
Achieving Efficient Access Control via XACML
Policy in Cloud Computing

Abstract—One primary challenge of applying access control
methods in cloud computing is to ensure data security while
supporting access efficiency, particularly when adopting multiple
access control policies. Many existing works attempt to propose
suitable frameworks and schemes to solve the problems, however,
these proposals only satisfy specified use cases. In this paper, we
take XACML as the policy language and build up a logical model.
Based on this, we introduce the fine-grained data fragment
algorithm to optimize the policies, whose resource property
represents physical meaningful data blocks. Data are organized
in a tree structure, where each leaf node represents a minimal
physical meaningful data block, and internal nodes are combined
data types. This method can eliminate conflicts and redundancies
among rules and policies, thus to refine the policy set and achieve
fine-grained access control. Our approach can also be applied to
processing multi-types of data, and experiments are carried out
to show the improvements of efficiencies.

Keywords-Access control; Policy optimization; Data fragment;
XACML; cloud computing

I. INTRODUCTION

In the last several years, cloud computing brings us great
convenience on data outsourcing by providing nearly unlimited
storage resources on demand [1]. This allows content providers
to create, manage, and control the personal data remotely with
high efficiency. Moreover, the charge manner of cloud service
is pay-as-you-use which costs relatively lower prices compared
with self-maintenance. As promising as it is, cloud storage
service also involves many challenges [2], such as the problems
of fine-grained access control on multiple data types and the
confidentiality of private data. The traditional access control
methods are only applicable to rigid data objects, and the
policy decision on a request results in either permit or deny.

Motivated by the requirements of high performance and
flexible access control, XACML (eXtensible Access Control
Mark-up Language) [3] is proposed to solve data access
problem in cloud computing. XACML is an XML-based
language, and it contains a hierarchical logic model which is
applied to a particular decision request in access control
policies for Web applications and Web services. Meanwhile,
XACML offers a large set of built-in functions, data types,
combining algorithms, and standard profiles for defining
application-specific features. There are lots of prior works on
applying XACML as access control policy, which focus on
policy attesting, conflict detection and policy optimization, etc.

Mont and Pearson propose the ‘sticky policy’ based on
XACML to facilitate access control for outsourced data [4] [5],
and Trabelsi extends this policy to the cloud environment [6].
However, their proposals only focus on the system framework
and the shared data is considered in a single type. Hu and Ahn
introduce a description logic (DL)-based policy management
approach for Web access control policies, they adopt Answer
Set Programming (ASP) to formulate XACML [7], and they
further propose a method for conflict detection and resolution
in [8]. However, DL cannot fully cover XACML semantics,
and it fails to handle complex comparisons, multi-type of
decisions as well as combining algorithms. Wang and Feng
propose a rule redundant elimination method based on related
types of hierarchical attributes tree and provide an XACML
policy optimization engine [9], but the access efficiency
depends on the amount of rules. Said and Shehab propose a
framework for policy evaluation [10], and Lin and Rao
suggest a similarity measurement technique among policies
[11]. Meanwhile, Bertolino and Daoudagh propose an
automated testing method for XACML [12]. Their works are
worth well in policy attesting and measurement, but they do
not achieve a practical scheme for optimizing policy with
consideration of fine-grained access control. Many practical
models of XACML are built in [13] [14] [15], but these
models are not considerate in decision efficiency, especially
for large scale of policies.

Compared with existing policy models, XACML is more
comprehensive and intuitive for applying to cloud access
control. In this paper, we analyze the logic model of XACML
by taking account of all its components and internal functions.
Based on this model, we propose the data fragmentation and
policy refinement algorithms via building up a three-layers
resource access tree, so as to achieve fine-grained access
control over multi-types of outsourced data. In the end, we
discuss a case study on healthcare records management, and
the performances are illustrated by experiments using
XACML tools.

II. XACML ANALYSIS

XACML is standardized by the Organization for the
Advancement of Structured Information Standards (OASIS) in
2003. In XACML, the complete policy applicable to a
particular decision might be composed of a number of
individual rules, policies and policy sets, in which there exists
a target expression as the criteria for incoming requests, and

Xin Pei, Huiqun Yu, Guisheng Fan
Department of Computer Science and Engineering
East China University of Science and Technology

Shanghai 200237, China
Email: yhq@ecust.edu.cn

(DOI Reference Number: 10.18293/SEKE2015-037)

all these elements are organized in a hierarchical order [16].
To render an authorization, it must be possible to combine
multi-rules to form the single decision applied to the request,
and the final decision is either made by the rule ‘effect’ or the
combined decisions of children rules and policies.

