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Abstract— Measures extracted from software repositories tend to 

be collected on a regular basis (often daily), forming time series 

of data. In this context, it is normal to assume that some of the 

measures collected are having an effect on other measures, 

potentially with some delay (or “lag”) in the effect. Such delay in 

the effect may even vary over time, making the identification of 

the effect difficult. In this paper, we present our initial ideas on a 

simple analysis method for such situation, in which peaks from 

the two time series in question are analyzed, and similar ones are 

matched. 
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I.  INTRODUCTION 

Measures extracted from software repositories tend to be 
collected on a regular basis. For example, one could capture the 
number of bugs found and the number of bugs fixed every day 
or every week. In statistical terms, such sequence of data 
collected regularly over time form a time series.  

Data are usually kept in this format (time series) only if 
they are simply displayed graphically (showing their evolution 
over time) or used in statistical control. For other analyses, data 
are typically transformed, losing most of their time-related 
information. In particular, one might aggregate such measures 
into a single one per version or per time segment (e.g., total 
number of bugs found, or total number of lines of code 
changed, during the development of one version). Then, only 
the differences between two consecutive versions or time 
segments are used in the analysis. For example, the expected 
number of bugs to be found during the development of a 
particular version may be predicted based on the number of 
lines of code changed in the previous version (and/or other 
variables of interest – those are surveyed in [1]). The problem 
here is that by limiting the association to only two consecutive 
time segments, it is not possible to detect a longer effect (e.g., 
what if a change in the number of lines of code changed was 
having an effect up to three releases later?). 

What is needed is a way to analyze the metrics in question 
as time series, showing if one metric is causing another one to 
change, and if yes, after how much time can such impact be 
felt. Let’s illustrate this with the problem of judging the 

stability of a system or sub-system. What is really needed here 
is to characterize what happened in the past (e.g. amount of 
change) that eventually lead to a decrease in the stability 
(perhaps measured as bugginess). Being able to analyze the 
lagged effect of the amount of change, or other metrics of 
interest, on the bugginess (or other indicators of stability), 
could help identify appropriate criteria for decisions related to 
software stability. If the lag is important enough to allow for a 
reaction time, this could lead to early warnings about upcoming 
problems with the stability unless something is done to reduce 
– or even eliminate – the problem. Depending on the type of 
changes done (e.g., corrective vs. perfective maintenance) or 
the complexity of the changes being made, it may take more or 
less time to feel such impact though. So the identification of the 
lagged effect is not a trivial issue. 

Current statistical techniques, namely Granger causality [2] 
and transfer functions [3], mostly rely on building a regression 
model where the independent variables represent the same 
metric, but collected at some time in the past. For example, 
assuming that we would like to know the effect of time series x 
on time series y, with a maximum possible delay of 2 time 
periods, the following simple regression model could be built: 

 y(t) = a*x(t)+b*x(t-1)+c*x(t-2) 

where y(t) is the value of y at time t; x(t), x(t-1), and x(t-2) are 
the values of x at time t (no delay), at time t-1 (delay of 1), and 
at time t-2 (delay of 2) respectively; and a, b, and c are the 
regression coefficients. Note that more complex models can be 
built, including those where past values of y are used as well 
(for an autoregressive part). 

The limitation with such a model is that it assumes that the 
delay in the effect is always constant, which is not always the 
case. Also, for a more general delayed effect such as “between 
1 and 3 time periods”, one has to guess it and add the 
corresponding variable in the model being built. Trying all 
possible combinations of such kind of variable can be 
computationally expensive. 

In this paper, we describe our initial work on a technique 
for solving such kind of problem. It relies on the identification 
of peaks in the two time series. Similar peaks across time series 
are then matched, showing at the same time the delay in the 
effect. The next section describes this technique with an (DOI reference number: 10.18293/SEKE2015-042) 



 
Figure 1.  Plot of the MA5 and MA49 on opened bugs, showing peaks. 

 

 
Figure 2.  Plot of the MA5 and MA49 on closed bugs, showing peaks. 
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example, also comparing it with known statistical techniques. 
Section III provides information to help choose the right 
parameters for this technique. The last section provides other 
examples where we used this technique, as well as a discussion 
of the future work. 

II. PEAK ANALYSIS 

In order to build an approach for identifying lagged effect, 
an example for which the actual effect could be found in some 
other way was needed, to confirm its correctness. The 
following metrics were thus chosen for an initial analysis: 
number of bugs opened vs. number of bugs closed at each 
week during software evolution. There should be a lagged 
effect between them, as many of the open bugs eventually get 
closed.  

We collected such data on JEdit, a Source-Forge project, 
over a period of 119 weeks. There were 229 bugs found during 
that period. We also extracted information on when each bug 
was opened and closed, and the duration between these two 
events. The distribution of these durations is clearly 
exponential: 50% of the bugs were fixed within the same week, 
10% of them were fixed a week later, 10% of them fixed 2 to 4 
weeks later, 10% between 5 and 10 weeks later, and the rest 
taking more than 10 weeks to be fixed, up to a maximum of 85 
weeks. 

