
(DOI reference number:10.18293/SEKE2015-053)

On the Specification of Model Transformations

through a Platform Independent Approach

Magalhães, A.P.

Exact and Earth Science Department

State University of Bahia

Salvador, Brazil

anapatriciamagalhaes@gmail.com

Andrade, A.; Maciel, R.S.P.

Science Computer Department

Federal University of Bahia

Salvador, Brazil

{aline,ritasuzana}@dcc.ufba.br

Abstract— Transformations are key artifacts in the MDD (Model

Driven Development) approach: a software development project

can be defined through a transformation chain converting source

models into target models until code, enabling development

process automation. Transformations can be complex and

demand software processes, languages and techniques to improve

their development in order to increase reuse, portability,

correctness, and so on. In this context we propose a framework to

develop model transformations using MDD. This paper presents

a Model Transformation Profile (MTP) defined as the domain

specific language of the framework.

Keywords-Transformation profile, transformation specification,

transformation metamodel.

I. INTRODUCTION

Model Driven Development (MDD) [7] is a paradigm that
makes intensive use of models to represent systems at different
level of abstraction (specification, design and code). A key
element of the MDD approach is the transformation chain
which is responsible for the conversion of source into target
models until code generation. Transformations play an
important role in MDD because they enable the automation of
the model generation process, encapsulating knowledge and
strategies used in the development of the software.

Despite the importance of models for the MDD approach,
transformations are usually specified in an ad-hoc way using
natural language and are implemented directly in code [4]. This
practice leads to poor documentation which hampers the
evolution of the transformation and makes it difficult to use
software engineering good practices such as design patterns
and reuse. In order to change this scenario some works have
been proposed [2][3][4] to cover specific aspects of
transformation development (e.g. transformation design).

In this context, we propose a MDD framework for model
transformation development that comprises: (i) a MDD
transformation development process, which guides developers
through activities to produce transformation software; (ii) a
profile, named Model Transformation Profile (MTP), to
support the modeling process activities; and (iii) a tool to
partially automate the modeling and transformations tasks of
the process. In this paper we present the MTP profile whose
first ideas were outlined in [6]. The MTP profile presented here
has been improved from that incorporating another abstraction
level, MTPLowDesign, for the specification of transformation

behavior. New concepts and attributes have also been added in
the other levels and we have developed a validation using
experimental software engineering techniques to measure the
quality of the profile.

MTP provides concepts to specify model transformations
from requirements to design independent of platform. The
produced transformation models can be transformed in a
specific platform and then in code in different transformation
languages (e.g. QTV [9], ATL [1]), increasing productivity and
portability. MTP raises the abstraction level of the
transformation development from code to model in a platform-
independent way, abstracting some implementation details of
specific transformation languages.

The rest of this paper is organized as follows: section 2
discusses the current development approaches to model
transformation; section 3 briefly introduces our MDD
framework; section 4 describes the MTP profile giving some
examples; section 5 presents some results from a MTP
validation; and finally Section 6 presents our conclusions.

II. RELATED WORKS

Our framework uses a visual UML profile as a modeling
language, so we focus on comparing our proposal with existing
visual approaches. Furthermore, we attempt to analyze the
coverage of these works concerning the phases of a
transformation development life cycle.

In MOF Query/View/Transformation (QVT) [9] a model
transformation can be represented diagrammatically in two
ways: using the UML class diagram or using a transformation
diagram. The complexity of the QVT metamodels makes the
diagram verbose and difficult to understand and the
transformation diagram brings new notation with no portability
to UML tools.

There are some works that focus on specific aspects of the
transformation development. In [3] the authors propose a
visual, formal, declarative specification language (graph based)
focusing on transformation correctness, but it does not deal
with implementation as we do. The work [14] focuses on
internal composition of transformations. It generalizes
composition mechanisms for rule-based transformation
languages in order to provide executable semantic to them. Our
proposal, on the other hand, works with external composition.
In [15] generic programming is used to define reusable model

transformations. We follow another direction through a UML
profile to support the development of model transformation
models independent of platform such that models are reused in
transformations in different languages.

