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Abstract—Activity recognition has been widely studied in
ubiquitous computing since it can be used in several application
domains, such as fall detection and gesture recognition. Initially,
works in this area were based on research-only devices (body-
worn sensors). However, with advances in mobile computing,
current research focuses on mobile devices, mainly, smartphones.
These devices provide Internet access, processing, and various
sensors, such as accelerometer and gyroscope, which are useful
resources for activity recognition. Therefore, many studies use
smartphones as data source. Additionally, some works have
already considered the use of wristbands and specially-designed
watches, but fewer investigate the latest marketable wearable
devices, such as smartwatches, which are less intrusive and
can provide new opportunities to complement smartphone data.
Moreover, for the best of our knowledge, no previous work
experimentally evaluates the impact caused by the combination of
sensor data from smartwatches and smartphones on the accuracy
of activity recognition approaches. Therefore, the main goal of
this experimental evaluation is to compare the use of data from
smartphones as well as the combination of data from smartphones
and smartwatches for activity recognition. We evidenced that the
use of smartphone and smartwatch data combined can increase
the accuracy of activity recognition.

Keywords—Activity Recognition; Smartwatch; Smartphone;
Wearable Devices; Experimental Evaluation.

I. INTRODUCTION

Activity Recognition (AR) consists in the identification of
human physical activities (e.g., walking, running, etc.) [10].
The study of this issue is quite relevant, since AR approaches
can be applied to several application domains, for example for
physical activities and health monitoring, detection of falls,
home automation, advertisement delivery, and social networks
based on daily activities [10]. Several types of sensors can be
used in the recognition process, such as GPS, gyroscope, and
mainly, accelerometer [8].

In the early stage, works in this area were based on devices
specifically designed for this task [19], which are usually very
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intrusive, or even huge and heavy to be carried by users. Thus,
despite their positive results in terms of accuracy, these studies
present limitations to be applied in realist environments. In
the last years, AR has became a topic of interest for mobile
and ubiquitous computing researchers [10], [5], especially due
to the significant growth in the number of mobile devices
available to users, which incorporate several types of sensors,
such as gyroscope and accelerometer [8]. Thus, the latest
works in the AR field have been carried out based on these
less intrusive devices (e.g., smartphones [8], [10], [17], [19] ),
which achieve good results as data collection tools for activity
recognition.

Recently, other mobile devices - wearable devices - are
attracting the attention of the area, since they have reduced
size and reasonable computational power [16]. Among the
marketable wearable devices that can be used as data collection
tool, stand out the smartwatches, because they are cheap and
nonintrusive devices [13], can be worn 24 hours a day and
be water resistant [2], and generally their battery life is more
durable than smartphone ones [3]. Thus, they allow a less
intrusive way to monitor physical activities and, consequently,
the development of innovative applications [11], such as unsafe
driving detection [9], the monitoring of user daily activities
[16], and the assistance to people with visual impairments [13].

As can be seen, many works testify the applicability of
the latest mobile devices (mostly, smartphones) in activity
recognition, for example in [8], [19], [17], [7], [15]. However,
other studies have already considered the use of body-worn
sensors (i.e., sensors attached to user bodies) to complement
smartphone data [7], aiming to obtain better results. But
these body-worn sensors generally reduce the applicability
of studies, since they are intrusive to be used in standard
environments.

But, despite their applicability, to the best of our knowl-
edge, there is no previous work that experimentally evaluated
the impact on the accuracy of activity recognition with data
from smartwatches combined with smartphone data. Because
each device collects information from a different perspective,



the combination of their data can improve the accuracy on
activity recognition. For instance, smartwatches are usually
located at the wrist of users, and smartphones are typically
located at their front pocket. For an activity recognition sce-
nario such as driving, data from smartwatches seem to be more
useful to recognize this activity. For example, by using only
smartphone sensor data as input, a machine learning classifier
could not distinguish if a user is the driver or the passenger.

