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Abstract—One primary challenge of applying access control 
methods in cloud computing is to ensure data security while 
supporting access efficiency, particularly when adopting multiple 
access control policies. Many existing works attempt to propose 
suitable frameworks and schemes to solve the problems, however, 
these proposals only satisfy specified use cases. In this paper, we 
take XACML as the policy language and build up a logical model. 
Based on this, we introduce the fine-grained data fragment 
algorithm to optimize the policies, whose resource property 
represents physical meaningful data blocks. Data are organized 
in a tree structure, where each leaf node represents a minimal 
physical meaningful data block, and internal nodes are combined 
data types. This method can eliminate conflicts and redundancies 
among rules and policies, thus to refine the policy set and achieve 
fine-grained access control. Our approach can also be applied to 
processing multi-types of data, and experiments are carried out 
to show the improvements of efficiencies. 

Keywords-Access control; Policy optimization; Data fragment; 
XACML; cloud computing 

I. INTRODUCTION 

In the last several years, cloud computing brings us great 
convenience on data outsourcing by providing nearly unlimited 
storage resources on demand [1]. This allows content providers 
to create, manage, and control the personal data remotely with 
high efficiency. Moreover, the charge manner of cloud service 
is pay-as-you-use which costs relatively lower prices compared 
with self-maintenance. As promising as it is, cloud storage 
service also involves many challenges [2], such as the problems 
of fine-grained access control on multiple data types and the 
confidentiality of private data. The traditional access control 
methods are only applicable to rigid data objects, and the 
policy decision on a request results in either permit or deny. 

Motivated by the requirements of high performance and 
flexible access control, XACML  (eXtensible Access Control 
Mark-up Language) [3] is proposed to solve data access 
problem in cloud computing. XACML is an XML-based 
language, and it contains a hierarchical logic model which is 
applied to a particular decision request in access control 
policies for Web applications and Web services. Meanwhile, 
XACML offers a large set of built-in functions, data types, 
combining algorithms, and standard profiles for defining 
application-specific features. There are lots of prior works on 
applying XACML as access control policy, which focus on 
policy attesting, conflict detection and policy optimization, etc. 

Mont and Pearson propose the ‘sticky policy’ based on 
XACML to facilitate access control for outsourced data [4] [5], 
and Trabelsi extends this policy to the cloud environment [6]. 
However, their proposals only focus on the system framework 
and the shared data is considered in a single type. Hu and Ahn 
introduce a description logic (DL)-based policy management 
approach for Web access control policies, they adopt Answer 
Set Programming (ASP) to formulate XACML [7], and they 
further propose a method for conflict detection and resolution 
in [8]. However, DL cannot fully cover XACML semantics, 
and it fails to handle complex comparisons, multi-type of 
decisions as well as combining algorithms. Wang and Feng 
propose a rule redundant elimination method based on related 
types of hierarchical attributes tree and provide an XACML 
policy optimization engine [9], but the access efficiency 
depends on the amount of rules. Said and Shehab propose a 
framework for policy evaluation [10], and Lin and Rao 
suggest a similarity measurement technique among policies 
[11]. Meanwhile, Bertolino and Daoudagh propose an 
automated testing method for XACML [12]. Their works are 
worth well in policy attesting and measurement, but they do 
not achieve a practical scheme for optimizing policy with 
consideration of fine-grained access control. Many practical 
models of XACML are built in [13] [14] [15], but these 
models are not considerate in decision efficiency, especially 
for large scale of policies.  

Compared with existing policy models, XACML is more 
comprehensive and intuitive for applying to cloud access 
control. In this paper, we analyze the logic model of XACML 
by taking account of all its components and internal functions. 
Based on this model, we propose the data fragmentation and 
policy refinement algorithms via building up a three-layers 
resource access tree, so as to achieve fine-grained access 
control over multi-types of outsourced data. In the end, we 
discuss a case study on healthcare records management, and 
the performances are illustrated by experiments using  
XACML tools. 

II. XACML ANALYSIS 

XACML is standardized by the Organization for the 
Advancement of Structured Information Standards (OASIS) in 
2003. In XACML, the complete policy applicable to a 
particular decision might be composed of a number of 
individual rules, policies and policy sets, in which there exists 
a target expression as the criteria for incoming requests, and 
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all these elements are organized in a hierarchical order [16]. 
To render an authorization, it must be possible to combine 
multi-rules to form the single decision applied to the request, 
and the final decision is either made by the rule ‘effect’ or the 
combined decisions of children rules and policies.  

