
Using peak analysis for identifying lagged effects

between software metrics

Josée Tassé

Dept. of Computer Science and Applied Statistics

University of New Brunswick, Saint John campus

Saint John, New Brunswick, Canada

jtasse@unbsj.ca

Abstract— Measures extracted from software repositories tend to

be collected on a regular basis (often daily), forming time series

of data. In this context, it is normal to assume that some of the

measures collected are having an effect on other measures,

potentially with some delay (or “lag”) in the effect. Such delay in

the effect may even vary over time, making the identification of

the effect difficult. In this paper, we present our initial ideas on a

simple analysis method for such situation, in which peaks from

the two time series in question are analyzed, and similar ones are

matched.

Keywords-Peak analysis; time series; lagged effect; software

metrics

I. INTRODUCTION

Measures extracted from software repositories tend to be
collected on a regular basis. For example, one could capture the
number of bugs found and the number of bugs fixed every day
or every week. In statistical terms, such sequence of data
collected regularly over time form a time series.

Data are usually kept in this format (time series) only if
they are simply displayed graphically (showing their evolution
over time) or used in statistical control. For other analyses, data
are typically transformed, losing most of their time-related
information. In particular, one might aggregate such measures
into a single one per version or per time segment (e.g., total
number of bugs found, or total number of lines of code
changed, during the development of one version). Then, only
the differences between two consecutive versions or time
segments are used in the analysis. For example, the expected
number of bugs to be found during the development of a
particular version may be predicted based on the number of
lines of code changed in the previous version (and/or other
variables of interest – those are surveyed in [1]). The problem
here is that by limiting the association to only two consecutive
time segments, it is not possible to detect a longer effect (e.g.,
what if a change in the number of lines of code changed was
having an effect up to three releases later?).

What is needed is a way to analyze the metrics in question
as time series, showing if one metric is causing another one to
change, and if yes, after how much time can such impact be
felt. Let’s illustrate this with the problem of judging the

stability of a system or sub-system. What is really needed here
is to characterize what happened in the past (e.g. amount of
change) that eventually lead to a decrease in the stability
(perhaps measured as bugginess). Being able to analyze the
lagged effect of the amount of change, or other metrics of
interest, on the bugginess (or other indicators of stability),
could help identify appropriate criteria for decisions related to
software stability. If the lag is important enough to allow for a
reaction time, this could lead to early warnings about upcoming
problems with the stability unless something is done to reduce
– or even eliminate – the problem. Depending on the type of
changes done (e.g., corrective vs. perfective maintenance) or
the complexity of the changes being made, it may take more or
less time to feel such impact though. So the identification of the
lagged effect is not a trivial issue.

Current statistical techniques, namely Granger causality [2]
and transfer functions [3], mostly rely on building a regression
model where the independent variables represent the same
metric, but collected at some time in the past. For example,
assuming that we would like to know the effect of time series x
on time series y, with a maximum possible delay of 2 time
periods, the following simple regression model could be built:

 y(t) = a*x(t)+b*x(t-1)+c*x(t-2) 

where y(t) is the value of y at time t; x(t), x(t-1), and x(t-2) are
the values of x at time t (no delay), at time t-1 (delay of 1), and
at time t-2 (delay of 2) respectively; and a, b, and c are the
regression coefficients. Note that more complex models can be
built, including those where past values of y are used as well
(for an autoregressive part).

The limitation with such a model is that it assumes that the
delay in the effect is always constant, which is not always the
case. Also, for a more general delayed effect such as “between
1 and 3 time periods”, one has to guess it and add the
corresponding variable in the model being built. Trying all
possible combinations of such kind of variable can be
computationally expensive.

In this paper, we describe our initial work on a technique
for solving such kind of problem. It relies on the identification
of peaks in the two time series. Similar peaks across time series
are then matched, showing at the same time the delay in the
effect. The next section describes this technique with an (DOI reference number: 10.18293/SEKE2015-042)

Figure 1. Plot of the MA5 and MA49 on opened bugs, showing peaks.

