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Abstract

Architecture description languages (ADLs) encapsulate
domain concerns in components. Most ADLs enforce do-
main experts to use general purpose programming lan-
guages (GPLs) or an especially designed, fixed component
behavior language. Domain-specific languages (DSLs), on
the other hand, aim to reduce the conceptual gap between
problem domain challenges and GPL solutions. Current
ADLs focus on software engineering and disregard inte-
gration of domain-specific component behavior languages.
We combine results from DSL-based software language en-
gineering with component & connector ADLs to present
a concept for the non-invasive and exchangeable integra-
tion of both. The concept is realized with the MontiArc-
Automaton component & connector ADL. This liberates do-
main experts from using GPLs and facilitates their contri-
bution.

1 Introduction

Engineering non-trivial software systems requires ab-
straction, domain expertise, and separation of concerns.
Domain experts are rarely software experts. Enforcing their
contribution via general-purpose programming languages
(GPLs) introduces notational noise [1] and raises accidental
complexities [2]. Instead, experts should be enabled to use
the most appropriate domain-specific languages (DSLs).
Their integration requires to separate domain concerns from
integration concerns, while supporting to reuse participat-
ing DSLs in different contexts. Component & connector
(C&C) architecture description languages (ADLs) [3] en-
able composition of software architectures from compo-
nent models. Encapsulation of components empowers sep-
aration of concerns. Nonetheless, most ADLs require do-
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main experts to contribute using GPLs or models of apriori
fixed DSLs. The former gives rise to accidental complexi-
ties, the latter demands that domain experts use DSLs for-
eign to their domain. We present a concept for engineer-
ing C&C software architectures with exchangeable compo-
nent behavior DSLs that facilities contribution of domain
experts. It relies on results from software language engi-
neering. The contribution of this paper is a concept for
language integration into C&C ADLs and its realization in
MontiArcAutomaton [4] based on the MontiCore language
workbench [5]. Sec. 2 motivates behavior language inte-
gration by example. Sec. 3 describes preliminaries. After-
wards, Sec. 4 presents the integration concept and Sec. 5
describes its realization. Sec. 6 discusses observations and
Sec. 7 presents related work. Sec. 8 concludes.

2 Example

Consider a robotics company producing cleaning service
robots. For better comprehension, reuse, separation of do-
main concerns, and translation into GPLs for multiple target
platforms, the software architectures of the robots are mod-
eled with a C&C ADL. The architecture for cleaning robots
with a single arm to pick up garbage is depicted in Fig. 1. It
relies on a garbage detector to locate garbage in its vicinity
and uses a container checker to estimate whether it must be
emptied. Based on their results, a central action controller
derives the next action. The action is emitted via the con-
troller’s ports to a navigation component that realizes move-
ment and to an arm component that operates the robot’s
arm. The behaviors of GarbageDetector, Contain-
erChecker, and Navigation are implemented in a
GPL to interface robotics middleware (such as ROS [6]).
The behavior of ActionController and Arm is mod-
eled using DSLs: ActionController uses embedded
automata (see Sec. 5), Arm a language to describe move-
ment of a robot arm in terms of joint space locations [4].
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Figure 1. The software architecture for cleaning service robots with single arms comprises six compo-
nents. The components ActionController and Arm encapsulate behavior in form of domain-specific
language models.

The company’s robot behavior expert and its robot arm
control expert can contribute models of these languages in-
stead of dealing with the accidental complexities of pro-
gramming. The embedding of the languages into compo-
nents furthermore enables domain experts to contribute so-
lutions without considering cross-cutting integration con-
cerns. As they also are independent of the target platform’s
GPL, the components can be transformed into artifacts for
different GPLs to be reused with different platforms.

This illustrates how behavior language integration into a
C&C ADL enables domain experts to use the most suitable
languages to contribute component behavior and increases
reuse of components with different platforms.

3 Preliminaries

MontiArcAutomaton [4] is an architecture modeling in-
frastructure for the model-driven engineering of C&C soft-
ware architectures centered around the extensible Monti-
ArcAutomaton ADL [7]. It supports translation of inte-
grated components into GPL artifacts via compositional
code generators [8].