A. XACML elements 

We define the main elements policy set, policy, rule, target, 
request, effect and combining algorithm (CA for short) of 
XACML syntax as follows, where the values
' ' , ' ' , ' ', ' 'PO DO FA OOA represent for ‘permit-override’, 
‘deny-override’, ‘first-applicable’ and ‘only-one-applicable’, 
respectively.
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Additionally, XACML extends the decision values by 
appending two extra status ‘not-applicable’ and 
‘indeterminate’, based on the previous policy languages with 
only ‘permit’ and ‘deny’. The status ‘not-applicable’ 
represents that the request does not match any rule in the 
designated policy, while ‘indeterminate’ indicates errors in the 
matching procedure (e.g., The request does not match a 
‘critical’ attribute in the target). 

B. Decision principles 

We describe the principles of XACML  to make a decision. 
On receiving a request, the policy decision point (PDP) 
executes target matching and results MR in the set

{' ', ' ', ' '}MRV T F IN , representing ‘match’, ‘un-match’ and 

‘indeterminate’ respectively. If this matching procedure 
happens in a rule, it leads to a decision according to the rule 
‘effect’ and MR. Otherwise, if the target matching belongs to a 
policy or policy set, the final decision is integrated by the 
combining algorithm affecting on children rules and policies.  

We denote a user request as a vector 1 2{ , ,..., }nreq a a a , 

each ia in req  is an attribute value which belongs to the 

attribute type iA pre-defined in XACML. The principles are 
listed as below. 

1) Target matching. The connection of elements in a 
target can be either ‘AllOf’ or ‘AnyOf’, which indicates the 
operations of AND | OR. 

Assume a request matches with K elements in the target, 
formally, 1 2( ) : ... K MRreq K A A A V    . The ‘AllOf’ 
property performs as in (1), and the ‘AnyOf’ property performs 
as in (2). 
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2) Rule decision. Regardless of obligation property, a 
rule can be abbreviated as ( , , )rule t e c , where t, e, c are ‘target’, 
‘effect’ and ‘condition’. The effect domain of a rule is

{' ', ' '}E permit deny . The condition is a list of constraints 
that request must satisfy, and it shares the same matching 
result domain MRV with target. We denote the rule decision 

domain as {' ', ' ', ' ', ' '}DV P D N IN , corresponding to ‘Permit’, 
‘Deny’, ‘Not-applicable’ and ‘Indeterminate’ respectively. 
Thus, the mapping of rule decision domain can be represented 
as ( , , ) : MR MR Drule t e c V E V V   , and the decision is 
illustrated in  (3). 

' '

' '
( , , )

P if t c T and e permit

D if t c T and e deny
rule t e c

N if t c F

IN error

  


  
 

 


           (3) 

3) Policy/Policy set decision. Denoting a policy as 

 , ({ } )policy t CA rule  and a policy set as 

 , ({ | } )policyS t CA policy policyS  . The combing algorithms 

is a set {' ' , ' ' , ' ', ' '}CA PO DO FA OOA that operates on 

decision domain DV , it combines all the decisions made by 
children rules and policies into one final decision. Formally, 
let S be a set, ( ) :{ }S

D DCA S V V . Therefore, the policy and 
policy set are similar and can be formalized as 

 , ( ) : MR D Dpolicy t CA S V V V  . According to different 

combing algorithms, the policy and policy set decision are 
concluded in (4). 

 

( )

, ( ) ( )

CA S if t T

policy t CA S N if t F or t IN and CA S N

IN if t IN




   
 

  (4) 

C. A sample XACML 

Fig. 1 illustrates a simple XACML policy example P1, 
containing three rules r1, r2, r3. In this figure, we use brief 
XML syntax to describe the policy rather than standard 
XACML format. The resource property in rules reflects to 
physical data, and the algorithm is mainly constructed on the 
resource dimension. In this policy, four resources RS1, RS2, 
RS3 and RS4 are considered, and they have intersections on 
which rules may conflict and have redundancies. 

 



<policy policyID="P1" CA="Deny-Overrides"> 
<target> 
 <Actions>Read, Write</Actions> 
</target> 
<Rule RuleID="r1" Effect="Permit"> 

<target> 
 <Subjects>Alice, Bob</Subjects> 
 <Resources>RS1, RS2</Resources> 

 <Actions>Read, Write</Actions> 
</target> 
<Condition> 8:00<= Time <=12:00 </Condition> 

</Rule> 
<Rule RuleID=" r2" Effect="Permit"> 

<target> 
<Subjects>Bob</Subjects> 

 <Resources>RS4</Resources> 
 <Actions>Read</Actions> 

</target> 
</Rule> 
<Rule RuleID=" r3" Effect="Deny"> 

<target> 
 <Subjects> Bob, Jim</Subjects> 
 <Resources>RS2, RS3</Resources> 
 <Actions>Write</Actions> 

</target> 
<Condition>9:00<= Time <=15:00 </Condition> 

</Rule> 
</policy> 

Figure 1. A simple XACML example. 

