
(DOI reference number: 10.18293/SEKE2015-212)

Extracting More Object Usage Scenarios for

API Protocol Mining

Deng Chen1, a, Yanduo Zhang2, b, Rongcun Wang3, c, Binbin Qu4, d, Jianping Ju5, e, Wei Wei1, f
1 Industrial Robot Engineering Center, Wuhan Institute of Technology, Wuhan, P.R. China

2 Hubei Provincial Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, P.R. China
3 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, P.R. China

4 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
5 School of Electronic Information, Wuhan University, Wuhan, P.R. China

a chendeng8899@hust.edu.cn
b zhangyanduo@hotmail.com

c rcwang@hust.edu.cn
d bbqu@hust.edu.cn

e gjdxjjp@whu.edu.cn
f weiwei@huawei-elec.com

Abstract—Automatic protocol mining is a promising approach

to infer precise and complete API protocols. However, the

effect of the approach largely depends upon the quality of

input object usage scenarios, in terms of noise and diversity.

This paper aims to extract as many object usage scenarios as

possible from object-oriented programs for automatic protocol

mining. A large corpus of object usage scenarios can help with

eliminating noise accurately and is likely to be diverse.

Therefore, precise and complete protocols may be achieved.

Given an object-oriented program p, generally, object usage

scenarios that can be collected from a run of p is not more than

the number of instances used in p. Relying on the inheritance

relationship among classes, our technique can extract a

maximum of n times more object usage scenarios from p,

where n is the average inheritance depth of all object usage

scenarios in p. In order to investigate the effect of our

technique on mining protocols, we implement it in our

previous prototype tool ISpecMiner and use the tool to mine

protocols from several real-world applications. The

experimental results show that our technique is promising to

achieve complete and precise API protocols. In addition,

protocols of classes that have not been used in programs can be

also achieved, which is helpful for program documentation and

understanding.

Keywords-object usage scenario; mining API protocol; object-

oriented program; program verification

I. INTRODUCTION

Many application programming interfaces (APIs)
impose protocols, that is, temporal constraints regarding the

order of calls of API methods. For example, calling peek()

on java.util.Stack without a preceding push() gives an

EmptyStackException, and calling next() on

java.util.Iterator without checking whether there is a next

element with hasNext() can result in a

NoSuchElementException. API clients that violate such

protocols do not obtain the desired behaviors and may even
crash the program [1].

Automatic protocol mining [2]-[3] is a promising
approach to infer precise and complete API protocols.
These approaches first extract object usage scenarios from
program applications statically or dynamically. Then, they
take object usage scenarios as input and synthesize
protocols based on sequential data mining techniques.
However, the effect of these approaches largely depends
upon the quality of input object usage scenarios: (1) noisy
object usage scenarios will incur imprecision to mined
protocols; and (2) in order to mine complete protocols, a set
of diverse object usage scenarios is required.

Instead of improving the quality of input object usage
scenarios directly, our work aims to extract as many object
usage scenarios as possible from object-oriented programs
for automatic protocol mining. Since a large corpus of
object usage scenarios can compensate the inaccuracy
caused by noise and is likely to be diverse [4], precise and
complete protocols may be achieved. Generally, the number
of object usage scenarios that can be collected from a run of
an object-oriented program is less than or equal to the
number of instances used in the program. Therefore, if a
class is seldom used in a program, we will achieve
insufficient object usage scenarios. Although feeding
protocol miners more programs can mitigate the problem to
some extent, much time overhead will be incurred.

Our technique is based on the following heuristic for
object-oriented programs. Let c1 and c2 be two classes. If c2
inherits from c1, c2 will inherit the set of public methods
(we omit other kinds of methods, e.g. protected methods
and private methods, because API protocols always
consider public methods of classes) M of c1 as well as the
temporal constraints regarding the order of calls of methods

mailto:%7D@hust.edu.cn
mailto:zhangyanduo@hotmail.com
mailto:gjdxjjp@whu.edu.cn

in M. Or in other words, c2 should not violate the temporal
constraints regarding the order of calls of methods in M
imposed by c1 even if it overrides the inherited methods.
Consequently, given an object usage scenario u of class c2,
u should comply with the API protocols of c2 as well as that
of c1. Based on the above analysis, we derive an extra
object usage scenario 'u from u, which consists of methods