A. XACML elements

We define the main elements policy set, policy, rule, target,
request, effect and combining algorithm (CA for short) of
XACML syntax as follows, where the values
' ' , ' ' , ' ', ' 'PO DO FA OOA represent for ‘permit-override’,
‘deny-override’, ‘first-applicable’ and ‘only-one-applicable’,
respectively.

*

:: ,{ | } ,

:: ,{ } ,

:: , , ,

:: { _ , _ , _ }

:: { _ ,

Policyset target Policyset Policy CA

Policy target rule CA

rule target effect condition obligation

target attr type attr value match id

request attr type





       

     

       

      

   _ }

:: ' ' | ' '

:: ' ' | ' ' | ' ' | ' '

attr value

effect permit deny

CA PO DO FA OOA

 





Additionally, XACML extends the decision values by
appending two extra status ‘not-applicable’ and
‘indeterminate’, based on the previous policy languages with
only ‘permit’ and ‘deny’. The status ‘not-applicable’
represents that the request does not match any rule in the
designated policy, while ‘indeterminate’ indicates errors in the
matching procedure (e.g., The request does not match a
‘critical’ attribute in the target).

B. Decision principles

We describe the principles of XACML to make a decision.
On receiving a request, the policy decision point (PDP)
executes target matching and results MR in the set

{' ', ' ', ' '}MRV T F IN , representing ‘match’, ‘un-match’ and

‘indeterminate’ respectively. If this matching procedure
happens in a rule, it leads to a decision according to the rule
‘effect’ and MR. Otherwise, if the target matching belongs to a
policy or policy set, the final decision is integrated by the
combining algorithm affecting on children rules and policies.

We denote a user request as a vector 1 2{ , ,..., }nreq a a a ,

each ia in req is an attribute value which belongs to the

attribute type iA pre-defined in XACML. The principles are
listed as below.

1) Target matching. The connection of elements in a
target can be either ‘AllOf’ or ‘AnyOf’, which indicates the
operations of AND | OR.

Assume a request matches with K elements in the target,
formally, 1 2() : ... K MRreq K A A A V    . The ‘AllOf’
property performs as in (1), and the ‘AnyOf’ property performs
as in (2).

1 2
1

, [1,],

... , [1,],

,

iK

i K i
i

T if i K m T

m m m m F if i K m F

IN error


  


       





(1)

1 2
1

, [1,],

... , [1,],

,

iK

i K i
i

T if i K m T

m m m m F if i K m F

IN error


  


       



 (2)

2) Rule decision. Regardless of obligation property, a
rule can be abbreviated as (, ,)rule t e c , where t, e, c are ‘target’,
‘effect’ and ‘condition’. The effect domain of a rule is

{' ', ' '}E permit deny . The condition is a list of constraints
that request must satisfy, and it shares the same matching
result domain MRV with target. We denote the rule decision

domain as {' ', ' ', ' ', ' '}DV P D N IN , corresponding to ‘Permit’,
‘Deny’, ‘Not-applicable’ and ‘Indeterminate’ respectively.
Thus, the mapping of rule decision domain can be represented
as (, ,) : MR MR Drule t e c V E V V   , and the decision is
illustrated in (3).

' '

' '
(, ,)

P if t c T and e permit

D if t c T and e deny
rule t e c

N if t c F

IN error

  


  
 

 


 (3)

3) Policy/Policy set decision. Denoting a policy as

 , ({ })policy t CA rule  and a policy set as

 , ({ | })policyS t CA policy policyS  . The combing algorithms

is a set {' ' , ' ' , ' ', ' '}CA PO DO FA OOA that operates on

decision domain DV , it combines all the decisions made by
children rules and policies into one final decision. Formally,
let S be a set, () :{ }S

D DCA S V V . Therefore, the policy and
policy set are similar and can be formalized as

 , () : MR D Dpolicy t CA S V V V  . According to different

combing algorithms, the policy and policy set decision are
concluded in (4).

 

()

, () ()

CA S if t T

policy t CA S N if t F or t IN and CA S N

IN if t IN




   
 

 (4)

C. A sample XACML

Fig. 1 illustrates a simple XACML policy example P1,
containing three rules r1, r2, r3. In this figure, we use brief
XML syntax to describe the policy rather than standard
XACML format. The resource property in rules reflects to
physical data, and the algorithm is mainly constructed on the
resource dimension. In this policy, four resources RS1, RS2,
RS3 and RS4 are considered, and they have intersections on
which rules may conflict and have redundancies.

