
Identification and Classification of Requirements

from App User Reviews

Hui Yang

State Key Lab of Software Engineering

School of Computer, Wuhan University, China

huiyang@whu.edu.cn

Peng Liang*

State Key Lab of Software Engineering

School of Computer, Wuhan University, China

liangp@whu.edu.cn

Abstract—Review function, as a feedback mechanism from users

to developers and vendors, is provided by most APP distribution

platforms that allow users to rate and comment an APP after

using it. User reviews are recognized as a valuable source to

improve APPs and increase the value for users. With the sharp

increase in the amount of user reviews, how to effectively and

efficiently analyze the user reviews and identify potential and

critical user needs from them to improve the APPs becomes a

challenge. In this paper, we propose an approach to

automatically identify requirements information and further

classify them into functional and non-functional requirements

from user reviews, using a combination of information retrieval

technique (TF-IDF) and NLP technique (regular expression) with

human intervention in keywords selection for requirements

identification and classification. We validated the proposed

approach with the user reviews collected from a popular APP

iBooks in English App Store, and further investigated the cost

and return of our approach: how the size of sample reviews for

keywords selection (cost) affects the classification results in

precision, recall, and F-measure (return). The results show that

when setting an appropriate size of sample reviews, our approach

receives a relatively stable precision, recall, and F-measure of

requirements classification, in particular for non-functional

requirements, which is meaningful and practical for APP

developers to elicit requirements from user reviews.

Keywords-requirements identification; requirements

classification; user review analysis

I. INTRODUCTION

Review function is provided by most APP distribution
platforms (e.g., Apple App Store, Google Play) that allow users
to rate and comment an APP after using it, which provides a
feedback mechanism from users to developers and vendors of
the APP. User reviews are recognized as a valuable source to
improve APPs and increase the value for users [9][18], as the
reviews help developers to better understand user needs as a
type of collective knowledge [19]. However, existing APP
platforms provide limited support for developers to
systematically filter, aggregate, and classify user feedback to
derive requirements [9]. User review and rating information
has been investigated for technical and business purposes (e.g.,
APP price prediction) [11]. Pagano and Maalej collected the
user reviews of the top 25 APPs from each of the 22 categories
from App Store [1]. Based on the review data, they studied the
content of user feedback and its impact on the user community.
Chandy and Gu proposed an approach to automatically identify
spam reviews in the iOS App Store [5]. However, there is little
work on systematically and automatically identifying and

classifying requirements information from user reviews, which
will significantly improve requirements elicitation and analysis
in APP development. To this end, we propose an approach to
automatically identify requirements information from user
reviews and further classify them into functional (FR) and non-
functional requirements (NFR), which are the basic
classification of software requirements. For the practical
application of the proposed approach, we further analyze the
cost and return of our approach: how the size of sample
reviews for keywords selection (i.e., the cost, described in
Section III) affects the classification results in precision, recall,
and F-measure (i.e., the return, presented in Section IV.C).

In the rest of this paper: Section II provides an overview of
our proposed approach and the tool support. Section III
describes the principles, TF-IDF technique, and process of
selecting keywords for automated requirements identification
and classification. Section IV presents the experiment material
(user reviews of a popular APP iBooks) and the experiment
results. The implications of the results are discussed in Section
V. The threats to validity are described and analyzed in Section
VII. Related work is discussed in Section VI. We conclude this
work with further work directions in Section VIII.

II. APPROACH AND TOOL SUPPORT

When developing and continuously updating APPs,
developers (especially requirements engineers) are responsible
for being very much concerned about user experience and
needs (e.g., privacy requirements [20]). If the requirements
information from user reviews can be automatically identified
and classified, it will significantly help developers and vendors
to improve the quality and satisfaction of the APPs, for
example, collecting critical and missing features for APP
update. To this end, we propose an automated approach with
tool support for identifying and classifying requirements from
user reviews (see Fig. 1). There are two components in this tool:
User Reviews Extractor is used to extract and collect user
review information from APP platforms as raw data to be
further processed, and Requirements Identifier and
Classifier is used to identify and classify requirements from
user reviews into FRs and NFRs.