The works [4][2] are more closely related to the one
presented in this paper. TransML [4] proposes a family of
languages with diagrams for the entire development life cycle
providing support for specification, analysis, design and code.
However, the proposed diagrams use a UML heavy extension
and new notations that make it difficult to integrate with the
existing UML tools which are usually adopted. MeTaGen [2]
proposes metamodels for transformation design and tools
generate code automatically or semi automatically. The main
difference between this work and ours is that it focuses on
design, not considering the requirement specification level and
it uses textual language for transformation specification
whereas we use a profile that is a visual language.

In summary, although existing works agree that
transformation development requires a software life cycle, they
usually focus on an individual phase of development lacking an
entire process to transform the transformation model in code.
We propose an integrated framework with a visual modeling
language specialized from the UML standard that covers
transformation development from requirements to code.

III. MDD TRANSFORMATION FRAMEWORK

The main goal of MDD Framework is to provide a process
to develop model transformations suitable for a transformation
domain, covering the entire software development life cycle
integrated into a standard modeling language. Fig. 1 shows its
main elements: (i) the MDD Transformation Development
Process; (ii) the Model Transformation Profile (MTP); and (iii)
a tool to (partially) automate the process.

Figure 1. MDD Transformation Framework overview

The MDD Transformation Development Process aims to
guide developers step by step on the development of model
transformations. The process is specified according to SPEM
[8] metamodel and comprises tasks that lead from requirements
specification until code. Specification starts modeling the TRM
(Transformation Requirements Model) which comprises
requirements and analysis tasks. From requirements a semi-
automatic transformation generates the first release of the TDM
(Transformation Design Model) which aims to model the

design and architecture of the transformation software. Tasks
include the definition of what might be transformed in what
(high design), transformation structure (architecture) and how
transformation should be performed (low design). This
specification is then transformed into TSM (Transformation
Specific Model) which refers to specific languages to then
generate code. We provide generation for TSM in ATL
language, due to its wide use in MDD projects to develop
transformations, or QVT language, the OMG standard to
design model transformations. The MTP Profile is defined to
support the modeling tasks of the proposed process. It is
detailed in the following sections.

IV. MODEL TRANSFORMATION PROFILE (MTP)

The MTP Profile is a modeling language that extends UML
for the model transformation domain. Its main goal is to
provide a platform-independent visual language, suitable for a
model transformation domain which can be used to develop
model transformations at a high abstraction level (TRM and
TDM models). The profile covers the definition of model-to-
model unidirectional transformation using a visual language.

In order to specify the MTP we define: an abstract syntax,
represented by metamodels, with the concepts of the
transformation domain; a static semantic, described with a set
of OCL constraints which determine the well-formed criteria of
the instantiated models; and a set of stereotypes and their UML
specialized metaclasses. MTP is divided into three parts,
MTPSpec, MTPHighDesign and MTPLowDesign.

The main goal of the MTPSpec is to provide definitions for
the specification and analysis of transformation requirements.
Its abstract syntax is shown in Fig. 2.

Figure 2. MTPSpec Metamodel

At specification level a TransformationSpecification has a
name, a description and is composed of a Requirement.
Requirement may be refined in other requirements (refinedReq
association) and may also be composed of other requirements
(comprisedReq association). Constraint can be specified for
requirements in natural language. A Requirement has a name, a
description and a type that identifies if it is functional or non-
functional. TransformationSpecification is also composed of
source (sourceMM) and target (targetMM) metamodels.
Models, metamodels and metametamodels are represented by
the concept Model and have a level. This level indicates the

OMG model layer in which they are defined (e.g. M3).
Properties of specific domains can be specified in Property.

The concrete syntax of the MTP consists on a package of
stereotypes associated to UML metaclasses. For example, the
TransformationSpecification MTP concept is specialized as an
actor in UML. Due to lack of space only part of the concrete
syntax of MTPspec is shown in Tab.1.

MTPSpec supports the Transformation Process enabling
requirements elicitation and analysis in Use Case and Classes
diagrams.

TABLE I. PART OF MTPSPEC STEREOTYPE AND METACLASSES

Stereotype Metaclass

<< Transformation Specification>> Actor, class

<<Requirement>> Use case, class

<<Model>> Class, attribute, package

MTP also comprises a set of OCL constraints with
additional well-formed criteria used on model instantiation.
Due to lack of space they are not presented here.