Therefore, the main goal of our work is to perform an
experimental evaluation to compare the use of data from smart-
phones as well as the combination of data from smartphones
and smartwatches for activity recognition. We perform this
experiment with thirteen participants, mainly undergraduate
students, aging between 20 to 35 years old. To accomplish
that, we simultaneously collect accelerometer data from a
smartphone along with a smartwatch and carry out the activity
recognition. Then, we statistically compare the recognition
accuracy of four types of physical activities — walking, sit-
ting, standing and driving — with two types of input — data
from smartphones, and data from smartphones along with
smartwatches. Besides that, we investigate the results of three
known classifiers (Decision Tree, Naive Bayes and SVM) and
three types of feature vectors as classifier input, based on
mean, standard deviation and both combined. The experiment
has shown there is significant evidence that the use of data
from smartphones combined with smartwatches increases the
accuracy in the recognition of the studied activities.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work in the area of activity
recognition with mobile devices. In Section 3, we outline
the experimental design, detailing the research goal, the data
collection and preprocessing, the hypotheses, the execution, the
results, and the statistical analysis. In Section 4, we present the
threats to validity of our work. Finally, in Section 5, we show
the conclusions and future work.

II. RELATED WORK

Research in activity recognition can be grouped into dis-
tinct phases. In a first moment, authors based their studies
only on research devices that collect data through intrusive
ways. They use, for example, very heavy devices that could
not be used in realistic environments [12], and the devices
are designed for a predefined task. The advances in mobile
computing emerged a second phase, with works based on
mobile devices, such as smartphones [19], and most recently,
wearable devices [3]. In this context, data collection is less
intrusive and the research achievements seem to be closer
to the real world, since proposed solutions can be applied
in daily situations. Therefore, some works in the literature
focus on mobile activity recognition due to its applicability
in many domains [10], [8], [19], [2], [7], [13]. Many of these
application domains of activity recognition were summarized
by Lockhart et al. [10] that described and categorized a variety
of applications based on mobile activity recognition, aiming to
direct and encourage other works in the area.

Some works use smarthphones for data collection. Among
these works, Kwapisz et al. [8] proposed an activity recognition
approach based on information collected from smartphone
accelerometers. The authors argue that the use of mobile

devices presents a less intrusive way to collect data, different
from previous studies that are based on information collected
by devices designed only for research purposes. In order to
increase the recognition accuracy provided by smartphone
data, Kawsar et al. [7] developed a multimodal system that uses
data from pressure sensors of shoes along with accelerometer
and gyroscope information from smartphones. According to
the authors, the solution ensures the data collection even when
users are not carrying their mobile devices, and despite using
extra information in addition to smartphone data, the solution
is wireless, which makes it less intrusive than others previously
proposed. Although presenting important results, these works
use only smartphones to provide data.

Recently, beside the smartphones, the wearable devices are
attracting the attention of the area. Among these devices, stand
out the marketable smartwatches. Bieber et al. [2] reported
on identified requirements of smartwatch sensors for activity
detection (e.g., walking, running, etc.), as well as for inactivity
states (e.g., sleeping). The authors introduced a gravity free
parameter for the acceleration in the three dimensional space,
called Activity Unit. Additionally, they presented an algorithm
to distinguish if the user is wearing the device or not and to
identify if the user is sleeping. The authors argue that unlike
smartphones, the use of smartwatches allows the constant mon-
itoring of physical activities because smartwatches can be used
24 hours a day and some devices are water resistant. Bieber et
al. [3] presented challenges and opportunities of smartwatches,
as well as their potential applications for assistance and mon-
itoring environments. According to the authors, smartwatches
are a good alternative for activity recognition since they are
generally used for a longer period than smartphones, most of
them are water resistant, additionally, they present good battery
life and several sensors that allow non-intrusive monitoring of
physical activities. Other smartwatch applications addressed
in the paper are gesture recognition (e.g., permanent remote
control), sensing (e.g., accelerometer, light, and pressure),
and haptic and fast feedback. Although presenting important
results, these works use only smartwatches to collect data.

