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Abstract—Fatigue induced vehicle accidents have seen an
increase in the last few decades. Fatigue monitoring using non-
invasive and real time image processing and computer vision
techniques have shown great promise and are an active research
area. To that extent, in the proposed work a blink detection
algorithm is proposed that serves as a visual cue that may
be correlated to the state of fatigue of the driver. Using a
complimentary but independent approach, shape analysis and
histogram analysis are carried out in parallel to perform the
blink detection task. Close to real time performance and a
high level of accuracy in controlled settings show great promise
of such approach in enhancing the monitoring of the driver’s
blinking patterns. One of the main constraints of using such
algorithm in a real world setting is the minimized processing time
required to allow for sufficient driver response time. In this work
implementation of the algorithm is described using optimization
techniques to meet such latency requirements. The validation of
the algorithm was carried out by visual inspection of the video
sequences in terms of precision and accuracy. The presented
blink detection algorithm has a precision rate of 84% and an
accuracy rate of 69% obtained through using 12 sequences of
different duration videos in varying lighting conditions using a
small sample of participants.

Index Terms—computer vision, blink detection, driver fatigue,
image processing.

I. INTRODUCTION

The alarming number of traffic accidents due to driver
fatigue accounts for more than half of all truck collisions in
the United States [1]. Diminished levels of attention caused by
fatigue, increases response time while in more severe cases it
may result in short lapses of sleep by the driver. Research has
shown that after 2-3 hours of constant driving, fatigue plays an
important factor in slowing decision making and perception of
the driver of the vehicle. More recently, a study by the National
Sleep Foundation in the US showed that in their study, more
than 51% of adult drivers with drowsy symptoms had driven a
vehicle and 17% had momentarily fallen asleep while driving
[2]. It is estimated that 1,200 deaths and 76,000 injuries are
due to fatigue induced accidents annually. Due to the recent
attention to fatigue related crashes, fatigue detection systems
have become an active area of research.

There has been substantial work on characterizing driver
fatigue based on various models. Dinges et al. [3] showed
that physiological signals such as the electroencephalography
(EEG) and the electro-cardiogram (ECG) can be used to

measure fatigue. Other less intrusive methods using physical
information of the vehicle combined with the patterns of
driving has also been researched extensively with limited
success[4]. Although the most accurate results have been
reported using physiological instrumentation, such systems are
not practical as they require initial setup which is a hassle
for the driver [5], [6]. With non intrusiveness constraints,
another category of methods that has become an active re-
search area is non-intrusive online monitoring of the driver
using computer vision. In this category, ”visual cues” such
as gaze, head movement, and eye blink rate is tracked in
order to accurately estimate the state of the driver. These
computer vision techniques aim to extract visual fatigue related
characteristics in real time using image/video processing. For
instance, Boverie et al. [7] developed a system to correlate
eyelid movement to estimate the degree of vigilance of the
driver. While others such as Ueno et al. [4] looked at methods
to measure the degree of openness of the eyelids to make the
fatigue characterization. The majority of such early studies
involved strictly controlled environments, lighting conditions
and line of sight for the extraction process to work properly.
Recent clinical research on the effectiveness of blinks as
strong indicators of fatigue [8], make blink detection a strong
candidate that is the basis of the following work.