inherited from c1. The extra object usage scenario is used to
synthesize protocols of class c1. Theoretically, given an
object-oriented program p, our technique can maximally
extract n times more object usage scenarios from p than
general approaches, where n is the average inheritance
depth of all object usage scenarios in p. To investigate our
technique’s feasibility and effectiveness, we implemented it
in our previous dynamic program specification mining tool
ISpecMiner and used the tool to conduct experiments.
Results of the experiments show that our technique is
promising to achieve complete and precise protocols.

The contributions of this paper are:

 A technique that can extract more object usage
scenarios from object-oriented programs than
existing approaches.

 A formal discussion about how many more object
usage scenarios can be collected by our technique.

 Investigation of the effect of our technique on
mining API protocols.

II. PRELIMINARY

In this section, we present some preliminaries that our
work is based on.

DEFINITION 1 (Object Usage Scenario). Let c be a class. An
Object Usage Scenario (OUS) of c is a method call
sequence, all methods in the sequence are called on a same
instance of c. Assume that s is an instance of class c. We
use ous(s) to denote an object usage scenario of c, each
method of which is called on s. Furthermore, we use OUS(c)
to denote the set of object usage scenarios of class c, each
element of which is an object usage scenario of an instance
of c.

Consider the Java program illustrated in Figure 1, which

makes use of classes FileInputStream and

FileOutputStream. Let’s assume that the loop iterates only

once. We will achieve the following OUSs regarding

instance fis and fos respectively:

 ous(fis): <FileInputStream(), read(), close()>

 ous(fos): <FileOutputStream(), write(), close()>

As we can see, an OUS u of class c represents a use case
about how client programs should use methods of c.
Therefore, through extracting common patterns from a set
of OUSs of c, we can infer protocols of class c.
Additionally, given an object-oriented program p, OUSs
that can be collected from a run of p is less than or equal to
the number of instances used in p. In Section 3, we will
show that our technique can extract multiple times more
OUSs than general approaches.

III. OUR TECHNIQUE

In object-oriented programs, classes have inheritance
relationships among them. Consider the Java programs

illustrated in Figure 2, the four classes A0, A1, A2 and A3

have the following inheritance relationships: class A1

inherits from A0, class A2 inherits from A1 and class A3

inherits from A2. Since a subclass will inherit public

methods of its superclasses, the above classes have the
public methods listed in Table I. Our approach is based on
the following heuristic.

HEURISTIC 1. Let r be a class. M is the set of public

methods of r. We use
M

r
 to denote the API protocol

regarding methods in M imposed by class r. Assume that c
is a subclass of r, which should inherit all methods in M

from r. We have
M M

c r
 ° , where ° represents that

1) FileInputStream fis = new FileInputStream("filepath");

2) FileOutputStream fos = new FileOutputStream("filepath");

3) byte[] buffer = new byte[1024];

4) int count = 0;

5) while ((count = fis.read(buffer)) != -1)

6) {

7) fos.write(buffer, 0, count);

8) }

9) fis.close();

10) fos.close();

Figure 1. Java program example.

public class A0{

public A0(){}

public void m01(){}

public void m02(){}

public void m03(){}

}

(a)

public class A1 extends A0{

public A1(){}

public void m11(){}

public void m12(){}

public void m13(){}

}

(b)

public class A2 extends A1{

public A2(){}

public void m21(){}

public void m22(){}

public void m23(){}

}

(c)

public class A3 extends A2{

public A3(){}

public void m31(){}

public void m32(){}

public void m33(){}

}

(d)

Figure 2. Program examples of inheritance relationship.

TABLE I. PUBLIC METHODS OF CLASSES WITH INHERITANCE RELATIONSHIPS.
METHODS INHERITED FROM SUPERCLASSES ARE IN ITALIC.

Class Public methods

A0 m01, m02, m03

A1 m01, m02, m03, m11, m12, m13

A2 m01, m02, m03, m11, m12, m13, m21, m22, m23

A3
m01, m02, m03, m11, m12, m13, m21, m22, m23,

m31, m32, m33

protocol
M

c
 is equivalent to or stricter than

M

r
 . Or in

other words, the implementation of a subclass should not
violate API protocol imposed by its superclasses.