Other works employ smartphones and smartwatches.
Among these works, Porzi et al. [13] presented a first prototype
of a low-cost system to help visually impaired people, based
on the use of a smartphone and a smartwatch. The data from
smartwatch sensors is used as input to a gesture recognition
algorithm, which runs in the smartphone. The algorithm is
based on the Global Alignment Kernel with an SVM classifier.
According to the authors, one of the main advantages of the
system is that smartwatches can be worn without any prejudice,
as they look similar to normal watches. Although this work
use both smarphones and smartwatches, each device is used
for a different task: the smartwatch for data collection and the
smartphone for processing.

As shown in previously mentioned works, the use of sensor
data from smartphones in activity recognition is already a
reality. However, other devices are emerging as good options
for data collection in addition to smartphones, such as smart-
watches. But despite its proven applicability presented in some
works, they did not experimentally evaluate the impact on the
accuracy of the use of these devices combined for activity
recognition. Therefore, unlike these studies, we experimentally
evaluate the recognition accuracy with distinct scenarios, in



order to investigate whether the combination of data from dif-
ferent devices (i.e., marketable smartwatches and smartphones)
can really bring benefits to the area. To accomplish that, we
perform human activity identification with different types of
feature vectors and different classification methods.

III. EXPERIMENTAL DESIGN

In this section, we present the main results achieved and
tasks performed during our work. We specify the research goal,
the dataset collection, the instrumentation, as well as specifi-
cations about the experiment, and the statistical analysis. Our
focus relies on the analysis of a major parameter: accuracy of
activity recognition approaches. Our experimental evaluation
follows the guidelines presented by Andreas et al. [6].

A. Research Goal

The main goal of this experimental evaluation is to analyze
the use of accelerometer data from smartwatches and smart-
phones combined for the purpose of activity recognition with
respect to its accuracy from the point of view of four physical
activities (walking, sitting, standing and driving) in the context
of pervasive computing. Therefore, we simultaneously collect
accelerometer data from a smartphone along with a smartwatch
and carry out the activity recognition using data only from
the smartphone and using data from the smartphone and the
smartwatch combined.

B. Data Collection Procedure

In order to perform the experimental evaluation, we simul-
taneously collect sensor data from smartphone and smartwatch
accelerometers. To accomplish that, we conduct an experiment
in which users performed an average of four activities —
walking, sitting, standing and driving! — using both devices.
To collect the data, we perform the following steps for each
participant of the experiment:

1)  Enter the participant identifier, i.e., first name;

2) Place the smartphone in his front right trousers
pocket, and the smartwatch in his right wrist (Figure
1);

3)  Inform which activity will be performed, i.e, walking,
sitting, standing or driving;

4)  Enable the start of the accelerometer data collection
by the smartwatch;

5)  Execute 1 minute of data collection;

6) Repeat the steps 3 to 5 for each activity performed.

The participants were mostly undergraduate students aged
20 to 35 years old. At the end of the process, we gather a
dataset with the following aspects:

e 13 participants without any physical disability. 12
males and 1 female;

e Information of 4 physical activities.

e 52 log files, each file containing accelerometer data
from an activity performed by a participant, and each
log containing about 200 lines with:

1)  Timestamp of the smartphone in milliseconds;
2)  X-axis value from the smartphone accelerom-

eter;

3)  Y-axis value from the smartphone accelerom-
eter;

4)  Z-axis value from the smartphone accelerom-
eter;

5) Performed activity;

6) Timestamp of the smartwatch in milliseconds;

7)  X-axis value from the smartwatch accelerom-
eter;

8) Y-axis from the smartwatch accelerometer;

9) Z-axis from the smartwatch accelerometer.