We first checked our claim that other statistical techniques 
were not producing valuable results in our situation, by 
applying them to our data. The best model that could be built 
was the following (p-value = 0.000): 

 close(t) = 0.173 + 0.596 open(t) + 0.331 open(t-10). 

Although the p-value was small, we had indications that the 
model was not good for prediction purposes: the R2 value was 
only 39% (i.e., only 39% of the variation could be 
explained by the model), and the residuals were not 
normally distributed. This is not surprising, considering 
that only 50% of the bugs have a duration of 0, and less 
than 1% have a duration of 10. The reason for the 
difficulty in building a model is due to the fact that 
development happens in burst, and that the average 
duration (or lag) is changing over time. Our proposed 
approach is meant to overcome this issue. 

The main idea behind our peak analysis technique is 
that if there is a lagged effect between two time series, 
peaks in one time series should match peaks in the other 
time series, with the lag being the time distance between 
the corresponding peaks. A peak here is defined as a 
time interval for which the value of the metric is 
significantly above its average value. 

The first step in our proposed technique is to identify 
independently the peaks in the two time series. One key 
point in the definition of peak is the fact that we have to 
compare data with some average. However, one cannot 
assume that such average will stay the same over a long 
period of time. For example here, since development 
typically occurs in bursts, peaks during those bursts are 
expected to be higher than the peaks occurring during a 

period of low activity. Still, we are interested in all peaks, not 
only the ones during bursts. Some kind of local average is thus 
needed. In statistics, this is handled through the concept of 
“moving average” [3]: a new time series is constructed using 
values corresponding to the average of a given number of 
consecutive values from the original time series. For example, 
assuming that we have a time series x, a new time series z 
corresponding to a moving average of 5 (later referred to as 
“MA5”) is composed of the following values: 

 z(t) = (x(t-2)+x(t-1)+x(t)+x(t+1)+x(t+2))/5 

for all t=3 to n-2 (n being the length of the time series x). For 
the values that cannot be calculated (i.e., at times t = 1, 2, n-1, 
and n), one can pad with the closest value that can be 
calculated (i.e., set z(1) and z(2) to the value of z(3), and set 
z(n-1) and z(n) to the value of z(n-2) ). 

For peak identification, we actually build two new time 
series through moving averages: one to smooth the data, to be 
able to see a trend, and one to represent the local average. For 
our example here, we used an MA5 to smooth the data, and an 
MA49 (i.e., moving average where datapoints from t-24 to 
t+24 are averaged) for the local average. Padding is used to 
ensure that we have the same number of datapoints for the 
MA5 and the MA49. Figure 1 shows a plot of these moving 
averages for the count of opened bugs every week, and Figure 
2 shows the one for the counts of closed bugs. Note that for 
space reasons, we show only an excerpt for weeks 30 to 90. 
Peaks are clearly appearing, as the intervals when the MA5 line 
is clearly above the MA49 line. In a more formal way, an 
interval is a peak only if it goes significantly above the MA49 
line in at least one of its points. We use the standard deviation 
of the MA49 dataset as the threshold for being considered 
“significantly above the MA49”.  



TABLE I.  LOCATION AND SIZE OF PEAKS 

Opened bugs Closed bugs 

ID interval size ID interval size 

O1 33--40 12.2 C1 34--38 5.22 

O2 43--48 5.98 C2 43--49 11.56 

O3 60--75 7.7 C3 54--57 1.88 

O4 84--89 5.56 C4 65--77 6.68 

   C5 85--89 4.02 

 
Table I lists those peaks, with their time interval and their 

size. The size is calculated as the sum of the differences 
between the MA5 and the MA49, for all points in the interval. 
Note that in the case where two peaks are separated by only 
one data point falling slightly below the MA49 (by less than 
the standard deviation on the MA49 dataset), those two peaks 
are merged into one. The third peak for open bugs is such a 
merged peak, covering from time 60 to 75, in spite of a dip at 
time 66. 

The second step of our approach is to match the identified 
peaks in the two time series. The idea is to match peaks of 
similar size sequentially, trying to match as many peaks as 
possible. The matches have to be valid though: the start time of 
the close peak should be no earlier than the start time of the 
matched open peak, and same for the end times. In our 
example, the best set of matches is as follows: C1 unmatched, 
O1 matched to C2, O2 matched with C3, O3 matched to C4, 
and O4 matched to C5.  