We make the heuristic based on the following literature:
From the perspective of data abstraction and hierarchy [5],
a subtype is one whose objects provide all the behavior of
objects of another type (the supertype) plus something extra.
Furthermore, we have the following substitution property: If
for each object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is substituted for o2,
then S is a subtype of T [6]. The above data abstraction and
hierarchy principles are supported by linguistic mechanisms
in many object-oriented programming languages, such as
Simula 67, CLU, Smalltalk and Java. A typical case in Java
language is the exception handling mechanism: In Java
programs, a method can incur exceptions through the throw
statement. What is interesting is that, when a method is
reimplemented in a subclass, the exceptions thrown in
superclasses should be inherited. For example, assume that

E is the set of exceptions thrown by method m01 defined in

class A0 (shown in Figure 2). When we overwrite method

m01 in class A1, all exceptions in E should also be thrown,

that is, a subclass should not violate restrictions on
exceptions imposed by its superclasses. Our case is similar
to the exception handling mechanism in Java language.
What is different is that, we consider constraints regarding
order of calls of methods rather than exceptions. Whatever,
according to the data abstraction and hierarchy principle,
we have the following conclusion: a subtype should not
violate the API protocol imposed by its supertype regarding
inherited methods, otherwise the substitution property
cannot be satisfied. What may occur is that the subtype has
a stricter restriction than supertypes on the order of calls of
inherited methods.

According to Heuristic 1, given an OUS u of class c, if
u can be accepted by the API protocol of c, u should also
comply with the protocol of the superclasses of c regarding
inherited methods, because the protocol imposed by c is
equivalent to or stricter than that imposed by superclasses.
Consequently, we can derive an extra OUS from u, which
consists of calls of inherited methods. We call the derived
OUS inherited sub-OUS, which can be used to mine
protocols of the superclasses of c. Formally, we give the
following definitions.

DEFINITION 2 (Sub-OUS). Given an OUS u, OUS 'u is a

sub-OUS of u, if it satisfies the following requirements.

 Each method call in 'u is included in u.

 Let m1 and m2 be two method calls in 'u , the

temporal relationship between m1 and m2 should be
consistent in 'u and u, that is, if m1 precedes m2 in

'u , m1 should also precede m2 in u.

DEFINITION 3 (Inherited Sub-OUS). Given an OUS u of
class c which consists of calls of inherited methods and
those defined in c itself, 'u is a sub-OUS of u, each

element of which is a call of method inherited from a
superclass 'c of c, we call 'u an inherited sub-OUS of u

from 'c and denote it by (, ')isub OUS u c .

For example, given an OUS u: <m01, m11, m03, m02,

m12, m31, m32, m20, m23, m33> of class A3, according

to Definition 3, we can derive the following inherited sub-
OUSs.

 isub-OUS(u, A0): <m01, m03, m02>

 isub-OUS(u, A1): <m01, m11, m03, m02, m12>

 isub-OUS(u, A2): <m01, m11, m03, m02, m12,

m20, m23>

As we can see, the above inherited sub-OUSs are sub-
OUS of u. In addition, they consist of methods inherited

from superclass A0, A1 and A2 respectively. Based on

Heuristic 1, the inherited sub-OUSs should satisfy the API

protocols of class A0, A1 and A2 respectively.

Consequently, aside from OUS u which can be used to mine

protocol of class A3, we will achieve three additional OUSs.

In addition, given an OUS u of class c, the number of
inherited sub-OUSs of u is less than or equal to the
inheritance depth of c. On the other hand, each instance in
an object-oriented program will generate an OUS.
Therefore, given an object-oriented program, the extra OUS
(inherited sub-OUS) collected by our technique is
maximally n times the number of instances defined in the
program, where n is the average inheritance depth of all
OUSs (excluding inherited sub-OUSs) in the program.

IV. FORMAL ANALYSIS OF THE EFFECT OF OUR

TECHNIQUE

In this subsection, we analyze the effect of our
technique formally.

