
DOI reference number: 10.18293/SEKE2015-091

Towards Effective Developer Recommendation in

Software Crowdsourcing

Shixiong Zhao, Beijun Shen
*
, Yuting Chen, Hao Zhong

School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University

Shanghai, China

{649707869, bjshen, chenyt, zhonghao}@sjtu.edu.cn

* corresponding author

Abstract—Crowdsourcing has attracted increasing attention from

both industry and academia since it was proposed. Now a lot of

work is finished by crowdsourcing, such as logo design, website

promotion, industrial design, copywriting, software development,

translation and image annotation. Although software

crowdsourcing achieves positive results in practice, we still face a

challenge of assigning suitable developers to specific tasks. In this

paper, we propose a novel approach that recommends developers.

In particular, our approach supports: comprehensively

measuring the tasks and developers in software crowdsourcing,

and recommending developers on the basis of the developer-task

competence, task-task similarity, and soft power.

Keywords- software crowdsourcing; developer recommendation;

developer model

I. INTRODUCTION

Crowdsourcing is the act of taking a job traditionally
performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of people
in the form of an open call [1]. It has attracted great attention
from both industry and academia. Now a lot of work is finished
by crowdsourcing, such as logo design, website promotion,
industrial design, copywriting, software development,
translation and image annotation. Meanwhile, when employing
crowdsourcing to accomplish software development tasks, we
face a challenge of assigning suitable developers to specific
tasks. Up to now, most development tasks are assigned in a
form of bidding or competition. As a result, much human effort
is wasted. Although many attendees would compete for the
tasks, some tasks are not well accomplished, since they are not
assigned to the most suitable developers.

To the best of our knowledge, most crowdsourcing
platforms still rely on crowdsourcers to assign tasks. As a result,
crowdsourcers have to spend much time in matching the tasks
and the developers. To make things worse, a crowdsourcer is
usually biased, since he or she may not have a thoroughly
understanding of all developers.

To address the above problem, in this paper, we propose a
novel approach that recommends suitable developers to tasks in
software crowdsourcing. In particular, our approach uses two
models to measure tasks and developers, respectively. For
given tasks and developers, our approach computes their

developer-task competences, task-task similarities, and soft
powers, and recommends the best candidate(s) to each task.

II. RELATED WORK

Most research on crowdsourcing is concentrated on several
topics, including how to apply crowdsourcing [2, 3], how to
control the quality of crowdsourcing [4, 5], how to allocate
crowdsourcing tasks.

Few researchers discuss how to recommend workers. In
particular, I. Boutsis and V. Kalogeraki [6] present REACT
that schedules tasks for the crowd under time constraints. It
collects worker profiles (e.g., real-time computational
capabilities) and dynamically assigns tasks to suitable workers.
Research [7] advocates replacing “pull” with “push” for task
allocation to achieve higher quality. They analyze the social
network of the crowd to gain better performance. E. Simpson
and S. Roberts [8] present an information-theoretic approach to
assigning workers to specific tasks in crowdsourcing using a
Bayesian method. Research [9] proposes to use auctions to map
tasks to workers. They organize auctions taking into account
price and the suitability of workers estimated based on
generated user profiles.

Meanwhile, the existing researches mainly focus on simple
tasks, e.g., image annotation, and most researchers just do
theoretic research or provide their frameworks. In addition,
most of their researches are not domain specific and not
complete. They are not able to be applied to software
crowdsourcing. We provide an approach to recommend
suitable developers to software development tasks.

III. TASK MODEL AND DEVELOPER MODEL

Our approach first abstracts software development tasks

and developers with two models. The models measure the

tasks and developers quantitatively and thus help establish

matching relations between them.

A. Task Model

We model a task as [ID, software category, software size,

ability requirement(s), enrolled deadline, task deadline, budget,

location].