Although most of previous work has focused on the ability
of the vision system to correctly detect blinks in various
lighting conditions, in real world software vision systems there
are response time requirements that dictate the effectiveness
of such systems. Studies by Muttart [9] have quantitatively
examined the driver response times based on various real
conditions on the road. Their conclusion suggested that there is
a variety in response time in drivers that is obviously correlated
to driver speed and conditions. Therefore, it is of note to
mention that the response time of a developed computer vision
system should be minimized as much as possible to account
for this variation in driver population and allow for sufficient
time of reaction in real settings. From the moment the system
has the image data this time is labelled processing time and is
required to respond in less than an estimated 900ms. It is the
focus of the following work to not only develop the algorithm
but enhance in its performance on an implementation in an
embedded system with real time constraints.
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In the presented chapter, an eye blink detection algorithm
is proposed using machine learning and image processing
techniques in an effort to enhance the robustness of blink
detection as an important part of a driver fatigue monitoring
system. The contribution of this work includes two compli-
mentary algorithms that exploit different information in each
image/frame in order to arrive at a more robust estimation of
the driver blink rate along with their concurrent implementa-
tion on an embedded system achieving real time requirements.
The remainder of the paper is organized as follows: Section
II provides a detailed explanation of the proposed algorithm
methodology. The implementation details and optimization
required to enhance performance of the vision system is
described in Section III. The results of the critical steps of
the algorithm and the validation methodology is presented in
Section IV. A discussion of the results of the algorithm in
a video processing setting is part of Section V and finally,
conclusions on effectiveness and limitations of our approach
along with future work is outlined in section VI.

II. METHODS

In the following section, the eye blink algorithm is described
with a detailed discussion on key sections of the algorithm
such as: face detection, eye detection, pre-processing of the
region of interest (ROI), shape analysis, complimentary his-
togram analysis method and combination of their outputs. The
algorithm was designed using a set of real-time video captures
in various lighting conditions for robustness verification.

A. Algorithm Overview

The high level flow of the proposed algorithm, initiates with
detecting the face area using Haar-features. These features are
extracted using a Haar classifier that has been trained with
frontal face images. Once the face area is located, a second
classifier using similar Haar-features finds the eye band area
for both eyes. This eye band area is the ROI that will be
processed by two separate eye blink detection methods. In one
method, called pipeline A, the gray scale image of the initial
frame is used as input. Then, the edges within the ROI are
detected using the canny edge detector with a 3× 3 Gaussian
blur filter to remove noise. This edge detection works well
because there is a strong contrast between the iris and the
choroid.

The algorithm proceeds by doing contour analysis, where
the various large contours of the ROI are examined further.
Due to the elliptical shape of the eyes while being open, an
ellipse fitting is performed to identify the eyes as open. Upon
closure of the eyes, the number of ellipses, corresponding to
each eye, in the image reduces greatly which indicates that a
blink may have happened.

However our experimentation shows that contour informa-
tion may not be sufficient in robustly detecting the blinks.
Therefore we have chosen to implement a second computation-
ally efficient method that concurrently enhances the detection
outcome.
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Fig. 1: Flow chart representation of the proposed blink de-
tection algorithm. Please note the two parallel sub-algorithms
and the combination of their results.

In parallel, a secondary method (pipeline B) looks at non
spatial information of the ROI. This second method, takes the
negative of the frame and uses a simple threshold to globally
threshold high pixel values (which will include the surrounding
areas around the eyes and the eye structure). The histogram
of such binary image has a bimodal shape with two impulses.
It can be observed that blinking reduces the number of white
pixels because momentarily the eyelids will cover the eyes and
there is a shift of pixels from the high end of the histogram to
the low end which is detected by the algorithm. The fusion of
the results of contour/shape analysis with histogram analysis
allows for the detection of eye blinks.

A flowchart representation of the algorithm overview is
presented in Fig. 1. The various stages of the algorithm is
explained in more detail in the following sections.

B. Face Detection

The following section presents the learning-based method
used in detecting the face area in our blink detection algorithm.
Learning based methods use training samples in combination
with statistical and machine learning models that have have
shown to be effective in detecting facial features [10]. One
main advantage of learning methods is their ability to adopt
to various scenarios given adequate and large training sets.
Variety of lighting conditions, driver demographics and other
features specific to the driving of the vehicle can be included
in the training set in order to increase accuracy and robustness
of the face detection process.

Viola et al. [11] proposed a set of features named Haar-
like features due to similarity to Haar wavelet basis functions.
Their algorithm has gained popularity due its robust and com-
putationally efficient property for object detection specifically
in the face detection domain. Haar-like features use the change
in contrast of adjacent rectangular groups of pixels instead of
the pixel’s own intensity values. The variance between the
neighbourhoods surrounding the pixel are used to identify
areas of high and low intensity values. Different number of



grouping of such basis functions based on their variance can
result in detecting different types of features such as edge, line
or center-surround features [12].