MTPDesign provides the necessary definitions for the design
and architecture specification of the transformation. The profile
was organized in two packages, named MTPHighDesign and
MTPLowDesign.

MTPHighDesign defines what will be transformed in what. Its
abstract syntax is presented in Fig. 3.

Figure 3. MTPhighdesign metamodel

A Transformation may be composed of other
transformations, enabling reuse. Transformation is specialized
in M2M Transformation, to represent model-to-model
transformations and M2T Transformation, to represent model-
to-text transformations (not detailed in this work). M2M
Transformation defines a Domain and it is composed of
Relation. A Domain specifies which Element of the
source/target metamodel will be considered by the

transformation. It will be used to verify transformation
completeness (section 4A). A Relation has a name, a
description to document it and might be concrete or abstract
(attribute isAbstract) allowing Relation inheritance. The
attribute isRequired indicates if it is automatically processed
when transformation is executed or if it is explicitly invoked by
another Relation. A Relation may also have a set of Property
(e.g. OCL constraints). The main purpose of a Relation is the
definition of relationships between elements from source to
target metamodels (SourceElement and TargetElement). It is
possible to define many kinds of relationships: zero-to-one;
zero-to-many; one-to-one; one-to-many; many-to-many; one-
to-zero and many-to-zero as shown by the multiplicity of the
sourceElem and targetElem association.

MTPHighDesign supports the TDM (Transformation Design
Model) specification through the use of classes and component
diagrams. Class diagrams are used for the specification of
Relation between elements from source to target metamodels in
order to hierarchically organize the rules of a transformation,
providing transformation inheritance. Component diagrams are
used to model transformation chains: each transformation in a
chain is represented by a component whose interfaces specify
the source and target models and metamodels.

The MTPLowDesign defines how Relation converts elements
from the source model into elements of the target model. Fig. 4
shows the MTPLowDesign metamodel. The Relation concept (from
MTPHighDesign) is now detailed by the Rule concept which is
composed of SourceElementRule and TargetElementRule. For
each SourceElement of Relation a SourceElementRule is
modeled for the corresponding Rule and a reference (ref
attribute) must be defined. This reference will be later used in
expression definitions. A SourceElementRule may be
associated to Condition (defined in the exp attribute) that must
be satisfied for the rule to be executed. TargetElementRule
comprises a set of Configuration that defines how the
Attributes of the TargetElementRule will be initialized when
generated. The Configuration is specified through the
definition of an expression (exp attribute) that will be assigned
to attributes of the associated TargetElementRule. Expressions
are defined using a textual language. MTPLowDesign supports
transformation process through the use of class diagrams.

Figure 4. MTPLowDesign metamodel

A. MTP and Transformation Properties

There are some properties that assure transformation
quality, such as syntactic and semantic correctness and
completeness [10][11].

The syntax correctness defines the conformity between
models and metamodels and the semantic correctness consists
of property preservation from source to target models. We
define some OCL constraints in order to guarantee
conformance of model transformation models which are
instances of MTP. Our framework foresees the specification of
semantic properties through the Property concept (Fig.2).
Therefore it is possible to specify a set of properties in the early
stages of the transformation definition and this set can be
extended with other properties at the application level.

A transformation is complete if and only if for each element
of the source metamodel there is a corresponding element in
the target metamodel mapped by the transformation. In order to
address completeness, MTP provides the Domain concept
(Fig.3) which identifies the set of elements of source/target
metamodels that are mapped by the transformation. Based on
the Domain definition and on OCL constraints, completeness
can be verified after the instantiation of the model
transformation model.

V. MTP VALIDATION

The validation consists in the assessment of the
expressiveness of MTP profile constructors. To assist
validation we followed the guidelines for software engineering
experimentation presented in [13] and use GQM [12] to
summarize our goal (Fig.5). The questions underlying the
validation are: Q1: Are the MTP constructors sufficient to
specify transformations written in ATL/QVT? Q2: Is it
necessary to add new constructors in MTP to enable the
transformations specification written in ATL/QVT? Q3: Are
the selected UML diagrams sufficient to specify
transformations?