<policy policyID="P1" CA="Deny-Overrides">
<target>
 <Actions>Read, Write</Actions>
</target>
<Rule RuleID="r1" Effect="Permit">

<target>
 <Subjects>Alice, Bob</Subjects>
 <Resources>RS1, RS2</Resources>

 <Actions>Read, Write</Actions>
</target>
<Condition> 8:00<= Time <=12:00 </Condition>

</Rule>
<Rule RuleID=" r2" Effect="Permit">

<target>
<Subjects>Bob</Subjects>

 <Resources>RS4</Resources>
 <Actions>Read</Actions>

</target>
</Rule>
<Rule RuleID=" r3" Effect="Deny">

<target>
 <Subjects> Bob, Jim</Subjects>
 <Resources>RS2, RS3</Resources>
 <Actions>Write</Actions>

</target>
<Condition>9:00<= Time <=15:00 </Condition>

</Rule>
</policy>

Figure 1. A simple XACML example.

We can formalize the rules into Boolean expressions, for
example, r1 is illustrated in (5).

 

 

 

 

1
' ' ' '

='RS1' 'RS2'

' ' ' '

rBoolExpression Subject Alice Bob

Resource

Action Read Change

AnyCondition

  

 

  



 (5)

Assuming a user Bob makes a request for writing to RS2 at
10:00 am. Formally, (' ', 'RS2',req Subject Bob Resource  -

' ', '10 : 00 .')Action Write Condition am  . On execution, the
target of P1 matches the request and returns T. Then, r1 checks
its target and conditions, and gives out the ‘permit’ decision as
defined in effect. However, it continues to match the next rules
because the CA of parent policy P1 is ‘Deny-override’.
Accordingly, r2 does not match the request (outputs ‘N’ as not-
applicable) while r3 returns ‘deny’ as its rule decision. Finally,
the policy combines the three results and gives the ‘deny’
decision according to its CA.

III. FINE-GRAINED POLICY OPTIMIZATION ALGORITHM

In this section, we introduce a data fragment algorithm for
resource isolation and policy refinement. We build up a three-
layer structure of resources, and map the effective policies to
each leaf data node so that fine-grained access control is
achieved.

A. Data fragmentation

Firstly, we give the definition of Disjoint set, based on
which we execute the policy projection algorithm.

Definition 1(Disjoint set) Let { }1 2 nS s ,s ,...,s be a resource

set. If  : ,i jres res s res s   and any operation on is will not

affect ()js i j , S is a disjoint set.

Taking the XACML policy in Fig. 1 as example, the four
resources (RS1, RS2, RS3, RS4) intersect with each other as
shown in Fig. 2. In order to obtain a disjoint resource set

(1, 2, 3, 4, 5, 6) ,RS s s s s s s we introduce the data fragment
algorithm in Algorithm 1.

RS3

RS1 RS2 RS4

s1

s2

s3 s4

s5

s6

Figure 2. Relationship of resources.

Algorithm 1: Data fragment algorithm

// INPUT: a policy.
// OUTPUT: a disjoint set.
Project(policy)

for each resGetResources(policy) do

for each sRS do
if res s then

RS.add(s\res);
RS.replace(s, res); break;

else if res s then
RS.replace(res, res\s); break;

 else if res s  then

 RS.add(s\res);
 RS.replace(s, res s);
 RS.replace(s,s\res);break;
RS.add(res);

Return the resource segment set RS;

B. Policy refinement

We build up a three-layer resource tree, in which the
physical layer contains all the segments in a disjoint set, while
the original policy effects on the logical layer. As shown in
Fig. 3, RS1, RS2, RS3 and RS4 relate to (r1), (r1 , r3), (r3) and
(r2), respectively. Based on this structure, we can assign rules
to each resource segment in consistency with the original
policy and refine policy on segment level.

s1 s2 s3 s4 s5 s6

RS1 RS2

RS3

RS4

ROOT

Logical layer

Physical layer

Service layer

(policy layer) P1

r1 r1,r3 r2

r3

Figure 3. Resource tree.

We define the notation of rule overlap (denoting ‘target
matching’ as ‘ | ’) and several RULEs used in the procedure
of policy refinement.