Each task is associated with one or more ability

requirements, and each ability is composed of three sub-

attributes: “type” and “name” are the type and name of an

TABLE I. DEVELOPER MODEL

Attribute Sub-attribute Field

ID / /

Base

information

Address /

Education
background

Degree

Major

Work experience
Job

Duration

Service range / /

Ability and

development

experience

Ability

Type

Name

Level(1..5)

Development
experience

Date

Task

Earning

Evaluation

Credit and
guarantee

Credit

/

Guarantee

Task-specific

information

Task-ID

Bid price

Delivery time

ability requirement; and “level” represents the required degree

of skills. For example, [coding language, Java, 3] indicates

that the task requires a Java programmer at a level of “3”.

A task has other attributes: “software category” is the kind

of the software; “software size” is the size of the software, and

it could be an estimated value given by the crowdsourcer for

the developers to estimate a reasonable delivery time;

“enrolled deadline” is the deadline for the enrollment; and

“task deadline” is the deadline to complete the task. Each task

is also associated with “budget”, working “location”.

B. Developer Model

A developer model defines the attributes of developers. As
shown in Table I, the developer model has the key attributes of
a developer in software crowdsourcing.

“Base information” includes personnel information of a

developer: “address” determines whether a developer can be

assigned when a task has the location requirement; “education
background” and “work experience” are strong reference;

“service range” indicates what kinds of software a developer

is able to develop.

The “ability and development experience” attribute helps

crowdsourcer decide whether or not a developer is competent

for a task: “ability” is similar to the ability requirement in the

task model; “development experience” shows the history of a

developer in completing software tasks in the crowdsourcing

platform.

“Guarantee” is the guarantee provided by the developer. It
is measured by the security deposit of a developer. “Credit”
shows the status of development credits: after completing each
crowdsourcing task, the developer is evaluated by the
crowdsourcer. When calculating the credit of a developer, we
consider these factors: if two developers have the same credit
value (e.g., four stars), the one with more earnings is preferred
(reward-related); the credit changes over time, thus a credit that
is gained a long time ago has a weak effect (time-related).

The task-specific information is associated with the task

that the developer is enrolled in. It includes task-ID, bid price,

and promised delivery time.

IV. DEVELOPER RECOMMENDATION

After a task is released, the crowd can browse and enroll for
the task. We recommend the suitable developers among the
candidates to tasks. The crowdsourcer selects developers to
accomplish tasks according to recommendation list.

Employing our task model and developer model, we
calculate the developer-task competence (comd-t), the task-task
similarity (simt-t) and the soft power of developers (sftpwr),
when recommending developers. In particular, the developer-
task competence is used to measure whether a developer is
competent for a task; the task-task similarity measures whether
a developer has good similar work experience; and soft power
reflects personal inner qualities, e.g., the credit of the developer.
The three factors complement each other and are useful to
match tasks and developers comprehensively. Based on them,
we calculate recommendation index (recindex) of a developer
by (1). The larger recindex is, the higher the developer will be
in the recommendation list.

 x w (1)

where + + = 1.

Next, we will introduce how to calculate the developer-task
competence, the task-task similarity and the soft power.

A. Developer-task competence

The developer-task competence (comd-t) measures whether

a developer satisfies the requirements of a task. We calculates

this value by

 ⁄

 It is calculated from the software category competence

(comctg), the ability competence (comabi), the task deadline

competence (comdln), the budget competence (combgt), and

location competence (comloc). The requirement of task

deadline and category is compulsory, so in (2), comdln and

comctg act as multipliers. The formula of comdln, comctg, combgt,
comloc, and comabi are defined in Table II.

B. Task-task similarity

If a developer has the development experience of similar
tasks in the crowdsourcing platform, it will be an important