The simplicity of these features allow for scaling and
therefore scale-invariant detection of face region in the frame.
Viola et al. [11] showed that for a rather small image, the total
number of such elementary features is in the order 180,000
which may be impractical to calculate [12]. However, for
accurate object detection, they noted that not all features are
required. By transforming the image into what they called
an ”integral image”, any of the haar features is able to be
computed at any scale in constant time. The construction
of the features is initiated by generating the integral image.
The integral image intermediate representation (iI) of original
image (I) at x,y contains the sum of pixels above and to the
left at x’,y’ which can be formally defined as:

iI(x, y) =
∑

x′≤x,y′≤y

I(x′, y′)

Then the cumulative row sum s(x,y) is:

s(x, y) = s(x, y − 1) + i(x, y)

Then the integral image can be re-written in terms of the
cumulative row sum as:

iI(x, y) = iI(x− 1, y) + s(x, y)

Using this simple technique in generating the integral im-
age, all the combination of rectangle feature sets may be
constructed which makes feature generation computationally
efficient. These features are sensitive to presence of edges,
bars, and simple structures with only horizontal, vertical and
diagonal orientation [11]. Specifically in the case of face
detection, it was noted that some features are more effective
than others based on exploiting the property of the region of
the eyes that is often darker than the region of the nose and
cheek (with a higher variance in the eye region) and similarly
darker region of the eyes from the bridge of the nose.

The effect of different lighting conditions are important in
a variance based method and therefore during the training it
was addressed by a variance normalization procedure defined
as:

σ2
w = µ2

w − 1

N

∑
p2w

Where the variance σ2 of window w is defined in terms of
mean of the window (µw) and the sum of squared pixels p
of window w. The summation is calculated using the integral
image procedure previously described. It is important to note
that such normalization in the training procedure is inherently
needed in the detection phase as well.

With the feature generation phase complete, a learning
method is required in order to perform a classification func-
tion. The AdaBoost learning algorithm is used for both tasks of
feature selection and the training of the classifier [13]. Using

(a) Open eyes ROIs (b) Closed eyes ROIs

Fig. 2: Results of face (blue) and eye band (green) ROI
detection using Haar-classifiers. The classifier has worked well
in in identification of the eye ROI regions while the eyes are
closed in (b).

the Adaboost weak learner procedure, each classifier can only
depend on a single feature and cascading of such classifiers
allow for a robust method for scale invariant object detection.

A large reduction in the number of non-contributing fea-
tures, and its excellent generalization performance allows
AdaBoost to be used in a cascaded format that forms the
cascade classification of haar-features. The cascading of clas-
sifiers allows for training each classifier using AdaBoost and
adjusting each classifier’s threshold and weights to minimize
false negatives using error minimization.

The results have proven to have a high accuracy rating and
a subsequent better performance as the cascading continues.
This makes the haar-like cascaded classifier method ideal
for the face detection task of our real time blink detection
algorithm.

C. Eye Band Detection

The eye band detection method to identify the eyes in
each frame uses the same methodology as the face detection
mechanism via Haar-like features and AdaBoost combination.
Beyond the technical aspects of the classifier mechanism, for
the eye detection few considerations are worth mentioning:
• By finding the face region in each frame, the ROI for

eye detection becomes smaller and the performance of
the classifier increases dramatically.

• A separate training set for eyes is used to train the clas-
sifier. In the case of this work in its current form, a pre-
trained classifier was used which performed adequately
for the eye detection task.

• The decision was made to detect both eyes as an ”eye
band” as the trained classifier performed best when both
eyes were facing the camera.

Fig. 2 demonstrates the results of simultaneous face and eye
detection for frames corresponding to both open and closed
eyes using the described procedure.