Definition 2 (Rule overlap). On a single resource segment, let

ir , jr be two parallel rules. If : ,| |i jreq req r req r   , then

ir overlaps with jr (denoted by i jr r), and the overlapped part

is a rule pair ,i jr r , consisting of
ir

 and
jr . Further, if i jr r

and . .i jr effect r effect , then
i jr r   .

If deleting
ir

 (
jr) does not affect the final decision, then

ir
 (

jr) is removable in this policy. The following RULEs

expound principles of removing redundant rules under
different combining algorithms.

RULE 1 (CA = Permit-Override)
If i jr r and .ir effect permit , then

jr is removable.

If i jr r and .ir effect deny , then
ir

 is removable.

RULE 2 (CA = Deny-Override)
If i jr r and .ir effect deny , then

jr is removable.

If i jr r and .ir effect permit , then
ir

 is removable.

RULE 3 (CA = First-Applicable)
Assuming the sequence of r in policy is ()seq r .

If i jr r and () ()i jseq r seq r , then
jr is removable.

If i jr r and () ()i jseq r seq r , then
ir

 is removable.

RULE 4 (CA = Only-One-Applicable)
If request on ,i jr r , the decision is ‘Not Applicable’.

If i jr r , remove
ir

 and
jr .

The proofs of above RULEs are similar, and we takes
RULE 1 for example, as shown in Fig. 4.

Proof
 i jr r  , : ,

i j i jr r r i r jr r     .

If .ir effect permit , while the CA is Permit-Overrides,
jr will be

shielded by
ir

 , no matter .jr effect is either ‘permit’ or ‘deny’. Thus,

removing
jr will not affect the decision, and

jr is removable.

If .ir effect deny , and if .jr effect deny , according to the

Definition 2, we have
i jr r   , remove any one of them is fine. However, if

.jr effect permit , and CA is Permit-Overrides, so
ir

 will be shielded

by
jr . Thus, in both conditions, removing

ir
 will not affect the decision,

and
ir

 is removable.

Figure 4. Proof of RULE 1.

According to these RULEs, we propose the policy
refinement algorithm, as illustrated in Algorithm 2. During the
refining procedure, policy is projected to the physical layer,
and rules might be refined, removed or kept still.

Algorithm 2:Policy refinement

// INPUT: a set of segments bound with rules, the policy CA.
// OUTPUT: refined set of resource segment.
Refine(G, CA)

for each ruleGetRule(policy) do //bind rules to segment
for each sS do

ifsGetRelatedResource(rule) then
bind(rule, s);

 G S with bound rules on each element;
 for each gG do //refine rules on each segment

for each pair(,i jr r)
2
ruleSetC do

if i jr r then

coupleSet.add(
,i jr r); //overlap of ,i jr r

for each
,i jr r coupleSet do

 case CA= Permit-override then
 Execute by RULE 1;
 case CA = Deny-override then
 Execute by RULE 2;

case CA = First-applicable then
 Execute by RULE 3;

case CA = Only-one-applicable then
 Execute by RULE 4;

Return the refined set G;

As for the situation of refining a policy set, the algorithm
could be specified recursively for each children policy.

C. Algorithm performance analysis

We analyze the fine-grained policy optimization algorithm
on computation overhead and storage overhead. Basically, we
suppose that a policy P contains K rules, N resources and M
resource segments, which are generated by the data fragment
algorithm, and on each segment i, there exist Hi rules and Ci
conflicts.

1) Computation overhead
In the data fragment algorithm, it costs 2(log)O N M to

obtain resource segmentation set, where M varies upon the
coupling degree among resources.

Nonetheless, in the procedure of policy refinement, the
cost of policy projection is ()O KM , which is decided by the

number of segments ii M
s

 and related rules kk K
r

 . The

overhead of refining an individual segment relies on finding
rule conflict pairs, which contributes to 2(log)i iO H H , while

resolving rule conflicts takes ()iO L . Thus, the complexity of
refining a resource segment set is the accumulation of cost on
each element, resulting in 2()logi i ii M

H H LO


 .

Finally, the computation overhead of our approach is

2 2(log l(og))i i ii M
O N M KM H H L


   .

2) Storage overhead
We define the function ()W R to measure the physical

storage size. When we execute the algorithm, the overhead of

storage is  () ()i i ii M i M
W R H W rule

 
    .

Our approach advances in storage compared with original
policies. In original policy, each resource is considered as a

single entity, and the total size of all resources is
1

()
N

ii
W R

 .