We can formalize the rules into Boolean expressions, for 
example, r1 is illustrated in (5). 
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 

 

 

1
' ' ' '
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' ' ' '

rBoolExpression Subject Alice Bob

Resource

Action Read Change

AnyCondition

  

 

  



           (5) 

Assuming a user Bob makes a request for writing to RS2 at 
10:00 am. Formally, ( ' ', 'RS2',req Subject Bob Resource  -

' ', '10 : 00 .')Action Write Condition am  . On execution, the 
target of P1 matches the request and returns T. Then, r1 checks 
its target and conditions, and gives out the ‘permit’ decision as 
defined in effect. However, it continues to match the next rules 
because the CA of parent policy P1 is ‘Deny-override’. 
Accordingly, r2 does not match the request (outputs ‘N’ as not-
applicable) while r3 returns ‘deny’ as its rule decision. Finally, 
the policy combines the three results and gives the ‘deny’ 
decision according to its CA. 

III. FINE-GRAINED POLICY OPTIMIZATION ALGORITHM 

In this section, we introduce a data fragment algorithm for 
resource isolation and policy refinement. We build up a three-
layer structure of resources, and map the effective policies to 
each leaf data node so that fine-grained access control is 
achieved. 

A. Data fragmentation 

Firstly, we give the definition of Disjoint set, based on 
which we execute the policy projection algorithm. 

Definition 1(Disjoint set) Let { }1 2 nS s ,s ,...,s be a resource 

set. If  : ,i jres res s res s   and any operation on is will not 

affect ( )js i j , S is a disjoint set. 

Taking the XACML policy in Fig. 1 as example, the four 
resources (RS1, RS2, RS3, RS4) intersect with each other as 
shown in Fig. 2. In order to obtain a disjoint resource set

( 1, 2, 3, 4, 5, 6) ,RS s s s s s s we introduce the data fragment 
algorithm in Algorithm 1. 

RS3

RS1 RS2 RS4

s1

s2

s3 s4

s5

s6

 

Figure 2. Relationship of resources. 

Algorithm 1: Data fragment algorithm 
 

// INPUT: a policy. 
// OUTPUT: a disjoint set. 
Project(policy)  

for each resGetResources(policy) do  

for each sRS do 
if res  s then 

RS.add(s\res); 
RS.replace(s, res); break; 

else if res s then 
RS.replace(res, res\s);  break; 

 else if res s   then 

 RS.add(s\res); 
 RS.replace(s, res s); 
 RS.replace(s,s\res);break; 
RS.add(res); 

Return  the resource segment set RS; 
 

B. Policy refinement 

We build up a three-layer resource tree, in which the 
physical layer contains all the segments in a disjoint set, while 
the original policy effects on the logical layer. As shown in 
Fig. 3, RS1, RS2, RS3 and RS4 relate to (r1), (r1 , r3), (r3) and 
(r2), respectively. Based on this structure, we can assign rules 
to each resource segment in consistency with the original 
policy and refine policy on segment level.  

s1 s2 s3 s4 s5 s6

RS1 RS2

RS3

RS4

ROOT

Logical layer

Physical layer

Service layer

( policy layer ) P1

r1 r1,r3 r2

r3

 
Figure 3. Resource tree. 



We define the notation of rule overlap (denoting ‘target 
matching’ as ‘ | ’) and several RULEs used in the procedure 
of policy refinement. 

Definition 2 (Rule overlap). On a single resource segment, let

ir  , jr  be two parallel rules. If : ,| |i jreq req r req r   , then 

ir overlaps with jr  (denoted by i jr r ), and the overlapped part 

is a rule pair ,i jr r , consisting of
ir

 and
jr . Further, if i jr r

and . .i jr effect r effect , then
i jr r   . 

If deleting 
ir

 (
jr ) does not affect the final decision, then

ir
 (

jr ) is removable in this policy. The following RULEs 

expound principles of removing redundant rules under 
different combining algorithms. 

RULE 1 (CA = Permit-Override) 
If i jr r and .ir effect permit , then 

jr  is removable. 