With MontiArcAutomaton, modelers describe software
systems as hierarchically composed components that inter-
act via static connectors. Components encapsulate function-
ality behind interfaces of sets of typed, directed ports. Types
of ports are modeled as class diagrams. Components either
are atomic or composed: atomic components define input-
output behavior via embedded behavior models or GPL be-

havior implementation artifacts. The input-output behavior
of composed components is defined by the interaction of
their subcomponents.

MontiArcAutomaton relies on the MontiCore [9, 5] lan-
guage workbench. MontiCore languages are extended
context-free grammars (CFG) with well-formedness rules
implemented in Java. From a language’s grammar, Mon-
tiCore generates infrastructure to parse its models into ab-
stract syntax trees (ASTs). It features comprehensive lan-
guage composition mechanisms: Language embedding syn-
tactically integrates languages to combine (parts of) dif-
ferent languages within one model at well-defined exten-
sion points. Language aggregation combines modeling lan-
guages to enable joint interpretation of their models, which
remain in separate artifacts. Language inheritance enables
to reuse the complete CFG of the parent language to add
or extend its productions. Composition relies on symbol
tables, which are data structures describing the essence of
model elements free from the technical coercions of their
ASTs. Every MontiCore language provides the infrastruc-
ture to create and to resolve symbols. This supports correct
interpretation of names and well-formedness rule check-
ing across integrated models. MontiCore processes models
with DSLTools that reference the language they can process
and its infrastructure.
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Figure 2. Behavior language integration relies
on integration of syntax and static semantics.

4 A Concept for the Integration of Behavior
Languages

For integration of behavior languages into MontiArc-
Automaton, syntax and static semantics of both languages
must be integrated. The latter include to reuse well-
formedness rules of the embedded language and to capture
changes in the meanings of references. Fig. 1 illustrates
both: to parse the component ActionController,
MontiArcAutomaton must be able to process the embed-
ded automaton syntax as well. Furthermore, the meaning
of references on transitions change: where automata mod-
els expect to operate on inputs and outputs of the automaton
language, its integration should operate on ports of the sur-
rounding component. Embedded models also are subject to
(most) well-formedness rules of their stand-alone language.
Integration also may entail new well-formedness rules: for
embedded automata models, one might prohibit to define
their own inputs and outputs in favor of ports.

Our approach to behavior language integration relies on
MontiCore’s language embedding, symbol adaptation, and
well-formedness check reuse as depicted in Fig. 2. Embed-
ding conditionally integrates parts of behavior languages
into components, symbolic adaptation changes the interpre-
tation of references, well-formedness checking reuses exist-
ing rules and integrates new rules. For syntactic embedding,
language engineers must specify a mapping from behavior
language elements to ADL language elements. Adaptation
of the symbols expects that embedded languages operate on
dedicated inputs and outputs. Otherwise, integration into
components will hardly produce input-output behavior.

Overall, the goals is a black-box language integration in
which model elements and well-formedness rules of stand-
alone behavior modeling languages can be reused within
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Figure 3. Embedding integrates parts of a be-
havior language into an extension point.

components to describe their input-output behavior. Thus,
integration of behavior languages into MontiArcAutomaton
entails the following requirements: R1 The (partial) syntax
of stand-alone behavior languages can be conditionally in-
tegrated into component models. R2 The meaning of ref-
erences used in integrated models can be changed. R3 Se-
lected well-formedness rules of the embedded language can
be reused. R4 Adding integration-specific well-formedness
rules is possible. The latter should be as little as possi-
ble. Ideally, it is sufficient to map symbols between the
languages and extra effort for inter-language rules is not
necessary.

5 Integration into MontiArcAutomaton

Successful integration of behavior languages into com-
ponents must combine the language’s syntaxes, ensure a
joint interpretation of references, and allow to reuse their
well-formedness rules. The next sections present mecha-
nisms for these aspects.