APP URL ID APP Country ID

Comment of

User Review

User Reviews

Extractor
Title of

User Review

Requirements

Keywords

Requirements

Identifier and

Classifier

FR

NFR

Figure 1. Proposed approach and tool architecture

* Corresponding author
This work is sponsored by the NSFC under Grant No. 61170025.

(DOI reference number: 10.18293/SEKE2015-063)

A. User Reviews Extractor

User Reviews Extractor uses APP URL ID and APP
Country ID as input parameters to extract the user reviews of
an APP from a specific APP platform. In the experiment of this
work, we extracted and collected user reviews (including
comment and title of user reviews) from APPs in Apple App
Store. User Reviews Extractor uses the APIs provided by an
open source package AppReviews

1
 for accessing and retrieving

the user reviews from App Store, which provides individual
web portal in different countries with local languages. Each
country store has its own APP Country ID, which allows us to
access App Store for each country and retrieve the user review
data of a specific APP using APP URL ID.

B. Requirements Identifier and Classifier

Requirements Identifier and Classifier is used to
automatically identify requirements from user reviews and
further classify them into FRs and NFRs. The inputs of
Requirements Identifier and Classifier are the title and
comment of user reviews and the extracted keywords (detailed
in Section III) and the outputs are FRs and NFRs that are
automatically classified. Note that some input user reviews
may not contain any requirements information, which are
namely spam reviews. These spam reviews

2
 are roughly

filtered out in Phase 2 (i.e., pre-processing user reviews). The
execution process of this component is composed of five
sequential phases as shown in Fig. 2, which are further detailed
in this section.

Phase 1: Input User Reviews
(obtained by APIs of Apple App Store)

Phase 2: Pre-process User Reviews

(combine title and comment of review,

stop-word elimination, stemming)

Phase 3: Extract Keywords

(use TF-IDF technique with human

intervention)

Phase 4: Combine Keywords

(use regular expression)

Phase 5: Identify and Classify Reviews

(into FRs and NFRs)

Figure 2. Processing phases of Requirements Identifier and Classifier

Phase 1: Input User Reviews to be processed: Preparing
user reviews to be processed obtained by User Reviews
Extractor as the input of Requirements Identifier and
Classifier.

Phase 2: Pre-process User Reviews: User reviews obtained
by User Reviews Extractor are pre-processed by
automatically combining the title and comment of these

1 http://www.perculasoft.com/appreviews/
2 We are not intending to filter out all spam reviews, but only the obvious

spams to improve the efficiency of subsequent processing.

reviews as the target content, followed by eliminating
punctuation marks (such as “,” , “.”) and stop words in natural
language processing, like “a”, “the”, and “this”, filtering out
spam reviews (e.g., the reviews less than three words), as well
as word stemming [3].

Phase 3: Extract Keywords: In this phase, human experts
(e.g., requirements engineers) first manually identify and
classify a certain number of user reviews as NFRs or FRs,
which are regarded as correct classifications, and then these
classified NFRs and FRs are used as sample reviews to extract
requirement keywords for automated identification and
classification of NFRs and FRs respectively. These
requirement keywords are automatically extracted from the
sample reviews using TF-IDF technique [16] with human
intervention by following the keywords extraction procedure
detailed in Section III.B.

Phase 4: Combine Keywords: Requirements Identifier
and Classifier combines the extracted keywords, the
requirement keywords from each sample review (obtained from
Phase 3), in various logical relationships (e.g., OR “|”) of
regular expressions (e.g., bug|crash). These regular expressions
are used to match (identify and classify) user requirements
from user reviews in Phase 5. For example, for FR,
^is|are*choice$, which represents such phrases “is … choice”
or “are … choices”.

Phase 5: Identify and Classify User Reviews: User
requirements are identified and classified from the pre-
processed content of reviews (obtained from Phase 2) using the
regular expressions (obtained from Phase 4). A user review is
automatically identified as requirement and classified into a
NFR (or FR) using the regular expressions if the review can
match the regular expressions (obtained from Phase 3). Note
that, the identification and classification of requirements are
performed in one step.