Sony SmartWatch 2
sSwz2

Sony Smartphone
Xperia Z1

Fig. 1: Illustration of a user with the smartphone in his front right trousers
pocket, and the smartwatch in his right wrist.

C. Instrumentation

Among the main tools we use during the experimental
evaluation, stand out:

Sony SmartWatch 2 SW2. Android smartwatch that pro-
vides integrated accelerometer sensors. We use the SW2 during
the data collection phase.

Sony Smartphone Xperia Z1. Android smartphone that
provides integrated accelerometer sensors. We use the Z1
during the data collection phase.

Weka”. Data mining software in Java. Weka is a collection
of machine learning algorithms for data mining tasks, which
can either be applied directly to a dataset or called from
your own Java code. We use Weka algorithms to classify the
activities.

R®. Software environment for statistical computing and
graphics. R provides a wide variety of statistics and graphical
techniques, and is highly extensible. We use R in the statistical
analysis.

D. Data Preprocessing

Before performing the activity classification, we preprocess
the raw data collected from the 3-axis accelerometers. This
step aims to improve the characterization of the activities and,
consequently, to increase the recognition accuracy.

'We ask the participants to simulate the action of driving, it does not
represent the real activity.

2http://www.cs.waikato.ac.nz/ml/weka/
3https://www.r-project.org/



TABLE I: Examples of feature vector generated from smartphone raw data.

AM X AMY AM Z STD X STD Y STD Z Physical Activity
0.3052 -9.796 -0.287 1.072955 0.340536 0.479773 Walking
-3.219 -7.428 -6.486 0.021534 0.021778 0.017433 Sitting
1.636 3.624 -10.89 0.937653 0.510336 2.276427 Standing
2.888 -3.562 -9.418 0.246068 0.092064 0.148109 Driving
-0.2014 -9.486 -0.3109 0.675129 1.025669 1.922581 Walking
-3.224 -7.447 -6.47 0.024871 0.050183 0.036129 Sitting

We extract arithmetic mean and standard deviation from
the raw data previously collected. To accomplish this task, we
calculate both features for every 10 lines of log files. In Table I,
it is possible to see some examples of feature vectors generated
from the raw data collected from the smartphone, in which
“AM X and “STD X” represent, respectively, the arithmetic
mean and the standard deviation based on 10 samples obtained
from the x-axis accelerometer.

At the end of the process, we generate six arff files that
represent the features vectors to be used as input data of
classifiers®.

E. Experiment Design

In our experiment, we have three independent variables as
input source and one dependent variable as output information.
The first independent variable is represented by the data source,
with the following two levels:

1)  Smartphone data: data collected from a smarphone
accelerometer;

2)  Smartphone and smartwatch data: data simultane-
ously collected from the smartphone and smartwatch
accelerometers.

The second independent variable is represented by the
classification method, with three levels as follows:

1)  Decision Tree: J48 classifier from the Weka software
tool (default settings);

2) Naive Bayes: NaiveBayes classifier from the Weka
software tool (default settings);

3)  SVM: LibSVM classifier from the Weka software tool
(default settings).

Finally, the third independent variable is represented by the
feature vector, with three levels as follows:

1)  Arithmetic Mean (AM): feature vectors obtained by
the arithmetic mean calculated from accelerometer
raw data;

2)  Standard Deviation (STD): feature vectors obtained
by the standard deviation calculated from accelerom-
eter raw data;

3) Standard Deviation and Arithmetic Mean (SA):
feature vectors obtained by the combination of both
features.

Our dependent variable is represented by the accuracy of
the recognition achieved through a run based on a set of
independent variables.

4Activity Recognition Repository: https:/goo.gl/YSNXP1

F. Hypotheses

The main research question we want to answer is the
following:

P1. Does the use of accelerometer data from smartphones
along with smartwatches improve the accuracy of the activity
recognition compared to the use of only accelerometer data
from smartphones?