Analyze the MTP profile constructors
For the purpose of evaluating expressiveness
With respect to coverage of the profile constructors and specification
completeness
From the perspective of transformation developers
In the context of existing transformations developed in ATL/QVT languages

Figure 5. Experiment goal according to QGM template

We use several measures as dependent variables such as the
amount of used constructors, the need of new constructors, the
amount of changes on existing constructors, the level of
specification detail and the used UML diagrams.

The validation process lasted five months and was divided
into two stages: an initial test and the main validation. These
two stages were performed by our research group in laboratory
and consisted of using MTP to specify transformations already
developed in ATL / QVT languages.

According to validation, related to questions Q1 and Q2, we
concluded that MTP constructors are sufficient to specify
transformations without the necessity to add new constructors.
Related to question Q3 we observed that, after including
component diagram in the initial test, the selected UML

diagrams were sufficient to specify the transformations.
Therefore, we considered that the MTP was stable enough to be
used on the framework case study.

VI. CONCLUSIONS AND FUTURE WORKS

The Model Transformation Profile presented in this paper is
a modeling language that is part of a framework to develop
model transformation using MDD.

MTP represents transformations concepts at different
abstraction levels, covering many phases of transformation
development such as requirements, analyses and design
enabling transformation modeling independent of platform. In
this sense it postpones specific platform definitions to later
phases of development. As a UML profile MTP takes
advantage of the wide use of UML in both industry and
academy benefiting from tools already used by the
development community. The validation of the profile
demonstrated that MTP concepts cover most transformation
specification needs and that UML diagrams were suitable for
transformation specifications. Therefore, we consider MTP to
be stable for use in real projects.

We are currently specifying a MTP behavioral semantics in
order to enable simulation of transformation specification.

REFERENCES

[1] ATL Project - http://www.eclipse.org/m2m/atl/

[2] Bollati, V., Vara, J., Jiménez, A., Marcos, E. “Applying MDE to the
(semi-)automatic development of model transformations.” Information
and Software Technology, pp.699-718, Elsevier, 2013.

[3] Guerra, E.; Lara, J.; Kolovos, D.; Paige, R. “A Visual Specification
Language for Model-to-Model Transformations.” IEEE Symposium on
Visual Languages and Human-Centric Computing, DOI
10.119/VLHCC.2010.25, 2010.

[4] Guerra, E.; Lara, J.; Kolovos, D.; Paige, R.; Santos O. “TransML: A
Family of Languages to Model Model Transformations.” Models, 2010,
DOI 10.1007/s10270-011-0211-2, Springer Verlag, . 2010.

[5] Iacob, M., Steen, M., Heerink, L.: “Reusable Model Transformation “
Pattern. In 3M4EC´08, pages 1-10, 2008.

[6] Magalhães, A. P., Andrade, A. ; Maciel, R.S.P.. “MTP: Model
Transformation Profile.” In: SBCARS, 2013, Brasilia. p. 109-118 2013.

[7] Mellor,S.; Clark, A.; Futagami, T. “Model Driven Development” IEEE
Software,2003

[8] OMG. Software Process Engineering Metamodel Specification, Version
2.0, (formal/08-04-01).2008.

[9] QVT specification - http://www.omg.org/spec/QVT/1.0/PDF/

[10] Lano, K.; Clark, D. “Model Transformation Specification and
Verification.” The 18th International Conference on Quality Software,
IEEE, 2008.

[11] Mens, T.; Gorp, P.V. “A Taxonomy of Model Transformation.” Elsevier
Eletronic Notes in Theiretical Computer Science 152 pp. 125-142 2006.

[12] Solingen, R. Basili, V.;Caldiera,G.; Rombach, H.D. Goal Question
Metric (GQM) Approach. John Wiley & Sons. Inc., 2002.

[13] Wohlin, C. Aurum, A. Towards a decision-making structure for
selecting a research design in empirical software Engineering. Empir
Software Eng DOI 10.1007/s 10664-014-9319-7. Springer, 2014.

[14] Wagelaar, D.; Tisi, M.; Cabot, J.; Jouault, F. Towards a General
Composition Semantics for Rule-Based Model Transformation.
MODELS, 2011.

[15] Cuadrado, J.; Guerra, E.; Lara, J. Generic Model Transformations: Write
Once, Reuse Everywhere. ICMT, 2011.

http://www.eclipse.org/m2m/atl/
http://www.omg.org/spec/QVT/1.0/PDF/