III. KEYWORDS SELECTION

A. Sample Reviews

According to the description in [14], a functional
requirement specifies “a function that a system must be able to
perform”, “what the product/system should do”, and a non-
functional requirement is restricted to a set of specific qualities
other than functionality: such as usability, reliability, and
security. For example, a user review: “the loss of the bookshelf
look, the boring and ugly flat design plus the stark white
background make it extremely difficult to read anything on this
app.” can be manually classified by domain experts as a NFR
usability; another user review: “at least give me the option of
how I would prefer it to look.” can be categorized as a FR that
allows users to configure the style of UI. These manually
identified and classified NFRs and FRs are used as sample
reviews to extract keywords for NFR and FR identification and
classification.

B. Keywords Extraction

As shown in Fig. 1, the requirement keywords are used to
identify requirements information from user reviews and
further to classify them into FRs and NFRs. The selection of

http://www.perculasoft.com/appreviews/

the keywords is critical to the quality of the requirements
identification and classification results.

In the field of information retrieval, Term Frequency -
Inverse Document Frequency (TF-IDF) [16] is a statistic-based
technique used to reflect how important a word is to a
document in a collection or corpus. This technique has been
successfully applied to text mining and classification (e.g.,
[15]). We use TF-IDF to calculate and evaluate the importance
of a word extracted from each sample NFR (or FR) review to
the set of sample NFR (or FR) reviews that are manually
classified by domain experts. TF means the importance of a
word extracted from each sample NFR (or FR) review to the
sample review. The words that obtain a high TF-IDF score in
each sample review require further checking by human experts,
who judge and select the keywords which act as representative
keywords of the sample review. For example, “privacy” is not
considered as the keyword for FR, and “feature” is filtered out
from the keywords for NFR. The selection criteria employed
by human experts are very simple: for FR, the words which
typically represent the NFR information should be excluded
from the FR keywords (e.g., “privacy”, “security”, “usability”,
and “crash”); for NFR, the words which typically represent the
FR information should also be excluded from the NFR
keywords (e.g., “feature” and “choice”).

The formulas for calculating the TF-IDF score of each word
[16] are as follows (Formula (1) and (2) are used for
calculating the TF-IDF score of NFR and FR words
respectively), which are further explained below.

 (Rv, w) | R(w) | (w)
Score (w) log

| Rv | (w) (w)
nfr

freq Nnfr

Na Na
   

 (Rv, w) | R(w) | (w)
Score (w) log

| Rv | (w) (w)
fr

freq Nfr

Na Na
   

Each word w in a sample review (NFR or FR) will obtain a
TF-IDF score Scorenfr(w) or Scorefr(w), which represents the
importance of the word w in identifying and classifying user
reviews. freq(Rv,w)/|Rv| denotes the TF (term frequency)
section of TF-IDF, in which |Rv| refers to the quantity of all the
words contained in the review Rv and freq(Rv,w) represents the
frequency of word w appearing in the sample review Rv.
log(|R(w)|/Na(w)) represents the IDF (inverse document
frequency) section of TF-IDF, in which Na(w) denotes the
number of sample reviews that contain the word w, and |R(w)|
denotes the number of reviews to be classified that contain the
word w. Nnfr(w) or Nfr(w) represents the number of NFR or
FR sample reviews that contain the word w. Nnfr(w)/Na(w) in
Formula (1) or Nfr(w)/Na(w) in Formula (2) implies if the word
w is more densely distributed in the set of sample NFR or FR
reviews, the word w is more important (i.e., Score(w) is higher)
in identifying and classifying NFRs or FRs from user reviews.

According to the obtained TF-IDF score of each word, the
words are extracted from each sample review as representative
requirement keywords of this sample review, and they are
added into the requirement keywords set (duplicated keywords
are removed). When keywords are extracted from all sample
reviews and added to the keywords set, the keywords selection
process is finished. The requirement keywords set is then used

to identify and classify requirements from user reviews. One
user review can be classified as NFR or FR when it contains
(can match) the requirement keywords of NFR or FR in the
requirement keywords set.