We evaluate how good the set of matches is by calculating 
the Pearson correlation between the corresponding sizes. When 
a peak is unmatched (e.g., C1 here), we associate it with a peak 
of size zero. In the example above, the correlation between the 
vectors [0.0, 12.2, 5.98, 7.7, 5.56] and [5.22, 11.56, 1.88, 6.68, 
4.02] is 0.65. This is the best possible correlation for the data 
above. The algorithm for finding such best set of matches 
builds all possible sets using a backtracking approach, where 
the following conditions apply: for all peak Oi matched to a 
peak Cj, (a) each open peak earlier than Oi is either not 
matched or matched to a close peak earlier than Cj, and (b) 
each open peak later than Oi is either not matched or matched 
to a close peak later than Cj. For each possible set of matches, 
the correlations is calculated, and the set corresponding to the 
best correlation is kept. 

In the best set of matches identified above, one can see that 
many of the matched peaks are very close in size (i.e., O1—C2, 
O3—C4, and O4—C5). However, the peak C1 is quite large 
for an unmatched peak, and the matched peaks O2—C3 are 
very different in size. This is why the correlation is quite weak. 
Looking at the graphs again (Figures 1 and 2) and the sizes of 
the peaks in Table I, one can see that the peak C1 could 

actually be somewhat covered by the peak O1, with the 
remaining of O1 covered by C2 (C2 is large enough to cover 
both O2 and part of O1). In order to spot these possibilities, the 
algorithm above can be repeated using half peaks rather than 
full peaks, in trying to identify the best matches: each peak is 
cut in half, and considered as its own separate peak, cutting in 
half the original interval and size. The correlation is still done 
using the full open peaks though, adding the corresponding half 
peaks when possible. Table II shows the results for the half-
peak analysis. Corresponding peaks are the ones on the same 
row in the table. The correlation in this case is really high at 
0.969 (between the vectors [0.0, 12.2, 5.98, 0.0, 7.7, 5.56] and 
[5.22/2, 5.22/2+11.56/2, 11.56/2, 1.88, 6.68, 4.02]).  

We also tried to see if we could detect that one variable 
does not have an effect on the other. In the case here, we would 
not expect the count of close bugs to lead to a later effect on the 
count of open bugs, as very few of the close bugs get re-
opened. So we ran our algorithm again, reversing the two time 
series. In this case, the best correlation was only 0.27 (for the 
whole 119 weeks of the example, not just the excerpt presented 
here). The half-peak analysis could improve this to 0.75, but 
this is still too low to be considered a true effect. 

The obvious question now is: does this correspond to what 
is actually going on with the bugs in those time intervals? The 
answer is yes. For all of the peaks O2 to O4, between 70% and 
82% of the bugs were closed within the interval of their 
matched peak. In the case of the peak O1, 43% of its bugs were 
associated to C1, while 23% of them were associated with C2. 

We also looked at the average durations of the bugs (i.e., 
number of weeks between the time they are opened and the 
time they are closed) within each of the open peaks. These 
were 9.07, 10.65, 3.88, and 2.41 for peaks O1 to O4 
respectively. This seems in line with our initial findings: peak 
O1 has a much higher average duration due to its match to a 
peak that is at a distance of 9 to 10 weeks. It still contains a 
large percentage of bugs fixed almost immediately (i.e., 
duration of 0 or 1). The peak O3 is matched to a peak that is at 
a distance of 2 to 5 weeks, matching its average duration. The 
average duration for the peak O4 is slightly larger than its 
distance to its matched peak, but this peak does contain a much 
larger percentage of bugs fixed immediately than the entire set 
of bugs (71% vs. 51%). For the peak O2, its average duration 
does not seem to match its distance to its matched peak. This is 
due to the fact that it contains a much larger percentage of bugs 
that are fixed within a very long time frame, with a large spread 
in duration. Actually, we could have seen the problem in the 
first place in our analysis, if we had considered the second best 
set of matches: if we match O2 to both C2 and C3, the 
correlation is still really high at 0.953. And, the distance 
between peaks O2 and C3 is approximately 10, which does 
correspond to the average duration.  

As one can see, such an analysis can show how the 
distribution of bug durations changed over time. Using such 
information, one could try to identify what exactly happened at 
those times to cause such differences (e.g., perhaps the kind of 
maintenance – corrective vs. perfective – was different). We 
did not have enough knowledge of this particular software 
evolution (of JEdit) to perform such investigation. 

TABLE II.  MATCHED PEAKS AND HALF-PEAKS 

Opened bugs Closed bugs 

ID interval size ID interval size 

   C1 34--38 5.22 

O1 33--40 12.2 

C2 43--49 11.56 

O2 43--48 5.98 

   C3 54--57 1.88 

O3 60--75 7.7 C4 65--77 6.68 

O4 84--89 5.56 C5 85--89 4.02 

 



III. CHOICE OF VALUES FOR MOVING AVERAGES 

In the technique as presented above, two moving averages 
are used (one to smooth the data and one to act as a local 
average) for identifying peaks. In the example provided, 
moving averages of 5 and 49 were used. Other numbers can be 
used as well, depending on what exactly one would like to find 
out.  