Let’s assume that p is a Java program. It subsumes the
following OUSs u1, u2, …, um, which have an inheritance
depth of d1, d2, …, dm, respectively. Given an OUS u of
class c, we call inheritance depth of c the inheritance depth
of u. It must be noted that the number of inherited sub-
OUSs of u is less than or equal to its inheritance depth.
Therefore, the maximum total number of additional OUSs
(inherited sub-OUSs) that can be collected by our technique

from p is d1 + d2 + … + dm. Let d be the average

inheritance depth of all OUSs (excluding inherited sub-

OUSs) included in p. We have
1 2 m

d d d m d     .

Based on the above analysis, we reach the conclusion that
our technique can extract maximally n times more OUSs
from an object-oriented program, where n is the average
inheritance depth of OUSs (excluding inherited sub-OUSs)
in the program.

V. EXPERIMENTS

To evaluate our technique, we implemented it in our

previous prototype tool ISpecMiner and used the tool to

conduct experiments. In this section, we first introduce

ISpecMiner. Then, we present subjects that are used in our

evaluation. Finally, we compared API protocols achieved
under our technique and general approaches.

A. Prototype Tool ISpecMiner

ISpecMiner [7] is a dynamic program specification

mining tool developed based on Java 1.6. It leverages Java

agent [8] technique as well as Javassist [9], [10] to extract

OUSs from Java application programs dynamically, and
then infers class temporal specifications (API protocols).

The most distinguishing characteristic of ISpecMiner is that

it describes program specifications using a probabilistic
model extended from Markov chain. Probabilistic models
have an inherent ability to tolerate noises. Furthermore,

since ISpecMiner learns program specifications in an online

mode, mined specifications can be evolved persistently. As
a result, more universal program specifications can be
achieved.

The number of OUSs that ISpecMiner extracts from a

Java program is near the number of instances of classes

used in the program. In this work, to prepare ISpecMiner
for our experiments, we implemented our technique in it. In
the remainder of this section, we denote original

ISpecMiner and ISpecMiner with our technique by

ISpecMiner-Ⅰ and ISpecMiner-Ⅱ respectively. The latest

version of ISpecMiner can be obtained at the URL

http://www.ispecminer.com.

B. Subjects

The subjects used in our experiment are shown in Table
II, which are real-world Java programs. These programs are
selected based on the following criteria:

 Open source software. Though ISpecMiner is a

dynamic specification mining tool and source code
is not necessary, it is helpful for us to figure out
problems encountered in experiments and validate
results.

 Large-scaled software. Large-scaled software
contains a large number of OUSs, which is helpful
for our comparison test.

 Applications coming from various domains.
Applications from various areas may avoid the
biases introduced in our experiments.

C. Investigation of API protocols

In order to investigate the effect of our method, we used

ISpecMiner-Ⅰ and ISpecMiner-Ⅱ to mine API protocols

from several real-world Java programs respectively, and
then compared the achieved protocols. The subject
programs are shown in Table II, each of which was run with

manual input data. We configured ISpecMiner-Ⅰ and

ISpecMiner-Ⅱ to instrument classes illustrated in Table III

and their superclasses. The reasons we selected these
classes are as follows: (1) they are commonly used in
various kinds of Java programs; and (2) they have an
inheritance depth greater than zero. Thus, an OUS of these
classes will derive at least one inherited sub-OUS. It is
worth noting that we exclude the common superclass

java.lang.Object of all classes in Java when counting

inheritance depth. Take for example, class

java.io.FileInputStream, which has two superclasses

java.io.InputStream and java.lang.Object. According

to our counting method, it has an inheritance depth of one.

Experimental results are illustrated in Figure 3. We

present the API protocols of class InputStreamReader,

InputStreamWriter and FilterInputStream sequentially

from the first row to the last row. At each row, the left

protocol is mined by ISpecMiner-Ⅰ and the right one is

mined by ISpecMiner-Ⅱ. The protocols are described

using an extended Markov model MCF, where states and
transitions represent methods and temporal relationships
between methods respectively. Details about MCF please
refer to [7]. From Figure 3, we can see that protocols in the
right column have more states or transitions than those in
the left column. For example, the API protocol of class

InputStreamReader mined by ISpecMiner-Ⅱ has one

more state and four more transitions than that mined by

TABLE II. SUBJECT PROGRAMS. KLOC: THOUSANDS OF LINES OF CODE.

