriter and FilterInputStream sequentially 

from the first row to the last row. At each row, the left 

protocol is mined by ISpecMiner-Ⅰ and the right one is 

mined by ISpecMiner-Ⅱ. The protocols are described 

using an extended Markov model MCF, where states and 
transitions represent methods and temporal relationships 
between methods respectively. Details about MCF please 
refer to [7]. From Figure 3, we can see that protocols in the 
right column have more states or transitions than those in 
the left column. For example, the API protocol of class 

InputStreamReader mined by ISpecMiner-Ⅱ has one 

more state and four more transitions than that mined by 

TABLE II. SUBJECT PROGRAMS. KLOC: THOUSANDS OF LINES OF CODE. 

Subject Version Description KLoC 

FreeMind 0.9 Mind-mapping software 22 

RapidMiner 5.3 
Environment for machine 

learning and data mining 
513 

SQuirreL 

SQL Client 
3.4 Java SQL client 253 

OpenProj 1.4 Project management software 120 

TABLE III. INSTRUMENTED CLASSES 

 Instrumented Class Inheritance Depth 

1 java.io.PushbackInputStream 2 

2 java.io.FileInputStream 1 

3 java.io.FileOutputStream 1 

4 java.io.BufferedReader 1 

5 java.io.BufferedWriter 1 

6 java.io.DataInputStream 2 

7 java.io.DataOutputStream 2 

8 java.io.FileReader 2 

9 java.io.FileWriter 2 

10 java.io.BufferedInputStream 2 

11 java.io.PrintWriter 1 

http://www.ispecminer.com/


ISpecMiner-Ⅰ. As to the protocols of class 

OutputStreamWriter shown in the second row, although 

they have the same number of states, the right one has many 
more transitions than the left one. By manual inspection, we 
found that the additional states and transitions are consistent 
with JDK documentations. Since the number of states and 
transitions reflects the comprehensiveness of protocols to 
some extent, we have the conclusion that our technique is 
helpful for mining comprehensive protocols.  

On the other hand, our approach can impact the 
probabilities attached with states and transitions: 
probabilities of normal behaviors will be enhanced and that 
of abnormal behaviors will be suppressed. For example, the 

final probability (FinalPro) of state close() in protocol of 

class InputStreamReader shown in the first row is 

increased from 0.6154 to 0.8043 and that of state 

read(char[],int,int) is decreased from 0.2308 to 0.1957. 

Since the difference between normal and abnormal 
behaviors is enlarged, noisy states and transitions can be 
eliminated accurately when transforming probabilistic 
models to deterministic models using a probability 
threshold.  

Additionally, our technique can achieve protocols that 
cannot be mined by general approaches. Take for example, 

the superclass FilterInputStream of DataInputStream 

and BufferedInputStream. Since the class has not been 

covered during the run of subject programs, a protocol 
shown in Figure 3 (e) with only constructor method was 

achieved by ISpecMiner-Ⅰ (the constructor method of 

class FilterInputStream may be called by constructor 

method of its subclasses). In contrast, ISpecMiner-Ⅱ 

generated a more complete protocol illustrated in Figure 3 
(f), because our method can derive inherited sub-OUSs. It 

seems that protocols as FilterInputStream are useless for 

program validation, because they are seldom used in 
application programs. However, there still exist many 
superclasses which are frequently used in programs, such as 

InputStreamReader and OutputStreamWriter. Since 

they have been used in subject programs, we can achieve 
relative complete protocols based on general approaches as 
shown in Figure 3 (a) and (c). Even if some classes will be 
never used in programs (such as abstract classes), their 
protocols may be useful in program documentation and 
understanding. For example, we can validate the design of 
an abstract class based on mined protocols. 

D. Related Work 

Many researchers have paid significant efforts in mining 

API protocols. For instance, Wasylkowski et al. [11] 

proposed to mine object usage models from Java bytecode 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 Figure 3. Part of API protocols mined in our experiment. 



and a tool JADET was developed. Lorenzoli et al. [15] 

modeled API protocols using EFSM which extends from 

FSM. Alur et al. [16] synthesized FSA model of API 

protocols using L* learning algorithms combined with 
model checking and abstract interpretation techniques. 
Since FSA is a kind of deterministic model with inability to 
tolerate noise, many researchers proposed to mine API 
protocols based on probabilistic models. For example, 

Ammons et al. [17] proposed to mine protocols among 

application programming interfaces (API) or abstract data 
types (ADT) based on probabilistic finite state automaton 

(PFSA). Chen et al. [7] proposed to mine class temporal 

specifications based on an extended Markov model. 
Whatever techniques, the quality of input OUSs is 
important for mining precise and complete protocols. 
However, little attention has been paid in this area. In this 
paper, we proposed an approach to collect as many OUSs 
as possible for automatic protocol mining. A large 
repository of OUSs can complement the inaccuracy caused 
by noises and is likely to be diverse. Currently, a common 
approach to collect more OUSs is feeding protocol miners 
more application programs, which will incur significant 
time overhead. Different from that, our technique can 
extract more OUSs from a single application program. 

VI. CONCLUSIONS 

Automatic protocol mining is a promising approach to 
infer precise and complete API protocols. Many researchers 
have paid significant efforts in this area. However, little 
attention has been paid on collecting high quality OUSs. In 
this paper, we proposed an approach to collect more OUSs 
for API protocol mining. Our technique is based on the 
inheritance relationship among classes. Given an object-
oriented program p, theoretically, n times more OUSs can 
be extracted by our technique from p than general 
approaches, where n is the average inheritance depth of all 
OUSs in p. In the Experimental Section, we investigated the 
effect of our approach on mined API protocols and found 
that our technique is promising to achieve complete and 
precise protocols. Additionally, our technique can mine 
protocols even if the corresponding classes have not been 
covered during the run of application programs. Although 
these protocols may be useless for program validation, they 
can be used for program documentation and understanding. 
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