5.1 Syntactic Integration

The grammar of MontiArcAutomaton contains an exter-
nal production [5] that acts as extension point for compo-
nent behavior. A production of the behavior language is reg-
istered for this extension point with a specific keyword (e.g.,
automaton or program). Hence, whenever MontiArc-
Automaton parses an integrated model meeting such key-
word, infrastructure for processing the component behavior
language’s production is invoked. With this, integration acts
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as a single grammar and produces a single combined AST.
Fig. 3 illustrates language embedding and resulting models
with an excerpt of the MontiArcAutomaton ADL (top left)
and a simplified behavior language to define automata (bot-
tom left). The MontiArcAutomaton ADL grammar contains
the external Behavior production parametrized with the
parameter kind. The latter is used to distinguish embed-
ded languages and will become part of the concrete syn-
tax. The top right of Fig. 3 shows a MontiArcAutomaton
component model with two ports but without behavior. The
Automaton grammar consists of the container production
Automaton that contains multiple Field instances fol-
lowed by multiple Content instances. The latter consist of
arbitrary many states and transitions. Fields are either input
data sources or output data sinks, states are names, and tran-
sitions consist of a source state name, a target state name, a
guard, and assignments. The productions for guards and as-
signments are omitted as they are complex and do not con-
tribute to embedding. The center of Fig. 3 depicts a map-
ping from production Content of Automaton to Be-
havior of MAA. The argument for this mapping is the
keyword automaton, which is passed to be the kind of
MAA.Body and helps MontiCore to distinguish which em-
bedded production to select. It will also become a keyword
in the concrete syntax of integrated models. Consequently,
the integrated model (bottom right of Fig. 3) uses this key-
word and arbitrary Automaton.Content elements for
its Behavior. While this allows to embed partial syntax
of behavior languages (R1) and to parse integrated models
into combined ASTs, Automaton models expect Field
instances for input and output, but should use ports when
embedded. Also embedding does not integrate the well-
formedness rules of the Automaton language. Both re-
quires symbolic integration.

5.2 Integration of Symbols

The names used in a model to reference parts of the same
or other models are symbolic references with certain mean-
ing. For instance, the left-hand side of the assignment re-
sult = true of the transition depicted in Fig. 3 is only
meaningful in an automaton if result is some form of
Field. After embedding, MontiArcAutomaton prohibits
fields in automata to avoid the underspecificaton from com-
bining fields with ports. Consequently, the interpretation of
result expecting to reference a field changes to referenc-
ing a port. Changing the symbolic interpretation of names
in MontiArcAutomaton amounts to change the symbols it
resolves when looking up a name. To this effect, MontiArc-
Automaton provides infrastructure to add adapters between
different symbols (such as fields and ports) to its symbol ta-
bles. Changing the interpretation of names in assignments
from field references to port references requires that, when-
ever MontiArcAutomaton looks up a name expected to ref-
erence a field symbol, it returns a port symbol disguised as a
field symbol instead (R2). With MontiCore, such change of
interpretation is done by providing corresponding adapters
(cf. Fig. 4). The Port2Field adapter registers to pro-
vide symbols of its TARGET KIND, which corresponds to
the FieldSymbol kind. Whenever MontiArcAutomaton
tries to resolve a field symbol with a certain name, the
adapter will return a port symbol of that name. This sym-
bol than can be used to perform checks (e.g., whether true
can be assigned to the port referenced by result). With
the required adapters in place, all well-formedness rules of
the Automaton language can be reused although there are
only simulated Field symbols to check.

5.3 Integration Infrastructure

MontiArcAutomaton supports configuration of embed-
ded productions, provision of adapters, and specification
of well-formedness rules with a Groovy-based internal
DSL [10]. Groovy allows to omit syntactic sugar (such as
brackets around method arguments and dots between object
expressions). As it further is compatible to Java, it can in-
terface instances of the modeling language classes of Mon-
tiCore directly and allows to reuse the stand-alone infras-
tructure of behavior languages.