TABLE II. CALCULATION OF DEVELOPER-TASK COMPETENCE FACTORS

Factor Value Condition

comdln
1 v y ≤ k

0 otherwise

combgt
1 ≤ u

Bu ⁄ otherwise

comloc
1

the developer’s address is (in) the required

location

0 otherwise

comctg
1

 h v ’ v v h

 qu w y

0 otherwise

comabi0
 y v

calculating one of required abilities of the task

comabi
1 ⁄ ×∑

 0

𝒏

𝒊=𝟎

there are n required abilities in the task

comtyp
1

 v h h y w h h y
 h qu y

0 otherwise

comnam

1
 v h h y w h h

 h qu y

0.5

 v y h h y w h h

u h qu y

e.g., name of required ability: C, name of
developer’s ability: C

0 otherwise

comlev
1 v w ≤ v

 v w / v otherwise

reference. As a result, we take the task-task similarity into
account, and here defines a task as T = [cat, typ, nam, lev, bgt].
The i-th done task of a developer is presented with Ti = [cati,
typi, nami, levi, bgti, evli], where Cat, typ, nam, lev and bgt
represent category, ability type, ability name, ability level, and
budget, repectively; and evl is the evaluation of a developer
gotten from the crowdsourcer on this task.

We use Soft Jaccard’s Coefficient to measure the task-task
similarity. Suppose that the evaluation value is an integer from
1 to 5, and the developer has n finished tasks in total, simt-t is
calculated as follows:

 {
| |

| |

 }

For cat, if cat = cati, they are regarded as intersected.
Otherwise they are disjoint. So are typ and nam. For lev, if the
name of the i-th finished task is same with the task, and levi is
not lower than lev, they are regarded as intersected. Otherwise,
they are disjoint. For bgt, if 1/5≤bgt/bgti ≤5, they are regarded
as intersected. Otherwise, they are disjoint. When judging
whether they are intersected or not, the condition is relaxed but
not just depending on whether they are the same, so we call it
Soft Jaccard’s Coefficient.

Soft Power

Base information Credit and guarantee Recent performance

Education

background

Work

experience

Credit Number of

finished tasks

EarningsGuarantee

score Bas
weight Basw

score Edu
weight Eduw

score Wor
weight Worw

score CreGua
weight CreGuaw

score Rec
weight Recw

score Tas
weight Tasw

score Ear
weight Earw

score Cre
weight Crew

score Gua
weight Guaw

Figure 1. Composition of soft power

Although a developer has experience on a similar task,
she/he may not do the task well. Considering this issue, when
calculating the task-task similarity, our appoach introduces the
crowdsourcer’s evaluation, evli. All the similar tasks of a
developer are calculated one by one, and we select the
maximum value as simt-t.

C. Soft power

Some information of a developer are not reflected in comd-t

and simt-t, e.g., the education background, work experience (not
in software crowdsourcing), the credit, the guarantee of a
developer, and the recent performance. We call these factors
soft power. The composition of soft power is in Fig. 1. “sftpwr”
is calculated by

 w B B w u u w w ()
where Basw + CreGuaw + Recw = 1

Now we will focus on “Bas”, “CreGua” and “Rec”.

1) “Bas”
The base information includes education background and

work experience. The original “Bas0” is calculated by (5).
Suppose that BASE is the maximum value among all the
enrolled developers, we divide “Bas0” by BASE to get “Bas”.

B 0 u uw w (5)
 uw w

The education background includes some [degree, major]

tuples. “Edu” is calculated by (6). The work experience
includes some [job, duration] tuples. “Wor” is calculated by (7).
The score of degree (Degree) is 1, 2, 3 for bachelor, master,
doctor respectively, and 0 for others. The score of major
(Major) is 1 if the major is software-related, 0 otherwise, and
so is the score of Job (Job). We divide the duration into several
intervals, and the score of duration (Duration) is 1 if the

developer’s work duration is in [0, dura1), 2 if it is in [dura1 ,
dura2), and so on.

Edu = ∑

×

 1 ()

Wor ∑ × u

 1

2) “CreGua”
“CreGua” includes credit and guarantee. The original

“CreGua0” is calculated by (8). Suppose that CREGUA is the
maximum value among all the enrolled developers, we divide
“CreGua0” by CREGUA to get “CreGua”.

 0 w u w ()
where w w 1

“Cre” consists of two parts, good record and bad record.