However, by developing the relationship among resources, we
extract the common parts of resources. As a result, the storage
size is reduced by

1 1
() ()

N M

i ii i
W R W S

 
  .

IV. A CASE STUDY

The policy based access control methods can be applied in
many fields such as banking, healthcare, ATM and market etc.
to achieve data security and user privacy [17] [18] [19]. We
apply the fine-grained policy optimization algorithm to data
access control in cloud computing, and Fig. 5 describes the
framework of a healthcare records management system.

Data

Policy

Users

Envelope

Cloud StorageCloud Serice

Cloud

Patiemt

Attributes and keys

Formulated requests

Trusted Authority (TA)

PEP

Request

PDP

Data
Decision

AA

Attribute
Center

Certificate
Center

CA
Inform

Confirm

Figure 5. Application scenario on healthcare system.

Assume that Alice is a patient, and she has well processed
her private healthcare record with policies before outsourcing
to the cloud. Bob is medical researcher in university, and he
needs patient’s health records for study. Once Bob requests to

cloud for the statistics with his identity and public attributes,
the cloud transforms the request into expressive XML format
and sends it to the TA. Then, the PDP in TA makes the
decision according to the defined policies and inform Alice of
the result. Upon receiving Alice’s acknowledgement, TA
sends the decryption key to Bob through secure channels.
Thus, Bob can have access to Alice private data under the
conditions defined in the policies.

To evaluate the performance of our proposal, we utilize the
policies with different amount of rules, different coupling
degree of rules and resources. The coupling of rules leads to a
certain number of conflicts, and the coupling of resources
decides the number of resource segments. Our experiments
were founded on the API of SUN-XACML and performed on
Intel(R) Core(TM) i3-2330M CP U 2.30 GHz with 2.67-GB
RAM running on Win7.

We generate synthetic policies for most situations and
compare the decision efficiency with the existing methods,
Simple PDP [3] and Melcoe PDP [20]. The Simple PDP
adopts a list structure to traverse rules for matching, and
Melcoe PDP employs category of data attributes. The statistics
of two representative situations are listed in Table I and Table
II. We use a triple <Few/Many, Few/Many, Few/Many> to
simply express the amount of rules, conflicts and segments.
Fig. 6 illustrates the experiment results of all the situations.

TABLE I. DECISION EFFICIENCY UNDER <FEW, FEW,FEW>

Policy parameters PDPs evaluation (ms)
Policy# Rule# Res# Seg# Simple PDP Melcoe PDP Our PDP

10 20 60 62 33.8608 26.7024 63.3365
20 40 60 62 51.6174 41.0145 65.0015
30 60 60 62 67.3090 54.8726 69.1087
40 80 60 62 82.0385 69.2740 75.7588
50 100 60 62 98.6908 81.0534 83.5972

(a) < Few, Few, Few > (b) <Many, Few, Few> (c) < Few, Few, Many> (d) <Many, Few, Many>

(e)< Few, Many, Few > (f)<Many, Many, Few> (g) < Few, Many, Many> (h)<Many, Many, Many>

Figure 6. Efficiency Impacts on amount of rules, conflicts and resource intersections.

TABLE II. DECISION EFFICIENCY UNDER <MANY, MANY,MANY >

Policy parameters PDPs evaluation (ms)
Policy# Rule# Res# Seg# Simple PDP Melcoe PDP Our PDP

10 300 60 155 276.5745 244.7562 135.6794
20 600 60 155 620.4870 509.0062 172.6407
30 900 60 155 1043.7546 761.0980 197.6577
40 1200 60 155 1319.8039 1117.6535 231.5092
50 1500 60 155 1602.8325 1259.0271 253.2671

Through the experiments, we conclude that the decision
efficiencies of Simple PDP and Melcoe PDP depend on the
amount of rules, with little concerning about the coupling
degree of rules and resources. In the contrast, our approach has
great advantages in the situation of large amount of rules. We
also exceed traditional methods in multi-resource requests,
since the redundancies of data are eliminated in the
segmentation phase.

V. CONCLUSION

We have proposed an innovative mechanism of facilitating
data security for cloud resource service. The fine-grained
policy optimization algorithm projects the policy to the
resource dimension, and refines rule on each individual
resource segment. We can encrypt the sensitive data and attach
sticky policy to ensure that the data is processed or handled
according to customers’ willing.