Listing 1 shows a model of the Groovy behavior con-
figuration modeling language (GBC). This model first de-
fines the condition and keyword automaton for embed-
ding of the production Automaton.Content into the
MontiArcAutomaton ADL (ll. 1-2). It also references the
stand-alone DSLTool instance of the Automaton language
(l. 3). From this, it retrieves the language’s symbol ta-
ble infrastructure and well-formedness rules (R3). After-
wards, it adds the integration-specific well-formedness rule



1 name ” au tomaton ”
2 behavior ” Automaton . C o n t e n t ”
3 t o o l new AutomatonDSLTool ( )
4 coco new NoFieldsInEmbeddedModels ( )
5 adapter new P o r t 2 F i e l d A d a p t e r ( )

Listing 1. GBC model for integrating the Au-
tomaton behavior language into MontiArc-
Automaton.

NoFieldsInEmbeddedModels (R4) regarding prohi-
bition of Field instances in embedded models (l. 4) and
the Port2FieldAdapter depicted in Fig. 4 to inter-
pret field references as port references. The data types
of tool, coco, and adapter must correspond to the
data types specified with the fluent interface of the class
GBCBuilder that GBC operates on. Fig. 5 shows this
class with its quintessential members and related data types.
The GBCTool is a DSLTool that extends the MAATool,
processes GBC models, constructs BehaviorConfigu-
ration instances from these and parametrizes the MAA-
Tool with their information. Thus, using the GBCTool
with corresponding GBC models allows to parse and check
component models with integrated behavior languages.

6 Discussion

The mechanisms currently also allow to integrate ar-
bitrary languages into the host ADL. Whether resulting
combined models can produce input-output behavior is not
checked yet. This would require means to designate pro-
ductions of the behavior languages’ grammars as input and
output elements. Such a designation also would allow to
generate parts of the adapters. Furthermore, the mecha-
nisms could validate integration of the behavior languages’
dynamic semantics with the messaging semantics of the
MontiArcAutomaton ADL. As MontiCore languages cod-
ify dynamic semantics via code generators, this requires
proper extension of MontiArcAutomaton’s code generator
composition framework [8]: explication of the semantics of
produced artifacts enables the composition mechanism to
reason over the semantic validity of specific language com-
binations. Embedding behavior language parts can intro-
duce syntactical conflicts and MontiCore detects these at
composition time and reports on these.

7 Related Work

The presented integration mechanisms are generalizable
to other C&C ADLs. It requires the host ADLs is to pro-
vide a well-defined extension points for component behav-
ior and the behavior languages to specify input-output be-
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havior. However, most C&C ADLs disregard integration of
component behavior DSLs [11]. To the best of our knowl-
edge, similar integration is supported by AADL [12] and
xADL [13] only. Both consider syntactic integration only,
whereas MontiArcAutomaton also supports symbolic inte-
gration, reuse of well-formedness rules, and code generator
composition [4] to translate integrated models into GPL ar-
tifacts.

To some extend, our approach relates to general lan-
guage workbenches [14] as well. Most workbenches fea-
ture powerful language integration mechanisms, such as
the abstract syntax embedding of Spoofax [15], and Sug-
arJ [16]. These mechanisms are generic and their applica-
tion to ADLs has yet to be defined for our purposes.

Our approach also relates to the byADL framework
for ADL model-driven development [17]. The framework
presents general meta model composition mechanisms op-
erations providing great flexibility. Similar to general lan-
guage workbenches, this freedom entails complexity and
requires integrators to amass expertise in software language
engineering. Our operations very specifically embed behav-
ior into well-defined extension points of C&C ADL compo-
nents and reduce the complexity for integrators.

8 Conclusion

We have presented a concept for syntactic and symbolic
integration of behavior DSLs into components of a C&C
ADL. It relies on well-defined extension points in the host
ADLs abstract syntaxes allows to reuse abstract syntax and
static semantics of behavior languages. Such integration fa-
cilities participation of domain experts as it enables to use
the most appropriate modeling languages to describe com-
ponent behavior.
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