D. Canny Edge Detection

Edge detection is an important procedure and a first step in
identifying objects of interest in the image. Once the ROI has
been identified, edge detection allows for structural analysis



(a) Open eyes Canny output (b) Closed eyes Canny output

Fig. 3: Results of canny edge detection using
lowThreshold = 60 and maxThreshold = 140 for
both open and closed cases. Please note that while closed, the
detector has only detected the shadow area around the eyes.

inside the ROI which in the case of this work is the eye
band detected in the previous stage. There are a number of
edge detectors that may be used depending on the desired
structural properties. In the proposed algorithm, the popular
Canny edge detector algorithm [14] was selected due to its
following characteristics:

1) Robust detection: in the blink detection application, the
probability of detecting real edges need to be quite high
despite high noise levels in each frame.

2) Computationally inexpensive: due to the real time nature
of the application, high performance was a secondary but
important deciding factor.

3) Step edges: the strong variance between the eye region
and skin (both horizontally and vertically) can be char-
acterized as step edges which the canny algorithm was
originally designed for [14].

The resulting output of this stage, is a binary image that
identifies all the corresponding edges in the eye band area. Fig.
3 shows the effect of the operator in open and closure sample
cases described previously. It is worth mentioning that the low
threshold for the method was proven to be critical in detecting
important edge structure between the eye choroid and the
pupil. A severely low threshold would mark many details of
the eye band as edges which was sub-optimal for the blink
detection algorithm. The thresholds were chosen empirically
based on the training set frames during development.

E. Contour Extraction & Analysis

By finding the strong edges using the previous operation
in the eye band region, the structural information of the ROI
is ready for further analysis in detecting the eye regions. The
goal of this proposed stage is to find an approximation of
all the contours that are present in each frame. The following
section explains in detail how contour extraction from the edge
information is accomplished and the corresponding analysis
that is carried out on each contour.

The contour extraction operation used in our algorithm is
based on the work of Suzuki et al. [15] where a topological
analysis is done on the contours found by what is known as
”border tracing” based on earlier work by Rosenfeld et al.[16]
and the utilization of Freeman’s chain codes [17].

Once all contours are traced using the above algorithm,
the operation proposed by Suzuki et al. derives a sequence
of coordinates on each contour and constructs a topological
ordering of such coordinates. It was shown that using such

technique, both outer contours and inner contours (holes)
can be effectively labeled and the topological analysis can
lend to accurate categorization and discrimination of enclosing
contours vs. inner contours. In the case of our blink detection
algorithm, due to the large size of both eye regions in the
band area, it was desired to analyze the outer contours in each
frame. The proposed algorithm exploits the fact that during the
blinking motion, larger contours of the eye will be deformed
and disappear rapidly and hence extracting the contours is a
first step in monitoring the blinking. Once the contours are
extracted, the proposed algorithm proceeds by calculating the
area of each contour for further analysis. It was observed that
discriminating the large contours (such as large reflections
due to sever lighting conditions) or smaller extracted contours
(due to poor edge extraction) based on area threshold was an
effective method in keeping only contours related to the eye
region. The area threshold is adaptive and based on the size
and resolution of the eye band frame.

F. Ellipse Fitting

Once the corresponding contours to the eye region (the
choroid and iris sections) have been identified, shape analysis
is the next stage of the proposed algorithm. In this section,
the ellipse fitting procedure and some of the assumptions
and criteria of the analysis is discussed in more detail. The
intuition behind the procedure is based on a priori that the
eye region contours have an elliptical shape. Fitzbibbon et al.
[18] evaluated various methods of fitting data to conic sections
based on assumptions of isotropic normally distributed noise
and incomplete contours. Their work is of particular interest
in our application due to its analysis of performance in terms
of algorithm complexity and computation in the task of ellipse
fitting using least-squares as a distance metric. Fitzbibbon et al.
showed that based on their experimentation evaluation of the
popular conic fitting algorithms with strong variants of noise,
orientation, and occlusion, that least-squares based algorithm
of statistical distance (also known as BIAS [19]) has a good
tradeoff between performance and accuracy in fitting contour
points to an ellipse even with the presence of outliers due to
high noise and discontinuities.