Figure 2. Plot of the MA5 and MA49 on closed bugs, showing peaks.

0

2

4

6

30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90

openMA5 openMA49

0

2

4

6

30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90

closeMA5 closeMA49

example, also comparing it with known statistical techniques.
Section III provides information to help choose the right
parameters for this technique. The last section provides other
examples where we used this technique, as well as a discussion
of the future work.

II. PEAK ANALYSIS

In order to build an approach for identifying lagged effect,
an example for which the actual effect could be found in some
other way was needed, to confirm its correctness. The
following metrics were thus chosen for an initial analysis:
number of bugs opened vs. number of bugs closed at each
week during software evolution. There should be a lagged
effect between them, as many of the open bugs eventually get
closed.

We collected such data on JEdit, a Source-Forge project,
over a period of 119 weeks. There were 229 bugs found during
that period. We also extracted information on when each bug
was opened and closed, and the duration between these two
events. The distribution of these durations is clearly
exponential: 50% of the bugs were fixed within the same week,
10% of them were fixed a week later, 10% of them fixed 2 to 4
weeks later, 10% between 5 and 10 weeks later, and the rest
taking more than 10 weeks to be fixed, up to a maximum of 85
weeks.

We first checked our claim that other statistical techniques
were not producing valuable results in our situation, by
applying them to our data. The best model that could be built
was the following (p-value = 0.000):

 close(t) = 0.173 + 0.596 open(t) + 0.331 open(t-10). 

Although the p-value was small, we had indications that the
model was not good for prediction purposes: the R2 value was
only 39% (i.e., only 39% of the variation could be
explained by the model), and the residuals were not
normally distributed. This is not surprising, considering
that only 50% of the bugs have a duration of 0, and less
than 1% have a duration of 10. The reason for the
difficulty in building a model is due to the fact that
development happens in burst, and that the average
duration (or lag) is changing over time. Our proposed
approach is meant to overcome this issue.

The main idea behind our peak analysis technique is
that if there is a lagged effect between two time series,
peaks in one time series should match peaks in the other
time series, with the lag being the time distance between
the corresponding peaks. A peak here is defined as a
time interval for which the value of the metric is
significantly above its average value.

The first step in our proposed technique is to identify
independently the peaks in the two time series. One key
point in the definition of peak is the fact that we have to
compare data with some average. However, one cannot
assume that such average will stay the same over a long
period of time. For example here, since development
typically occurs in bursts, peaks during those bursts are
expected to be higher than the peaks occurring during a

period of low activity. Still, we are interested in all peaks, not
only the ones during bursts. Some kind of local average is thus
needed. In statistics, this is handled through the concept of
“moving average” [3]: a new time series is constructed using
values corresponding to the average of a given number of
consecutive values from the original time series. For example,
assuming that we have a time series x, a new time series z
corresponding to a moving average of 5 (later referred to as
“MA5”) is composed of the following values:

 z(t) = (x(t-2)+x(t-1)+x(t)+x(t+1)+x(t+2))/5 

for all t=3 to n-2 (n being the length of the time series x). For
the values that cannot be calculated (i.e., at times t = 1, 2, n-1,
and n), one can pad with the closest value that can be
calculated (i.e., set z(1) and z(2) to the value of z(3), and set
z(n-1) and z(n) to the value of z(n-2)).

For peak identification, we actually build two new time
series through moving averages: one to smooth the data, to be
able to see a trend, and one to represent the local average. For
our example here, we used an MA5 to smooth the data, and an
MA49 (i.e., moving average where datapoints from t-24 to
t+24 are averaged) for the local average. Padding is used to
ensure that we have the same number of datapoints for the
MA5 and the MA49. Figure 1 shows a plot of these moving
averages for the count of opened bugs every week, and Figure
2 shows the one for the counts of closed bugs. Note that for
space reasons, we show only an excerpt for weeks 30 to 90.
Peaks are clearly appearing, as the intervals when the MA5 line
is clearly above the MA49 line. In a more formal way, an
interval is a peak only if it goes significantly above the MA49
line in at least one of its points. We use the standard deviation
of the MA49 dataset as the threshold for being considered
“significantly above the MA49”.