IV. EXPERIMENT

A. Experiment Material

iBooks is a popular APP in the books category to read and
buy books online through various Apple devices. This APP is
provided for free in App Store. We decided to choose the user
reviews of iBooks APP in English App Store as experiment
material for the following reasons: (1) there are a large number
of users of iBooks APP, which provide rich review data for the
experiment; (2) the user reviews of this APP can be easily
classified without the necessity of much domain knowledge,
which improves the reliability of the experiment results (further
discussed in Section VI); and (3) the review data in English is
widely understandable which might act as benchmark data for
other researchers to repeat this experiment using their own
classification methods and tools.

B. Selected Keywords

As described in Section III, keywords are selected from a
set of manually classified sample reviews. To investigate the
cost and return of our approach, i.e., how the size of sample
reviews (cost) for keywords selection affects the classification
results (return), we provide increasing sizes of sample reviews
as follows: 1, 3, 5, 7, 9, 10, 20, 30, 50, and 100. It is worth
noting that these sets of sample reviews are independent of
each other (i.e., one user review cannot exist in two sample
sets). We then extracted the keywords from different size of
sample reviews for identifying and classifying user
requirements by following the keywords extraction procedure
(in Section III.B). We first extracted the keywords from the
latest “1” user review of iBooks APP, and then we iterated the
keywords selection steps towards the remaining latest 3, 5, 7, 9,
10, 20, 30, 50, and 100 reviews from iBooks. Finally, all the
selected keywords from each set of sample reviews are
collected in an XML file and used to identify and classify
requirements from the user reviews of iBooks. The requirement
keywords, extracted using TF-IDF for each set of sample
reviews, and further checked by human experts (see Section
III.B), are available online

3
.

C. Experiment Results

To investigate the effectiveness of our approach, we
compare the manual classification results by experts (the two
authors), which act as ground truth, with the identification and
classification results. The experiment use 1000 user reviews as
experiment material retrieved from iBooks APP in English App
Store. For the practical application of the approach, we further
analyze the cost and return of our approach as discussed in
Section IV.B, i.e., the experiment results are further evaluated
and compared with different sizes of sample reviews (cost)
using precision, recall, and F-measure of the classification
results (return). The experiment results are presented below.

3 http://www.cs.rug.nl/search/uploads/Resources/TF-IDF-Keywords.zip

http://www.cs.rug.nl/search/uploads/Resources/TF-IDF-Keywords.zip

In iBooks APP from English App Store, we obtained 217
(set B in Fig. 3) user reviews containing FR information and
622 user reviews containing NFR information among the 1000
user reviews (some user reviews may contain both FR and
NFR information) by manual classification (i.e., the ground
truth). To examine that how the size of sample reviews affects
the classification results, we provide the sizes of sample
reviews as follows: 1, 3, 5, 7, 9, 10, 20, 30, 50, and 100, which
is shown in the x-axis of Fig. 4 and Fig. 5.

We evaluate our approach through comparing automated
classification results with manual classification results. We use
F-measure which is a combination of precision and recall used
in the evaluation of information retrieval systems [2] to
measure the overall performance of the automated
classification results.

In this work, precision means the percentage of user
reviews that are correctly classified as FRs or NFRs compared
to all the classified results (i.e., set A divided by C as illustrated
in Fig. 3), and the recall refers to the percentage of user reviews
that are correctly classified as FRs or NFRs compared to the
manual classification results - the ground truth (i.e., set A
divided by B in Fig. 3).

B: Number of user reviews

containing FRs

(manual classification results

ground truth)

A: Number of user reviews that are

correctly classified as FRs

(part of automatic classification results)

C: Number of user reviews that are

classified as FRs

(automatic classification results)

RECALL = A / B PRECISION = A / C

Figure 3. Recall and Precision calculation for classification results evaluation

We calculate and get the evaluation results of FR and NFR
classification as shown in TABLE I and TABLE II respectively
(including the size of sample reviews, the number of extracted
keywords using TF-IDF, Precision, Recall, and F-measure for
FR and NFR classification). Fig. 4 and Fig. 5 show the trend
line of Recall, Precision, and F-measure for FR and NFR
classification results on iBooks user reviews along with
different sample sizes of user reviews. These two figures show
that the value of F-measure (represented in blue line) is
significantly increased as the size (number) of sample reviews
increases, but when the size of sample reviews reaches a
certain threshold, the value of F-measure tends to be stable.
The possible explanation of the experiment results and their
implications will be discussed in Section V.