During the shape analysis stage of the blink detection
algorithm (implementation in OpenCV), all fitted ellipses had
to meet a discrimination criteria to be included for further
stages. The orientation of the fitted ellipses become important
in distinguishing eyes from other ellipses. It can be observed
that contours of the eye region has an orientation close to
the horizontal line with some varying angle, θ, assuming that
the driver is not orienting their head substantially. Choosing
an appropriate threshold on θ allows the algorithm to only
include ellipses resembling the contours of the eye region (θ
was empirically found to be 10◦). Another discriminant which
was used to avoid fitting all possible contours was the contour
area. Fig. 4 shows the results of ellipse fitting with and without
constraints in both open and eyes closed cases. Please note that
the fitted small ellipse in Fig. 4 (b) has been discarded using
a contour area threshold based on the resolution of the frame



(a) Open eyes all ellipses (b) Closed eyes all contours

(c) Open eyes all ellipses (d) Closed eyes all contours

Fig. 4: Results of the ellipse fitting procedure using discrimi-
nant of θ = 10◦ and contourArea = 20 pixels. The red and
yellow line are the ellipse fitting procedure while the green
box is the rectangular fit for orientation analysis.

in Fig. 4 (d). The effect of orientation discriminant can be
observed in between Fig. 4 (a) and (c).

With the shape analysis in place, this pipeline of the
algorithm (pipelline A) is able to classify the eyes in the frame
as open or closed. During the blinking motion, the monitored
number of allowable ellipses at each frame has a reduction of
2 or more which will indicate that the eyes have closed and
therefore the frame can be marked accordingly.

Although this pipeline works in most test cases, it was
observed that due to variations of sampling from different ex-
perimented cameras and the variability in lighting conditions,
the pipeline requires a complementary synchronization mech-
anism to overcome some of these shortcomings. A second
complimentary pipeline (pipeline B) was developed to run in
parallel which will be discussed in the following section.

G. Global Thresholding Of Negative

To independently complement the shape/contour analysis
pipeline discussed in the previous sections, pipeline B was
developed using a rather simple thresholding technique. It was
observed that during the blinking motion, when the eyelids
cover the choroid and iris there is a change in the number of
pixels that represent the skin. By exploiting this idea, a global
threshold on the negative of the gray scale frame is used to
detect the eye region and its approximate surroundings. The
global thresholding is formally defined as [17]:

g(m,n) =

{
0 iff(m,n) ≤ τ

255 iff(m,n) > τ

where the resulting binary image, g(m,n), is based on
the global thresholding operation on the original gray scale
image f(m,n) with threshold τ . This procedure renders robust
results with prior knowledge of the lighting conditions and
range of skin pixel values.

H. Histogram Analysis

Using the resulting binary image, simple histogram analysis
is used to monitor two groups of pixels in the image. One
group belongs to the background and the other group is the
approximate eye region. During the blinking motion, there is a
substantial change in the number of high intensity pixels and a

(a) Open eyes global threshold (b) Closed eyes global threshold

Fig. 5: Results of global thresholding, τ = 185 on the negative
of frames for both open and closed cases. Please note the
decrease of the number high intensity pixels in (b).

comparison of this number with the previous frame has shown
to be robust in the preliminary results of this work. Using this
difference, %d, the frame is classified as closed only if the
difference is greater and equal to 20% of the previous frame’s
number of high intensity pixels (found empirically). Fig. 5
shows the sudden drop of the number of high intensity pixels
during the blinking motion.

I. Merging of Results

In this final stage of the algorithm, the results of the shape
analysis/elliptical fitting (pipeline A) and the results of global
thresholding (pipeline B) is merged for each frame. If results
from both pipelines match to be closure, the frame is classified
as a detected blink. If there is a discrepancy among the
pipelines, the result is marked as an open eye.