Subject Version Description KLoC

FreeMind 0.9 Mind-mapping software 22

RapidMiner 5.3
Environment for machine

learning and data mining
513

SQuirreL

SQL Client
3.4 Java SQL client 253

OpenProj 1.4 Project management software 120

TABLE III. INSTRUMENTED CLASSES

 Instrumented Class Inheritance Depth

1 java.io.PushbackInputStream 2

2 java.io.FileInputStream 1

3 java.io.FileOutputStream 1

4 java.io.BufferedReader 1

5 java.io.BufferedWriter 1

6 java.io.DataInputStream 2

7 java.io.DataOutputStream 2

8 java.io.FileReader 2

9 java.io.FileWriter 2

10 java.io.BufferedInputStream 2

11 java.io.PrintWriter 1

http://www.ispecminer.com/

ISpecMiner-Ⅰ. As to the protocols of class

OutputStreamWriter shown in the second row, although

they have the same number of states, the right one has many
more transitions than the left one. By manual inspection, we
found that the additional states and transitions are consistent
with JDK documentations. Since the number of states and
transitions reflects the comprehensiveness of protocols to
some extent, we have the conclusion that our technique is
helpful for mining comprehensive protocols.

On the other hand, our approach can impact the
probabilities attached with states and transitions:
probabilities of normal behaviors will be enhanced and that
of abnormal behaviors will be suppressed. For example, the

final probability (FinalPro) of state close() in protocol of

class InputStreamReader shown in the first row is

increased from 0.6154 to 0.8043 and that of state

read(char[],int,int) is decreased from 0.2308 to 0.1957.

Since the difference between normal and abnormal
behaviors is enlarged, noisy states and transitions can be
eliminated accurately when transforming probabilistic
models to deterministic models using a probability
threshold.

Additionally, our technique can achieve protocols that
cannot be mined by general approaches. Take for example,

the superclass FilterInputStream of DataInputStream

and BufferedInputStream. Since the class has not been

covered during the run of subject programs, a protocol
shown in Figure 3 (e) with only constructor method was

achieved by ISpecMiner-Ⅰ (the constructor method of

class FilterInputStream may be called by constructor

method of its subclasses). In contrast, ISpecMiner-Ⅱ

generated a more complete protocol illustrated in Figure 3
(f), because our method can derive inherited sub-OUSs. It

seems that protocols as FilterInputStream are useless for

program validation, because they are seldom used in
application programs. However, there still exist many
superclasses which are frequently used in programs, such as

InputStreamReader and OutputStreamWriter. Since

they have been used in subject programs, we can achieve
relative complete protocols based on general approaches as
shown in Figure 3 (a) and (c). Even if some classes will be
never used in programs (such as abstract classes), their
protocols may be useful in program documentation and
understanding. For example, we can validate the design of
an abstract class based on mined protocols.

D. Related Work

Many researchers have paid significant efforts in mining

API protocols. For instance, Wasylkowski et al. [11]

proposed to mine object usage models from Java bytecode

(a)

(b)

(c)

(d)

(e)

(f)

 Figure 3. Part of API protocols mined in our experiment.

and a tool JADET was developed. Lorenzoli et al. [15]

modeled API protocols using EFSM which extends from

FSM. Alur et al. [16] synthesized FSA model of API

protocols using L* learning algorithms combined with
model checking and abstract interpretation techniques.
Since FSA is a kind of deterministic model with inability to
tolerate noise, many researchers proposed to mine API
protocols based on probabilistic models. For example,

Ammons et al. [17] proposed to mine protocols among

application programming interfaces (API) or abstract data
types (ADT) based on probabilistic finite state automaton

(PFSA). Chen et al. [7] proposed to mine class temporal

specifications based on an extended Markov model.
Whatever techniques, the quality of input OUSs is
important for mining precise and complete protocols.
However, little attention has been paid in this area. In this
paper, we proposed an approach to collect as many OUSs
as possible for automatic protocol mining. A large
repository of OUSs can complement the inaccuracy caused
by noises and is likely to be diverse. Currently, a common
approach to collect more OUSs is feeding protocol miners
more application programs, which will incur significant
time overhead. Different from that, our technique can
extract more OUSs from a single application program.