TABLE I. LOCATION AND SIZE OF PEAKS

Opened bugs Closed bugs

ID interval size ID interval size

O1 33--40 12.2 C1 34--38 5.22

O2 43--48 5.98 C2 43--49 11.56

O3 60--75 7.7 C3 54--57 1.88

O4 84--89 5.56 C4 65--77 6.68

 C5 85--89 4.02

Table I lists those peaks, with their time interval and their

size. The size is calculated as the sum of the differences
between the MA5 and the MA49, for all points in the interval.
Note that in the case where two peaks are separated by only
one data point falling slightly below the MA49 (by less than
the standard deviation on the MA49 dataset), those two peaks
are merged into one. The third peak for open bugs is such a
merged peak, covering from time 60 to 75, in spite of a dip at
time 66.

The second step of our approach is to match the identified
peaks in the two time series. The idea is to match peaks of
similar size sequentially, trying to match as many peaks as
possible. The matches have to be valid though: the start time of
the close peak should be no earlier than the start time of the
matched open peak, and same for the end times. In our
example, the best set of matches is as follows: C1 unmatched,
O1 matched to C2, O2 matched with C3, O3 matched to C4,
and O4 matched to C5.

We evaluate how good the set of matches is by calculating
the Pearson correlation between the corresponding sizes. When
a peak is unmatched (e.g., C1 here), we associate it with a peak
of size zero. In the example above, the correlation between the
vectors [0.0, 12.2, 5.98, 7.7, 5.56] and [5.22, 11.56, 1.88, 6.68,
4.02] is 0.65. This is the best possible correlation for the data
above. The algorithm for finding such best set of matches
builds all possible sets using a backtracking approach, where
the following conditions apply: for all peak Oi matched to a
peak Cj, (a) each open peak earlier than Oi is either not
matched or matched to a close peak earlier than Cj, and (b)
each open peak later than Oi is either not matched or matched
to a close peak later than Cj. For each possible set of matches,
the correlations is calculated, and the set corresponding to the
best correlation is kept.

In the best set of matches identified above, one can see that
many of the matched peaks are very close in size (i.e., O1—C2,
O3—C4, and O4—C5). However, the peak C1 is quite large
for an unmatched peak, and the matched peaks O2—C3 are
very different in size. This is why the correlation is quite weak.
Looking at the graphs again (Figures 1 and 2) and the sizes of
the peaks in Table I, one can see that the peak C1 could

actually be somewhat covered by the peak O1, with the
remaining of O1 covered by C2 (C2 is large enough to cover
both O2 and part of O1). In order to spot these possibilities, the
algorithm above can be repeated using half peaks rather than
full peaks, in trying to identify the best matches: each peak is
cut in half, and considered as its own separate peak, cutting in
half the original interval and size. The correlation is still done
using the full open peaks though, adding the corresponding half
peaks when possible. Table II shows the results for the half-
peak analysis. Corresponding peaks are the ones on the same
row in the table. The correlation in this case is really high at
0.969 (between the vectors [0.0, 12.2, 5.98, 0.0, 7.7, 5.56] and
[5.22/2, 5.22/2+11.56/2, 11.56/2, 1.88, 6.68, 4.02]).

We also tried to see if we could detect that one variable
does not have an effect on the other. In the case here, we would
not expect the count of close bugs to lead to a later effect on the
count of open bugs, as very few of the close bugs get re-
opened. So we ran our algorithm again, reversing the two time
series. In this case, the best correlation was only 0.27 (for the
whole 119 weeks of the example, not just the excerpt presented
here). The half-peak analysis could improve this to 0.75, but
this is still too low to be considered a true effect.