III. REAL-TIME IMPLEMENTATION

In this section some of the details of the implementation of
the proposed algorithm is presented. As previously mentioned,
strict real time requirements are present in order for the system
to fulfill the minimization of processing time of 900 ms and
allow for slowest human driver response time in the process.
The embedded system chosen for this work was the Nvidia
Jetson TK1 which includes an ARM Cortex A-15 dual core
processor and a Nvidia GPU for embedded vision applications
on the Ubuntu 14.04 L4T platform. Although our development
environment was similar on Linux 14.04 on x64 machine,
during the porting process on the target embedded system,
there were optimization to be considered. With the latency
constraint of processing time being 900 ms it was important
to optimize CPU code.

One of the main steps in the algorithm that is used by
both pipeline A and pipeline B extensively was the color
to gray scale conversion. With the target platform being an
ARM based CPU with ARM’s NEON [20] capabilities which
allows for single instruction multiple data (SIMD) operations,
the approach chosen was to enhance gray scale conversions
using NEON intrinsic instructions.

The optimized implementation of gray scale conversion
using NEON intrinsics is shown below:
void neon_rbg_gray (uint8_t * __restrict dest,

uint8_t * __restrict src, int numPixels)

{
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Fig. 6: Comparions of our Neon optimized RGB to gray scale
conversion compared to native OpenCV C++ performance.

int i;

// 8x8 Neon registers are filled

// Red channel multiplier

uint8x8_t rfac = vdup_n_u8 (77);

// Blue channel multiplier

uint8x8_t gfac = vdup_n_u8 (151);

// Green channel multiplier

uint8x8_t bfac = vdup_n_u8 (28);

int n = numPixels / 8;

// Conversion in 8 pixel chunks

for (i=0; i < n; ++i)

{

uint16x8_t temp;

uint8x8x4_t rgb = vld4_u8 (src);

uint8x8_t result;

temp = vmull_u8 (rgb.val[0], bfac);

temp = vmlal_u8 (temp,rgb.val[1], gfac);

temp = vmlal_u8 (temp,rgb.val[2], rfac);

result = vshrn_n_u16 (temp, 8);

vst1_u8 (dest, result);

src += 8*4;

dest += 8;

}

}

Fig 6 shows some of the earliest results with comparison to
OpenCV’s native C++ implementation. As it can be observed
a reduced factor of 2.5x allows for the system to meet the
latency requirements of processing time of 900ms.

IV. RESULTS

The following section outlines the results obtained through
experiments of this work. The proposed algorithm was devel-
oped and visually validated using live video processing of a
720p webcam at 20 frames per second using the OpenCV C++
APIs. For validation of this work, our preliminary validation
procedure was carried out from a set of sequence of frames
picked from various recordings in different lighting conditions
and a small sample of subjects. The sampling included a
relatively even distribution of the three possible cases of: open
eyes, closure motion, and closed eyes. As it is evident, the
algorithm initially needs to detect the face and eyeband ROI
region accurately and reliably prior to moving on to the later
stages for blink detection. By constraining the distance away
from the camera and the head orientation of the driver, it was
found that the Haar-feature classifier performs well based on
our qualitative analysis of frames through out development and
on the sequence frames used for validation.

The distribution of the sequences which can be observed
in Table I, are as follows: sequences s1 − s5 were based

TABLE I: Results of proposed blink detection algorithm in
different sequences of frames in moderate (s1−s5), high (s6−
s9) and low illumination (s11−s12) conditions. Accuracy and
precision of each sequence and the total average has been
shown.

Sequence # Frames AP TP FP FN Accuracy Precision

s1 242 16 15 1 0 0.9375 0.9375
s2 200 12 12 0 0 1.0000 1.0000
s3 193 8 8 0 1 0.8889 1.0000
s4 300 4 3 1 2 0.5000 0.7500
s5 275 21 19 2 1 0.8634 0.9048

s6 250 14 12 2 9 0.5218 0.8571
s7 220 9 8 1 6 0.5333 0.8889
s8 244 11 9 2 8 0.4737 0.8182
s9 207 7 5 1 1 0.7142 0.7143

s10 190 10 6 4 2 0.5000 0.6000
s11 202 12 9 3 2 0.6428 0.7500
s12 248 14 13 1 3 0.7647 0.9286