If i jr r  and .ir effect deny , then 
ir

  is removable. 

RULE 2 (CA = Deny-Override)  
If i jr r and .ir effect deny , then 

jr  is removable. 

If i jr r and .ir effect permit , then 
ir

  is removable. 

RULE 3 (CA = First-Applicable) 
Assuming the sequence of r  in policy is ( )seq r . 

If i jr r and ( ) ( )i jseq r seq r , then
jr  is removable. 

If i jr r and ( ) ( )i jseq r seq r , then
ir

  is removable. 

RULE 4 (CA = Only-One-Applicable) 
If request on ,i jr r , the decision is ‘Not Applicable’. 

If i jr r , remove
ir

 and
jr . 

The proofs of above RULEs are similar, and we takes 
RULE 1 for example, as shown in Fig. 4. 

Proof 
 i jr r  , : ,

i j i jr r r i r jr r     . 

If .ir effect permit , while the CA is Permit-Overrides, 
jr  will be 

shielded by
ir

 , no matter .jr effect  is either ‘permit’ or ‘deny’. Thus, 

removing 
jr  will not affect the decision, and

jr  is removable. 

If .ir effect deny , and if .jr effect deny , according to the 

Definition 2, we have
i jr r   , remove any one of them is fine. However, if

.jr effect permit , and CA is Permit-Overrides, so 
ir

  will be shielded 

by
jr . Thus, in both conditions, removing

ir
 will not affect the decision, 

and
ir

 is removable. 

Figure 4. Proof of RULE 1. 

According to these RULEs, we propose the policy 
refinement algorithm, as illustrated in Algorithm 2. During the 
refining procedure, policy is projected to the physical layer, 
and rules might be refined, removed or kept still. 

 
Algorithm 2:Policy refinement 

 
// INPUT: a set of  segments bound with rules, the policy CA. 
// OUTPUT: refined set of resource segment. 
Refine(G, CA) 

for each ruleGetRule(policy) do  //bind rules to segment 
for each sS do 

ifsGetRelatedResource(rule) then  
bind( rule, s); 

 G         S with bound rules on each element;   
 for each gG do //refine rules on each segment 

for each pair( ,i jr r )
2
ruleSetC do  

if i jr r  then 

coupleSet.add(
,i jr r ); //overlap of ,i jr r  

for each
,i jr r coupleSet do 

             case CA= Permit-override then  
  Execute by RULE 1; 
             case CA = Deny-override then 
  Execute by RULE 2; 

case CA = First-applicable then 
  Execute by RULE 3; 

case CA = Only-one-applicable then  
  Execute by RULE 4; 

Return the refined set G; 
 

As for the situation of refining a policy set, the algorithm 
could be specified recursively for each children policy. 

C. Algorithm performance analysis 

We analyze the fine-grained policy optimization algorithm 
on computation overhead and storage overhead. Basically, we 
suppose that a policy P contains K rules, N resources and M 
resource segments, which are generated by the data fragment 
algorithm, and on each segment i, there exist Hi rules and Ci 
conflicts. 

1) Computation overhead 
In the data fragment algorithm, it costs 2( log )O N M to 

obtain resource segmentation set, where M varies upon the 
coupling degree among resources. 

Nonetheless, in the procedure of policy refinement, the 
cost of policy projection is ( )O KM , which is decided by the 

number of segments ii M
s

 and related rules kk K
r

 . The 

overhead of refining an individual segment relies on finding 
rule conflict pairs, which contributes to 2( log )i iO H H , while 

resolving rule conflicts takes ( )iO L . Thus, the complexity of 
refining a resource segment set is the accumulation of cost on 
each element, resulting in 2( )logi i ii M

H H LO


 . 

Finally, the computation overhead of our approach is 

2 2( log l( og ))i i ii M
O N M KM H H L


   . 

2) Storage overhead 
We define the function ( )W R  to measure the physical 

storage size. When we execute the algorithm, the overhead of 

storage is  ( ) ( )i i ii M i M
W R H W rule

 
    . 



Our approach advances in storage compared with original 
policies. In original policy, each resource is considered as a 

single entity, and the total size of all resources is
1

( )
N

ii
W R

 . 

However, by developing the relationship among resources, we 
extract the common parts of resources. As a result, the storage 
size is reduced by

1 1
( ) ( )

N M

i ii i
W R W S

 
  . 