VI. CONCLUSIONS

Automatic protocol mining is a promising approach to
infer precise and complete API protocols. Many researchers
have paid significant efforts in this area. However, little
attention has been paid on collecting high quality OUSs. In
this paper, we proposed an approach to collect more OUSs
for API protocol mining. Our technique is based on the
inheritance relationship among classes. Given an object-
oriented program p, theoretically, n times more OUSs can
be extracted by our technique from p than general
approaches, where n is the average inheritance depth of all
OUSs in p. In the Experimental Section, we investigated the
effect of our approach on mined API protocols and found
that our technique is promising to achieve complete and
precise protocols. Additionally, our technique can mine
protocols even if the corresponding classes have not been
covered during the run of application programs. Although
these protocols may be useless for program validation, they
can be used for program documentation and understanding.

ACKNOWLEDGMENT

Supported by Natural Science Foundation of Hubei Province
(No. 2014CFB1006).

REFERENCES

[1] Pradel, M. and Gross, T. R. Leveraging test generation and
specification mining for automated bug detection without false
positives. In ICSE’12: Proceedings of the 34th International
Conference on Software Engineering. Zurich, Switzerland, 2012,
288-298.

[2] Ramanathan, M. K., Grama, A., et al. Static specification inference
using predicate mining. SIGPLAN Not. 2007, 42(6), 123-134.

[3] Shoham, S., Eran, Y., et al. Static specification mining using
automata-based abstractions. In Proceedings of the 2007
International Symposium on Software Testing and Analysis. United
Kingdom: ACM, London, 2007.

[4] Engler, D., Chen, D., et al. Bugs as deviant behavior: a general
approach to inferring errors in systems code. SIGOPS Oper. Syst.
Rev. 2001, 35(5), 57-72.

[5] Liskov, B. Data abstraction and hierarchy. SIGPLAN Not. 1987,
23(5), 17-34.

[6] Bruce, K.B. and Wegner, P. An algebraic model of sybtypes in
object-oriented languages. SIGPLAN Not. 1986, 21(10), 163-172.

[7] Chen, D., Huang, R., et al. Ming class temporal specification
dynamically based on extended Markov model. International
Journal of Software Engineering and Knowledge Engineering. 2013,
in press.

[8] Caserta, P. and Zendra, O. JBInsTrace: a tracer of Java and JRE
classes at basic-block granularity by dynamically instrumenting
bytecode. Science of Computer Programming, 2014, 79 (SI), 116-
125.

[9] Tatsubori, M., Sasaki, T., et al. A bytecode translator for distributed
execution of “legacy” Java software. In Proceedings of the 15th
European Conference on Object-Oriented Programming. Springer-
Verlag, 2001.

[10] Javassist, 2013. http://en.wikipedia.org/wiki/Javassist.

[11] Wasylkowski, A. Mining object usage models. In Companion to the
Proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, 2007.

[12] Wasylkowski, A., Zeller, A., et al. Detecting object usage anomalies.
In Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. Croatia: ACM, Dubrovnik,
2007.

[13] JADET, 2014. http://www.st.cs.uni-saarland.de/models/jadet/.

[14] Dallmeier, V., Lindig, C., et al. Mining object behavior with
ADABU. In Proceedings of the 2006 International Workshop on
Dynamic Systems Analysis. China: ACM, Shanghai, 2006.

[15] Lorenzoli, D., Mariani, L., et al. Automatic generation of software
behavioral models. In ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering. Germany: ACM,
Leipzig, 2008.

[16] Alur, R., Cˇerny, P., et al. Synthesis of interface specifications for
Java classes. SIGPLAN Not. 2005, 40 (1), 98-109.

[17] Ammons, G. and Bodik, R., et al. Mining specifications. SIGPLAN
Not. 2002, 37 (1), 4-16.

http://en.wikipedia.org/wiki/Javassist
http://www.st.cs.uni-saarland.de/models/jadet/