Average 0.6942 0.8458

on moderate illumination conditions, s6 − s9 were realized
in highly illuminated and s10 − s12 were in low illuminated
conditions. The results including the accuracy and precision
of each sequence have been based on the assumption that
the eyeband ROI detection procedure has been successful (as
the algorithm will not carry on if the eye band ROI is not
detected). True positives (TP) include all cases that both eyes
were closed and the system was able to detect the blink. The
cases of detected false blinks when they were either open or
the eye band ROI was not even detected, is labeled as false
positives (FP). The percentage of inability of the algorithm
to detect closure while detecting the eyeband ROI region is
included under the false negatives category (FN). The number
of actual positives (AP) was measured by repeated review of
each sequence via only visual inspection at this time.

A noteworthy detail of the implementation of the algorithm
is that if for any reason the eye ROI is not found, the algorithm
stays idle without exiting the program. The detection resumes
as normal once the ROI is found, which helps in eliminating
non relative frames in the validation procedure. However as it
was discussed previously, in almost all cases 100% of frames
were included due to both the highly robust performance of
the face/eye detection stages and also the controls of the
experiments.

V. DISCUSSION

The preliminary results of the validation of the algorithm,
show promise of the proposed complimentary approach of
using shape analysis in parallel with histogram analysis. This
is apparent in the accuracy and precision results in sequences
s1 − s5 of Table I, where the small sample of participants
in moderate and consistent lighting conditions. However, it
was observed that both the canny edge detector and global
thresholding methods are sensitive to both highly illuminated
environments (observed in sequences s6 − s8) and low illu-
mination conditions (sequence s10− s11).



Specifically, the accuracy of sequences s6−s8 has decreased
substantially in comparison to the moderate lighting conditions
of the first set of sequences. The analysis shows that this might
be due to the performance of the canny edge detector. It was
observed that the low threshold and maximum threshold during
its hysteresis phase, needed to be adjusted manually in order to
improve the performance of the edge detection in low illumi-
nation conditions. To improve on this shortcoming, histogram
equalization of the original gray scale was applied which has
helped in reducing low illumination effects. The preliminary
results of inclusion of the histogram equalization operator is
shown in sequence s12 for reference with improvements in
accuracy with a slight negative effect on precision. Further
validation is required to concretely conclude the effect of the
operator.

For high illumination cases, the histogram threshold had to
be re-adjusted as it was observed that due to high illumination
around the eyes, the thresholding results would include a larger
area in the proximity of the eyes and hence a higher number
of high illuminated pixels. This higher number effects the
histogram analysis which means that the difference between
the open eye frame and a closed eye frame may be smaller than
the predefined difference %d set in average illumination cases.
The results show degradation of performance in sequences
s10 − s11. To improve on the robustness of choosing %d, a
normalization factor may be used. The ratio of the number of
high pixels to low pixels seem to have eliminated this issue in
controlled conditions resulting in performance improvements
especially to precision as it can be seen in the results for s9.
However extensive validation is required to analyze the full
effect of this correction.

In terms of computional performance, our implementation
allows to meet the minimum driver response time requirements
of the real time system the algorithm is designed for. More
extensive profiling shows other areas of improvements such as
using the GPU to enhance the performance of edge detection
using the Canny edge detector.

VI. CONCLUSION & FUTURE WORK

This work presented a blink detection algorithm based on
two complimentary, but independent approaches using shape
and histogram analysis. The monitoring of the driver’s blink
patterns was performed in near real time using efficient image
and computer vision techniques. The preliminary results in
terms of total accuracy and precision rates indicate that the
current approach can be useful in monitoring blink detection
for fatigue. The algorithm requires training in more varying
lighting conditions in order to be robust. Future work will
include improvements to the image acquisition system such
as using an infra red camera and also additional preprocessing
techniques such as gamma correction or histogram equaliza-
tion. Furthermore the inclusion of adaptive methods in the
edge detection step and also in the global thresholding stages
will be part of the continuation of this work. Using similar
techniques in identifying other visual cues such as facial

expressions and yawning may enhance the accuracy of a well
defined driver fatigue detection in the future.