IV. A CASE STUDY 

The policy based access control methods can be applied in 
many fields such as banking, healthcare, ATM and market etc. 
to achieve data security and user privacy [17] [18] [19]. We 
apply the fine-grained policy optimization algorithm to data 
access control in cloud computing, and Fig. 5 describes the 
framework of a healthcare records management system. 
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Figure 5. Application scenario on healthcare system. 

Assume that Alice is a patient, and she has well processed 
her private healthcare record with policies before outsourcing 
to the cloud. Bob is medical researcher in university, and he 
needs patient’s health records for study. Once Bob requests to 

cloud for the statistics with his identity and public attributes, 
the cloud transforms the request into expressive XML format 
and sends it to the TA. Then, the PDP in TA makes the 
decision according to the defined policies and inform Alice of 
the result. Upon receiving Alice’s acknowledgement, TA 
sends the decryption key to Bob through secure channels. 
Thus, Bob can have access to Alice private data under the 
conditions defined in the policies. 

To evaluate the performance of our proposal, we utilize the 
policies with different amount of rules, different coupling 
degree of rules and resources. The coupling of rules leads to a 
certain number of conflicts, and the coupling of resources 
decides the number of resource segments. Our experiments 
were founded on the API of SUN-XACML and performed on 
Intel(R) Core(TM) i3-2330M CP U 2.30 GHz with 2.67-GB 
RAM running on Win7.  

We generate synthetic policies for most situations and 
compare the decision efficiency with the existing methods, 
Simple PDP [3] and Melcoe PDP [20]. The Simple PDP 
adopts a list structure to traverse rules for matching, and 
Melcoe PDP employs category of data attributes. The statistics 
of two representative situations are listed in Table I and Table 
II. We use a triple <Few/Many, Few/Many, Few/Many> to 
simply express the amount of rules, conflicts and segments. 
Fig. 6 illustrates the experiment results of all the situations. 

TABLE I.  DECISION EFFICIENCY UNDER <FEW, FEW,FEW> 

Policy parameters PDPs evaluation (ms) 
Policy# Rule# Res# Seg# Simple PDP Melcoe PDP Our PDP 

10 20 60 62 33.8608 26.7024 63.3365 
20 40 60 62 51.6174 41.0145 65.0015 
30 60 60 62 67.3090 54.8726 69.1087 
40 80 60 62 82.0385 69.2740 75.7588 
50 100 60 62 98.6908 81.0534 83.5972 

 
(a) < Few, Few, Few >              (b) <Many, Few, Few>            (c) < Few, Few, Many>                             (d) <Many, Few, Many> 

 
(e)< Few, Many, Few >               (f)<Many, Many, Few>             (g) < Few, Many, Many>                         (h)<Many, Many, Many> 

Figure 6. Efficiency Impacts on amount of rules, conflicts and resource intersections. 



TABLE II.  DECISION EFFICIENCY UNDER <MANY, MANY,MANY > 

Policy parameters PDPs evaluation (ms) 
Policy# Rule# Res# Seg# Simple PDP Melcoe PDP Our PDP 

10 300 60 155 276.5745 244.7562 135.6794 
20 600 60 155 620.4870 509.0062 172.6407 
30 900 60 155 1043.7546 761.0980 197.6577 
40 1200 60 155 1319.8039 1117.6535 231.5092 
50 1500 60 155 1602.8325 1259.0271 253.2671 

Through the experiments, we conclude that the decision 
efficiencies of Simple PDP and Melcoe PDP depend on the 
amount of rules, with little concerning about the coupling 
degree of rules and resources. In the contrast, our approach has 
great advantages in the situation of large amount of rules. We 
also exceed traditional methods in multi-resource requests, 
since the redundancies of data are eliminated in the 
segmentation phase. 

V. CONCLUSION 

We have proposed an innovative mechanism of facilitating 
data security for cloud resource service. The fine-grained 
policy optimization algorithm projects the policy to the 
resource dimension, and refines rule on each individual 
resource segment. We can encrypt the sensitive data and attach 
sticky policy to ensure that the data is processed or handled 
according to customers’ willing.  

The fragmentation of resource decomposes data into 
obfuscated segments to protect the physical entities, while 
available services are provided in service layer and logical 
layer. Cloud users may request resources by names, without 
knowing the components or physical locations of the resources, 
and they can only get those identity-permitted data. We have 
discussed the performance of our proposal, in terms of the 
amount of rules, conflicts and segments. Through the 
experiment, we conclude that our approach has great 
advantages in large scale of policies. 

We would develop a prototype and explore how our 
strategy can be applied to other fields concerning about access 
control and security. 
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