The weight of bad record (Badw) is greater than weight of good
record (Goodw), because we punish those developers who have
“bad” record, since employers would not deliver tasks to
developers with bad credits. As the credit is time-related and
reward-related, we introduce two parameters, Timew and
Rewardw. Timew is calculated by (9), where T represents the
months of age of the crowdsourcing platform, and ∆t represents
the period (months) for the evaluation. This formula ensures
that the longer from now, the less effect the credit record has.
The effect won’t disappear. Rewardw is calculated using the
similar method as “Duration” but the intervals are divided by
reward. Since there can be many credit records, “Cre” of a
developer is calculated by (10).

w
 ⁄ × ()

 ∑ w× w × w w

 1

 ∑B w× w × w w 1

 1

 “Gua” presents the guarantee of a developer. It is
measured by the security deposit of a developer. “Gua” is
calcualted using the similar method as “Duration” but the
intervals are divided by security deposit.

3) “Rec”
The recent performance often reflects the activeness of a

developer. The more active a developer is, the more effort can
be put in crowdsourcing. “Rec” is calculated by combing the
number of finished tasks (“Tas”) of the developer, and earnings
he/she has made (“Ear”) in the recent 3 months. The original
“Rec0” is calculated by (11), where “Tas” and “Ear” are
calculated using the similar method as “Duration” but the
intervals are divided by number of recent finished tasks and
recent earnings, respectively. Suppose that REC is the

maximum value of all enrolled developers, we divide “Rec0” by
REC to get “Rec”.

 0 w w (11)
where w w 1

V. EVALUATION PLAN

In the future, we will evaluate our approach in the three

steps:

 Data preparation. We will fetch the most suitable data

of accomplished software development tasks and do

preprocessing.

 Parameter tuning. We will use greedy search to find

the best value of the parameters in our approach.

 Precision comparison. We will recommend developers

to tasks with our approach and compare the precision

of our approach with a general approach.

VI. CONCLUSIONS

There exists a challenge of assigning the most suitable
developers to specific tasks in software crowdsourcing. In this
paper, we proposed an approach of recommending developers
for software crowdsourcing. Firstly, our approach models the
task and the worker comprehensively. Then our approach
recommends developers for software crowdsourcing tasks
based on their developer-task competence, task-task similarities
and developer’s soft powers.

ACKNOWLEDGMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242, 91118004).

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired, pp. 1-4, June 2006.

[2] A. Brew, D. Greene, and P. Cunningham, “Using crowdsourcing and
active learning to track sentiment in online media,” in Proc. 19th
European Conf. on Artificial Intelligence. Lisbon, 2010, pp. 145–150.

[3] O. F. Zaidan and C. Callison-Burch, “Crowdsourcing translation:
Professional quality from non-professionals,” in Proc. 49th Annual
Meeting of the Association for Computational Linguistics. Portland,
2011, pp. 1220-1229.

[4] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H.R. Motahari-Nezhad, E.
Bertino, and S. Dustdar, “Quality Control in Crowdsourcing Systems:
Issues and Directions,” IEEE Internet Computing, Vol. 17, pp. 76-81,
March-April 2013.

[5] U. Hassan and E. Curry, “A Capability Requirements Approach for
Predicting Worker Performance in Crowdsourcing,” in 9th Int. Conf. on
Collaborative Computing: Networking, Applications and Worksharing.
Austin, 2013, pp. 429-437.

[6] I. Boutsis and V. Kalogeraki, “Crowdsourcing under Real-Time
Constraint,” in IEEE 27th Int. Symp. on Parallel & Distributed
Processing. Boston, 2013, pp. 753-764.

[7] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux, “Pick-A-Crowd:
tell me what you like, and I’ll tell you what to do,” in WWW 2013. Rio
de Janeiro, 2013, pp. 367-374.

[8] E. Simpson and S. Roberts, “Bayesian Methods for Intelligent Task
Assignment in Crowdsourcing Systems,” in Studies in Computational
Intelligence, Springer, vol. 538, pp 1-32, Feburary 2015.

[9] B. Satzger, H. Psaier, D. Schall, and S. Dustdar, “Auction-based
crowdsourcing supporting skill management,” in Information Systems,
vol.38, pp. 547-560, June 2013.