TABLE I. RESULTS OF AUTOMATED FR CLASSIFICATION ON 1000

IBOOKS USER REVIEWS WITH DIFFERENT SIZES OF SAMPLE REVIEWS

Sample Size
No. of

Keywords
Precision Recall F-measure

1 5 0.000 0.000 0.000

3 15 0.406 0.129 0.196

5 18 0.454 0.184 0.262

7 20 0.469 0.207 0.288

9 24 0.404 0.281 0.332

10 26 0.394 0.249 0.305

20 53 0.385 0.525 0.444

30 56 0.356 0.710 0.474

50 75 0.383 0.636 0.478

100 116 0.350 0.760 0.479

Figure 4. Trend lines of Precision, Recall, & F-measure for FR classification
on 1000 iBooks user reviews with different sizes of sample reviews

TABLE II. RESULTS OF AUTOMATED NFR CLASSIFICATION ON 1000

IBOOKS USER REVIEWS WITH DIFFERENT SIZES OF SAMPLE REVIEWS

Sample Size
No. of

Keywords
Precision Recall F-measure

1 5 0.909 0.032 0.062

3 12 0.837 0.215 0.342

5 16 0.836 0.418 0.557

7 25 0.816 0.740 0.776

9 22 0.820 0.698 0.754

10 28 0.826 0.704 0.760

20 43 0.795 0.810 0.803

30 57 0.758 0.897 0.823

50 82 0.761 0.895 0.823

100 104 0.745 0.924 0.825

Figure 5. Trend lines of Recall, Precision, & F-measure for NFR classification

on 1000 iBooks user reviews with different sizes of sample reviews

V. DISCUSSION

We explain the experiment results and discuss their
implications according to the visualization in Fig. 4 and Fig. 5.

1) In both Fig. 4 and Fig. 5, the value of F-measure

dramatically increases when the sample size increases initially

(e.g., from 1 to 20 for FR classification, and from 1 to 7 for

NFR classification), and after that size (number) the value of F-

measure tends to be stable. This result implies that there is a

certain threshold of sample size that can achieve a comparably

good and balanced classification results without the necessity

to increase the sample size unceasingly.

2) The significant difference between the thresholds of

sample size for FR and NFR classification (20 vs. 7 in this

experiment) implies that NFR classification requires less

sample reviews to get a decent set of keywords reaching a

stable F-measure than FR classification, which is reasonable

since the FR keywords are more domain-dependent than the

NFR keywords. This may also explain a relatively higher F-

measure (e.g., when the sample size is 100) of the NFR

classification results (0.825) than the FR results (0.479).

3) From both Fig. 4 and Fig. 5, it can be found that the

three trend lines of Precision, Recall, and F-measure have an

intersection point (e.g., a sample size (number) between 10 to

20 for FR classification, and 20 for NFR classification), and

after that size (number) the value of F-measure tends to be

stable. This intersection point seems providing a reliable way to

decide the threshold of sample size as discussed in point (1) for

a balanced (cost vs. return) classification results. But this

conjecture should be validated with more experiments (APPs).

VI. THREATS TO VALIDITY

We discuss the threats to the validity by following the
guidelines in [4] and how they are partially mitigated.

Construct validity: We use F-measure from information
retrieval theory to evaluate the requirements classification
results. The automated requirements classification with our
approach is basically an information retrieval activity since
both of them use keywords to get results.

Internal validity focuses on the unknown factors that may
have an influence on the study results. This experiment is a
study about the performance of the proposed approach (to what
extend the approach can identify and classify requirements
from user reviews) using descriptive statistics. In other words,
we did not investigate and intend to establish any causal
relationship between the identification and classification results
and the factors that may impact the results in this study, and the
threats to internal validity are minimal.

External validity: We applied our approach to a popular
APP from the books category (application domain) in English
App Store with promising results. This experiment can be
repeated with APPs in other domains and languages to improve
the applicability and generalizability of the proposed approach.