The analysis of changes in the lagged effect over time (as 
mostly performed above) does not help identify the general lag 
in the overall effect. Increasing the size of the moving average 
used can help with this. For example, using the context and 
data above but a moving average of 9 rather than 5, we get 3 
peaks that are matched to 3 other peaks of roughly the same 
size. The apparent lag in this case is between 0 and 3, which 
corresponds to the duration of 70% of the bugs. By doing this 
tough, we lose the possibility of identifying the times when 
such lag was different. On the other hand, if we want to be 
even more specific in the lags and the differences at particular 
times, a smaller moving average (e.g., MA3) can be used.   

By increasing the size of the moving average, the length of 
the intervals for the peaks found increases, and the number of 
such peaks is reduced. Then, when a match is found, the peaks 
tend to be of more similar sizes. However, because of the 
longer interval, there could be more bugs that have a much 
higher duration than what would be seen when looking at the 
distance between the matched peaks. For example, if matched 
peaks are located in the interval [30..45] and [31..46], although 
the apparent delay is just 1, there could still be many bugs with 
a much higher duration (e.g., a bug being opened at time 30 but 
closed at time 45).  

For the size of the moving average used as the local average 
(e.g., the MA49 used in the previous section), our experience 
shows that an appropriate number should be 5 to 10 times 
larger than the moving average used to smooth the data.  

IV. VALIDATION AND DISCUSSIONS 

In Section II above, we have shown how our technique 
works on a subset of the data we had from the open source 
software JEdit. It should be noted that the technique was 
successful for the entire 119 weeks of data that we had, which 
included an extra matched peak prior to week 30, and an extra 
matched peak after week 90 (not displayed above).  

We validated our technique on a second open source 
system: MinGW (another SourceForge project). We extracted 
the same kind of data as described in Section II above, over a 
period of 175 weeks. There were 203 bugs found during that 
period. Through our technique (using an MA5 vs. an MA49 as 
described above), we could identify 11 peaks for opened bugs 
and 11 peaks for closed bugs. Those peaks were very diverse, 
with interval lengths ranging from 2 to 14 weeks, and with 
sizes ranging from 0.2 to 9.5. The duration of the bugs was 
somewhat longer than the ones found in JEdit, with the 
following distribution: 27% of the bugs were fixed within the 
same week, 26% of them were fixed a week later, 13% of them 
fixed 2 to 4 weeks later, 14% between 5 and 10 weeks later, 
and the rest taking more than 10 weeks to be fixed, up to a 
maximum of 123 weeks. We successfully matched the related 

peaks with a correlation of 0.84 (0.90 when improving it using 
half-peaks). In almost all cases, the majority of the bugs (62% 
to 100%) opened within a given peak were closed within the 
matching peak. There was one exception, but this was with a 
relatively small peak, matched to a much larger peak (i.e., with 
very different sizes).  

From that system (MinGW), we also analyzed the time lag 
between the number of commits per week and the number of 
opened bugs per week (i.e., how long does it take in general to 
find bugs after modifications are made). We saw that such lag 
was approximately 8 to 9 weeks, with one exception where the 
lag was only 3 to 5 weeks. That time corresponded with an 
increase in new features developed. Such kind of information 
can be useful in planning when there will be an increase in 
demand for fixing bugs. 

We also used our technique to confirm previous results in 
another (unrelated) project, where we have shown that making 
many highly-dispersed changes in a file was increasing the risk 
of finding a bug in that file within three months after the 
change [4]. This previous work was looking at individual files 
going through a sudden burst of changes, characterizing those 
changes and predicting the bugginess of the file based on 
similarities with past cases. Here, we looked at the proportion 
of the file commits performed every week, for all files rather 
than individual files, that were implementing highly-dispersed 
changes. We compared this with the number of bugs detected 
every week. And indeed, the peaks in these two time series 
were matching, with a typical lag between 2 and 7 weeks. This 
confirmed our previous results, with even more precise 
information about the lag. We repeated the work on other types 
of changes (e.g., small local change, massive local change), but 
we could not see a match in the peaks. This supported our 
previous findings too, that other types of changes were either 
not affecting the bugginess of the file, or were affecting it only 
when the file was large. Not only did we confirm previous 
results here, but such analysis could help building a better bug 
predictor. 

As future work, further validation is clearly required. At 
this point, we tried our approach on bug data for only two 
systems: JEdit and MinGW. We need to try it out on more 
(various) systems, over a longer period of time, and on other 
kinds of metrics that could be analyzed this way. Improvement 
to the underlying algorithm is also necessary in order to make it 
more efficient, and practical for larger inputs. Finally, we are 
interested in applying this kind of technique to areas other than 
software engineering.  
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