The obvious question now is: does this correspond to what
is actually going on with the bugs in those time intervals? The
answer is yes. For all of the peaks O2 to O4, between 70% and
82% of the bugs were closed within the interval of their
matched peak. In the case of the peak O1, 43% of its bugs were
associated to C1, while 23% of them were associated with C2.

We also looked at the average durations of the bugs (i.e.,
number of weeks between the time they are opened and the
time they are closed) within each of the open peaks. These
were 9.07, 10.65, 3.88, and 2.41 for peaks O1 to O4
respectively. This seems in line with our initial findings: peak
O1 has a much higher average duration due to its match to a
peak that is at a distance of 9 to 10 weeks. It still contains a
large percentage of bugs fixed almost immediately (i.e.,
duration of 0 or 1). The peak O3 is matched to a peak that is at
a distance of 2 to 5 weeks, matching its average duration. The
average duration for the peak O4 is slightly larger than its
distance to its matched peak, but this peak does contain a much
larger percentage of bugs fixed immediately than the entire set
of bugs (71% vs. 51%). For the peak O2, its average duration
does not seem to match its distance to its matched peak. This is
due to the fact that it contains a much larger percentage of bugs
that are fixed within a very long time frame, with a large spread
in duration. Actually, we could have seen the problem in the
first place in our analysis, if we had considered the second best
set of matches: if we match O2 to both C2 and C3, the
correlation is still really high at 0.953. And, the distance
between peaks O2 and C3 is approximately 10, which does
correspond to the average duration.

As one can see, such an analysis can show how the
distribution of bug durations changed over time. Using such
information, one could try to identify what exactly happened at
those times to cause such differences (e.g., perhaps the kind of
maintenance – corrective vs. perfective – was different). We
did not have enough knowledge of this particular software
evolution (of JEdit) to perform such investigation.

TABLE II. MATCHED PEAKS AND HALF-PEAKS

Opened bugs Closed bugs

ID interval size ID interval size

 C1 34--38 5.22

O1 33--40 12.2

C2 43--49 11.56

O2 43--48 5.98

 C3 54--57 1.88

O3 60--75 7.7 C4 65--77 6.68

O4 84--89 5.56 C5 85--89 4.02

III. CHOICE OF VALUES FOR MOVING AVERAGES

In the technique as presented above, two moving averages
are used (one to smooth the data and one to act as a local
average) for identifying peaks. In the example provided,
moving averages of 5 and 49 were used. Other numbers can be
used as well, depending on what exactly one would like to find
out.

The analysis of changes in the lagged effect over time (as
mostly performed above) does not help identify the general lag
in the overall effect. Increasing the size of the moving average
used can help with this. For example, using the context and
data above but a moving average of 9 rather than 5, we get 3
peaks that are matched to 3 other peaks of roughly the same
size. The apparent lag in this case is between 0 and 3, which
corresponds to the duration of 70% of the bugs. By doing this
tough, we lose the possibility of identifying the times when
such lag was different. On the other hand, if we want to be
even more specific in the lags and the differences at particular
times, a smaller moving average (e.g., MA3) can be used.

By increasing the size of the moving average, the length of
the intervals for the peaks found increases, and the number of
such peaks is reduced. Then, when a match is found, the peaks
tend to be of more similar sizes. However, because of the
longer interval, there could be more bugs that have a much
higher duration than what would be seen when looking at the
distance between the matched peaks. For example, if matched
peaks are located in the interval [30..45] and [31..46], although
the apparent delay is just 1, there could still be many bugs with
a much higher duration (e.g., a bug being opened at time 30 but
closed at time 45).

For the size of the moving average used as the local average
(e.g., the MA49 used in the previous section), our experience
shows that an appropriate number should be 5 to 10 times
larger than the moving average used to smooth the data.