Reliability: The manual requirements classification results
by experts are regarded as ground truth to be compared with
the automated classification results for the evaluation (in

Section IV.C), but the manual classification results might be
different when conducted by different experts, which makes the
evaluation results not reliable. We tried to mitigate the
influence of this issue by three measures: (1) we selected a
general APP iBooks and its reviews can be reliably classified
without the need of much domain knowledge. (2) the manual
classification results by the first author were checked by the
second author, and any disagreement on the classification
results was discussed and resolved. (3) the manual
classification results were further examined by 10 master
students, who major in software engineering through voting.
We also set criteria (see Section III.B) to select requirement
keywords by experts, and this mitigates the bias when different
experts select representative keywords from the keywords
obtained by TF-IDF.

VII. RELATED WORK

We summarize and discuss relevant work and their
relationship to our work in this section.

Chen and his colleagues proposed a method to
automatically mine informative reviews for APP developers,
and further rank these informative reviews [21]. Our work aims
to identify and classify the informative reviews that contain
requirement information as functional and non-functional
requirements.

Khalid and his colleagues [17] focused on low star-rating
user reviews of free iOS APPs, and identified 12 types of
complaints that users complain about. They found that
functional errors, feature requests, and APP crashes are the
most frequent complaints, which supports that user reviews are
indeed rich source of requirements.

Pagano and Maalej presented an empirical study on user
feedback in the App Store [1]. They mainly discussed the usage
of user feedback by the users, the content of user feedback, and
its impact on the user community in the App Store, through
analyzing the App Store review data with statistical approaches.
They also discussed the impact of user feedback to
requirements engineering, which inspires our work.

Galvis Carreño and Winbladh focused on changing
requirements and creating new requirements using the topics
identified from user reviews [13], while our work is different in
that we try to identify original requirements and classify them
from user reviews. The outcome of our approach can act as
input (identified and classified user requirements) of [13] for
topics identification in requirements evolution.

Chandy and Gu proposed an approach to automatically
identify spam reviews in the iOS App Store [5], which
compared the performance of a baseline Decision Tree model
with a novel Latent Class graphical model to the classification
results of App review spam. The difference of their work to our
work is that they employ data mining techniques and focus on
spam identification.

Finkelstein and his colleagues [11] introduced a method to
extract feature and price information of the APPs in the
Blackberry App Store for an analysis that combines technical,
business, and customer properties. The analysis results are
further used as the input to predict the prices of APPs with

case-based reasoning, while our work focuses on the extraction
of user requirements information from APP user reviews.

Sagar and Abirami investigated conceptual modeling of
FRs in natural language [10]. For the purpose of visualizing the
FRs, they focus on automated extraction of concepts and their
relationships to create a conceptual model based on linguistic
aspects of the English language. Their work could be useful to
develop the conceptual model for FR identification and
classification from user reviews.

The work on mining general and APP repositories focuses
on analyzing the feature information among user reviews, and
understanding their inter-relationships with other factors, e.g.,
rating, price, downloads, and code [6][7][11]. Our approach
tries to combine App Store reviews mining and requirements
engineering to help developers understand the trend of software
products in order to improve their APPs.

VIII. CONCLUSIONS AND FUTRUE WORK

In this paper, we present an approach, which can
automatically identify and classify requirements from user
reviews. We validated the proposed approach with user reviews
collected from a popular APP iBooks in English App Store,
and further investigated the cost and return of our approach:
how the size of sample reviews for keywords selection (cost)
affects the classification results in precision, recall, and F-
measure (return). The results show that when setting an
appropriate size of sample reviews, our approach receives a
relatively stable precision, recall, and F-measure of
requirements classification, in particular for non-functional
requirements, which is meaningful and practical for APP
developers to elicit requirements from user reviews. In the next
step, the approach can be improved in three promising aspects:

1) To validate our approach with user reviews of APPs

from other application domains (e.g., social networking,

finance) and languages (e.g., East Asian languages) and

perform comparative studies with other identification and

classification approaches (e.g., through data mining, machine

learning techniques) in order to mitigate the threats to the

external validity of the results.

2) The identified and classified requirements can be

further prioritized to show their importance when hundreds-

and-thousands of requirements flooding to developers [8]. The

potential factors for prioritizing requirements from user

reviews are different from those for general requirements

prioritization, for example, rating information, length of user

review, and stickiness or importance of the user who submitted

the review. All these factors are expected to have an influence

on prioritizing requirements from use reviews, and other

potential factors should also be considered depending on the

needs of requirements prioritization in context.