The fragmentation of resource decomposes data into
obfuscated segments to protect the physical entities, while
available services are provided in service layer and logical
layer. Cloud users may request resources by names, without
knowing the components or physical locations of the resources,
and they can only get those identity-permitted data. We have
discussed the performance of our proposal, in terms of the
amount of rules, conflicts and segments. Through the
experiment, we conclude that our approach has great
advantages in large scale of policies.

We would develop a prototype and explore how our
strategy can be applied to other fields concerning about access
control and security.

ACKNOWLEDGMENT

This work was partially supported by the NSF of China
under grants No. 61173048 and No. 61300041, Specialized
Research Fund for the Doctoral Program of Higher Education
under grant No. 20130074110015, and the Fundamental
Research Funds for the Central Universities under Grant
No.WH1314038.

REFERENCES
[1] W. Jansen and T. Grance, “Guidelines on Security and Privacy in Public

Cloud Computing”, NIST Special Publication, pp. 800-144, 2011.

[2] H. Takabi, J. Joshi, and G. J. Ahn, “Security and privacy challenges in
cloud computing environments”, IEEE Security and Privacy, vol. 6, no.
6, pp. 24-31, 2010.

[3] S. Godik and T. Moses, “eXtensible Access Control Markup Language
(XACML) Version1.1”, OASIS, 2003.

[4] M. Mont, S. Pearson, and P. Bramhall, “Towards accountable
management of identity and privacy: sticky policies and enforceable
tracing services”, Database and Expert Systems Applications (DESA),
pp. 377-382, 2003.

[5] S. Pearson and M. Mont, “Sticky policies: an approach for managing
privacy across multiple parties”, IEEE Computer, vol. 44, no. 9, pp. 60-
68, 2011.

[6] S. Trabelsi and J. Sendor, “Sticky policies for data control in the cloud”,
IEEE PST, pp. 75-80, 2012.

[7] G. Ahn, H.. Hu, J. Lee, and Y. Meng, “Representing and reasoning
about web access control policies”, IEEE Software and Applications, pp.
137-146, 2010.

[8] H. Hu and G. Ahn, “Discovery and resolution of anomalies in web
access control policies”, IEEE Dependable and Secure Computing, vol.
10, no. 6, pp. 341-354, 2013.

[9] Y. Wang, D. Feng, and L. Zhang, “XACML policy evaluation engine
based on multi-level optimization technology”, Journal of Software, vol.
22, no. 2, pp. 323−338, 2011.

[10] M. Said, M. Shehab, and S. Anna, “Adaptive reordering and clustering-
based framework for efficient XACML policy evaluation”, IEEE
Service Computing, vol. 4, no. 4, pp. 300-313, 2011.

[11] D. Lin, P. Rao, R. Ferrini, and E. Bertino, “A similarity measure for
comparing XACML policies”, IEEE Knowledge and Data Engineering,
vol. 25, no. 9, pp. 1946-1959, 2013.

[12] A. Bertolino, S. Daoudagh, and F. lonetti, “Automated testing of
eXtensible Access Control Markup Language-based access control
systems”, IET Software, vol. 7, no. 4, pp. 203-212, 2013.

[13] D. Agrawal, J. Giles, K. W. Lee, and J. Lobo, “Policy ratification”, IEEE
Policies for Distributed Systems and Networks, pp. 223-232, 2005.

[14] X. Wu and P. Qian, “A verification for PDAC model by policy
language”, ICCSE, pp. 14-17, 2012.

[15] G. Bruns, D. Dantas, and M. Huth, “A simple and expressive
semanticframework for policy composition in access control”, Formal
methods in Security Engineering, ACM, pp. 12-21, 2007.

[16] C. Ngo, Y. Demchenko, and C. D. Laat, “Decision Diagrams for
XACML PolicyEvaluation and Management”, Computers & Security,
vol. 49, no. 1, pp. 1-16, 2015.

[17] M. Ghorbel, A. Aghasaryan, and M. P. Dupont, “A multi-environment
application of privacy data envelopes”, Policies for Distributed Systems
and Networks, pp. 180-181, 2011.

[18] M. Li, S. Yu, and Y. Chen, “Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption”,
IEEE Parallel and Distributed Systems, vol. 24, no. 1, 131-143, 2013.

[19] Asela, “Banking sample with XACML”,
http://xacmlinfo.org/2014/03/11/atm-banking-sample-with-xacml/, 2014.

[20] Jajodia and P. Samarat, “A logical language for expressing
authorizations”, IEEE Security and Privacy, pp. 31-42, 1997.

http://xacmlinfo.org/author/xacmlinfo/