IV. VALIDATION AND DISCUSSIONS

In Section II above, we have shown how our technique
works on a subset of the data we had from the open source
software JEdit. It should be noted that the technique was
successful for the entire 119 weeks of data that we had, which
included an extra matched peak prior to week 30, and an extra
matched peak after week 90 (not displayed above).

We validated our technique on a second open source
system: MinGW (another SourceForge project). We extracted
the same kind of data as described in Section II above, over a
period of 175 weeks. There were 203 bugs found during that
period. Through our technique (using an MA5 vs. an MA49 as
described above), we could identify 11 peaks for opened bugs
and 11 peaks for closed bugs. Those peaks were very diverse,
with interval lengths ranging from 2 to 14 weeks, and with
sizes ranging from 0.2 to 9.5. The duration of the bugs was
somewhat longer than the ones found in JEdit, with the
following distribution: 27% of the bugs were fixed within the
same week, 26% of them were fixed a week later, 13% of them
fixed 2 to 4 weeks later, 14% between 5 and 10 weeks later,
and the rest taking more than 10 weeks to be fixed, up to a
maximum of 123 weeks. We successfully matched the related

peaks with a correlation of 0.84 (0.90 when improving it using
half-peaks). In almost all cases, the majority of the bugs (62%
to 100%) opened within a given peak were closed within the
matching peak. There was one exception, but this was with a
relatively small peak, matched to a much larger peak (i.e., with
very different sizes).

From that system (MinGW), we also analyzed the time lag
between the number of commits per week and the number of
opened bugs per week (i.e., how long does it take in general to
find bugs after modifications are made). We saw that such lag
was approximately 8 to 9 weeks, with one exception where the
lag was only 3 to 5 weeks. That time corresponded with an
increase in new features developed. Such kind of information
can be useful in planning when there will be an increase in
demand for fixing bugs.

We also used our technique to confirm previous results in
another (unrelated) project, where we have shown that making
many highly-dispersed changes in a file was increasing the risk
of finding a bug in that file within three months after the
change [4]. This previous work was looking at individual files
going through a sudden burst of changes, characterizing those
changes and predicting the bugginess of the file based on
similarities with past cases. Here, we looked at the proportion
of the file commits performed every week, for all files rather
than individual files, that were implementing highly-dispersed
changes. We compared this with the number of bugs detected
every week. And indeed, the peaks in these two time series
were matching, with a typical lag between 2 and 7 weeks. This
confirmed our previous results, with even more precise
information about the lag. We repeated the work on other types
of changes (e.g., small local change, massive local change), but
we could not see a match in the peaks. This supported our
previous findings too, that other types of changes were either
not affecting the bugginess of the file, or were affecting it only
when the file was large. Not only did we confirm previous
results here, but such analysis could help building a better bug
predictor.

As future work, further validation is clearly required. At
this point, we tried our approach on bug data for only two
systems: JEdit and MinGW. We need to try it out on more
(various) systems, over a longer period of time, and on other
kinds of metrics that could be analyzed this way. Improvement
to the underlying algorithm is also necessary in order to make it
more efficient, and practical for larger inputs. Finally, we are
interested in applying this kind of technique to areas other than
software engineering.

REFERENCES

[1] M. D’Ambros, M. Lanza, R. Robbes, “An Extensive Comparison of Bug
Prediction Approaches”, Proc. of the 7th IEEE Working Conf. on
Mining Software Repositories, Cape Town, South Africa, May 2010, pp.
31-41.

[2] C.W.J. Granger, “Testing for causality: A personal viewpoint”, Journal
of Economic Dynamics and Control, vol. 2, pp. 329-352, 1980.

[3] D.C. Montgomery, C.L. Jennings, and M. Kulahci, Introduction to Time
Series Analysis and Forecasting, Wiley, 2007.

[4] J. Tassé, “Using code change types in an analogy-based classifier for
short-term defect prediction”, 9th Int. Conf. on Predictive Models in
Software Engineering, Article No. 5, Baltimore, Maryland, Oct. 2013.