3) Functional and non-functional requirements are not

independent of each other [14], for example, one NFR may

impact many FRs, which is an important part of requirements

traceability. The potential relationships between classified FRs

and NFRs can be promisingly identified through their source

analysis, e.g., the user-review relationships.

REFERENCES

[1] D. Pagano and W. Maalej, “User feedback in the AppStore: An
empirical study,” In: Proceedings of the 21st International Conference
on Requirements Engineering (RE), IEEE, 2013, pp. 125-134.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
vol. 463. New York. ACM Press, 1999.

[3] J. B. Lovins, Development of A Stemming Algorithm. MIT Information
Processing Group, Electronic Systems Laboratory, 1968.

[4] F. Shull, J. Singer, and D. I. Sjøberg (Eds.), Guide to Advanced
Empirical Software Engineering. Springer, 2008.

[5] R. Chandy and Gu. H, “Identifying spam in the iOS app store,” In:
Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web
Quality (WebQuality), ACM, 2012, pp. 56-59.

[6] M. Harman, Y. Jia, and Y. Zhang, “App Store mining and analysis:
MSR for App Stores,” In: Proceedings of the 9th Working Conference
on Mining Software Repositories (MSR), IEEE, 2012, pp. 108-111.

[7] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production & test
code”. In: Proceedings of the 1st International Conference on Software
Testing, Verification, and Validation (ICST), IEEE, 2008, pp. 220-229.

[8] S. Gartner and K. Schneider, “A method for prioritizing end-user
feedback for requirements engineering,” In: Proceedings of the 5th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), IEEE, 2012, pp. 47-49.

[9] U. Abelein, H. Sharp, and B. Paech, “Does involving users in software
development really influence system success?” IEEE Software, IEEE,
30(6):17-23, 2013.

[10] V. Sagar and S. Abirami, “Conceptual modeling of natural language
functional requirements,” Journal of Systems and Software, Elsevier,
88(2):25-41, 2014.

[11] A. Finkelstein, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “Mining App
Stores: Extracting technical, business and customer rating information
for analysis and prediction,” Research Note, RN/13/21, 2013.

[12] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated
classification of non-functional requirements,” Requirements
Engineering, Springer, 12(2):103-120, 2007.

[13] L.V. Galvis Carreño, and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” In: Proceedings of
the 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 582-591.

[14] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-functional
Requirements in Software Engineering. Springer, 2000.

[15] M.K. Dalal, and M.A. Zaveri, “Automatic text classification of sports
blog data”, In: Proceedings of the 2012 Computing, Communications
and Applications Conference (ComComAp), IEEE, pp.219-222, 2012.

[16] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” In: Proceedings of the 1st Instructional Conference on Machine
Learning (iCML), 2003, pp. 119-122.

[17] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile
App users complain about? A study on free iOS Apps,” IEEE Software,
IEEE, DOI: http://dx.doi.org/10.1109/MS.2014.50, 2014.

[18] M. Bano and D. Zowghi, “User involvement in software development
and system success: A systematic literature review,” In: Proceedings of
the 17th International Conference on Evaluation and Assessment in
Software Engineering (ESEM), ACM, 2013, pp. 125-130.

[19] P. Liang, P. Avgeriou, K. He, and L. Xu, “From collective knowledge to
intelligence: pre-requirements analysis of large and complex systems,”
In: Proceedings of the 1st Workshop on Web 2.0 for Software
Engineering (Web2SE), ACM, 2010, pp. 26-30.

[20] K. Thomas, A.K. Bandara, B.A. Price, and B. Nuseibeh, “Distilling
privacy requirements for mobile applications,” In: Proceedings of the
36th International Conference on Software Engineering (ICSE), ACM,
2014, pp. 871-882.

[21] N. Chen, J. Lin, S.C.H. Hoi, X. Xiao, and B. Zhang, “AR-Miner: mining
informative reviews for developers from mobile app marketplace,” In:
Proceedings of the 36th International Conference on Software
Engineering (ICSE), ACM, 2014, pp. 767-778.

http://dx.doi.org/10.1109/MS.2014.50