ACKNOWLEDGMENT

This work has been supported by the Alberta Innovates
Technology Futures and the University of Calgary. The au-
thors would like to thank Dr. Rangayyan for the technical
discussions during this work.

REFERENCES

[1] Q. Ji, Z. Zhu, and P. Lan, “Real-time nonintrusive monitoring and
prediction of driver fatigue,” Vehicular Technology, IEEE Transactions
on, vol. 53, no. 4, pp. 1052–1068, 2004.

[2] W. Wierwille, “Overview of research on driver drowsiness definition and
driver drowsiness detection,” in Proceedings: International Technical
Conference on the Enhanced Safety of Vehicles, vol. 1995. National
Highway Traffic Safety Administration, 1995, pp. 462–468.

[3] D. Dinges and M. Mallis, “Managing fatigue by drowsiness detection:
Can technological promises be realized?” in International Conference
On Fatigue and Transportation, 3RD, 1998, Frementle, Western Aus-
tralia, 1998.

[4] H. Ueno, M. Kaneda, and M. Tsukino, “Development of drowsiness
detection system,” in Vehicle Navigation and Information Systems Con-
ference, 1994. Proceedings., 1994. IEEE, 1994, pp. 15–20.

[5] M. Kaneda, H. Iizuka, H. Ueno, M. Hiramatsu, M. Taguchi, and
M. Tsukino, “Development of a drowsiness warning system,” in Pro-
ceedings: International Technical Conference on the Enhanced Safety of
Vehicles, vol. 1995. National Highway Traffic Safety Administration,
1995, pp. 469–476.

[6] S. Saito, “Does fatigue exist in a quantitative measurement of eye
movements?” Ergonomics, vol. 35, no. 5-6, pp. 607–615, 1992.

[7] S. Boverie, A. Giralt, J. Lequellec, and A. Hirl, “Intelligent system for
video monitoring of vehicle cockpit,” SAE Technical Paper, Tech. Rep.,
1998.

[8] R. Schleicher, N. Galley, S. Briest, and L. Galley, “Blinks and sac-
cades as indicators of fatigue in sleepiness warnings: looking tired?”
Ergonomics, vol. 51, no. 7, pp. 982–1010, 2008.

[9] J. W. Muttart, “Quantifying driver response times based upon research
and real life data,” in 3rd International Driving Symposium on Human
Factors in Driver Assessment, Training, and Vehicle Design, vol. 3,
2005, pp. 8–29.

[10] A. A. Lenskiy and J.-S. Lee, “Drivers eye blinking detection using
novel color and texture segmentation algorithms,” International Journal
of Control, Automation and Systems, vol. 10, no. 2, pp. 317–327, 2012.

[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1. IEEE, 2001, pp. I–511.

[12] P. I. Wilson and J. Fernandez, “Facial feature detection using haar
classifiers,” Journal of Computing Sciences in Colleges, vol. 21, no. 4,
pp. 127–133, 2006.

[13] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Computational learning
theory. Springer, 1995, pp. 23–37.

[14] J. Canny, “A computational approach to edge detection,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, no. 6, pp. 679–698,
1986.

[15] S. Suzuki et al., “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32–46, 1985.

[16] A. Rosenfeld and A. C. Kak, Digital picture processing. Elsevier, 1982,
vol. 2.

[17] R. M. Rangayyan, Biomedical image analysis. CRC press, 2004.
[18] A. W. Fitzgibbon, R. B. Fisher et al., “A buyer’s guide to conic fitting,”

DAI Research paper, 1996.
[19] K.-i. Kanatani, “Statistical bias of conic fitting and renormalization,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, no. 3, pp. 320–326, 1994.

[20] C. Pujara, A. Modi, G. Sandeep, S. Inamdar, D. Kolavil, and V. Tholath,
“H. 264 video decoder optimization on arm cortex-a8 with neon,” in
India Conference (INDICON), 2009 Annual IEEE. IEEE, 2009, pp.
1–4.