To answer that, we formulate the following hypotheses:

Hy: there is no difference, in terms of accuracy, in the
recognition of activities using accelerometer data collected
simultaneously from smartphones along with smartwatches
and compared to using data only from smartphones, for the
classification method i and feature vectors based on j.

Hj: the use of accelerometer data from smartphones along
with smartwatches achieves greater accuracy in activity recog-
nition, for the classification method i and feature vectors based
on j.

Where i is a classifier of type SVM, Naive Bayes or
Decision Tree, and j is a feature vector based on AM, STD or
SA. So that, we have 9 null hypotheses.

G. Execution

In order to evaluate the accuracy of classification ap-
proaches, in general, data is split into training and test sets, in
which the training set comprises a larger portion of data, and
it is used to train the approaches, i.e., to provide knowledge
to the classification methods about the studied problem. On
the other hand, the test set is used to evaluate the accuracy of
the approaches [5]. These two datasets must be disjoint, i.e.,
they should not present elements in common to avoid bias on
results.

In our work, we use the 10-fold cross-validation method,
which randomly splits the dataset into 10 independent parts,
and each part is used once as test set and the remaining as
training set. Therefore, we separate the whole data into 90%
for training and 10% for testing. Additionally, we repeat the
execution three times for each classification method and each
feature vector as input data. Thus, we have an amount of 30
result samples per round.

H. Results

In Table II, it is possible to see the average of the accuracies
achieved using feature vectors based on standard deviation.
For example, the accuracy achieved for J48 approach (i.e.,
decision trees) using as input source smartphones only is
66.72%. On the other hand, the same approach with input data



from smartphones along with smartwatches obtained greater
accuracy of 68.46%.

TABLE II: Average accuracy achieved by 30 runs, using feature vectors based
on standard deviation as input data.

Classification methods Smartphone Smartphone and smartwatch
J48 66.72% 68.46 %
NB 50.73% 59.30%
SVM 56.41% 62.62%

In Table III, it is possible to see the average of the
accuracies achieved with feature vectors based on arithmetic
mean for the classification methods J48, NB and SVM.

TABLE III: Average accuracy achieved by 30 runs, using feature vectors based
on arithmetic mean as input data.

Classification methods Smartphone Smartphone and smartwatch
J48 79.40% 78.36%
NB 55.91% 62.05%
SVM 78.30% 81.63%

Finally, in Table IV, it is possible to see the results obtained
with feature vectors based on the combination of both features,
standard deviation and arithmetic mean.

TABLE IV: Average accuracy achieved by 30 runs, using feature vectors based
on standard deviation and arithmetic mean as input data.

Classification methods Smartphone Smartphone and smartwatch
J48 87.91% 87.33%
NB 74.59% 80.09%
SVM 89.63% 88.47%

To identify which of the approaches obtained the best
accuracy in fact, we perform a pairwise comparison (statistical
analysis) for each treatment with one classification method and
one feature vector as input data.

1. Statistical Analysis

In statistical analysis some tests are known for two by
two comparisons (our case), for example, t-test (parametric)
and Wilcoxon test (non-parametric) [4]. Before using t-test,
some requirements must be met in both compared samples,
data normality and homoscedasticity. Therefore, to choose the
proper statistical test, firstly, we verify all the sample profiles,
by performing Shapiro-Wilk test to evaluate data normality and
Levene’s test to evaluate data homoscedasticity. Afterwards,
we use t-test in the cases these requirements were met, and
Wilcoxon test, otherwise.

We compare the results achieved by three classification
methods using data from smartphones only, and data from
smartphones and smartwatches combined. Additionally, we
investigate three types of feature vectors as input of the
classifiers. Because of that, we analyze three hypotheses for
each classification method. Besides the smartphone data, as a
preliminary result, we also investigated the use of smartwatch
data alone. However, it produced lower results, because of
that we compare only the smartphone data as well as the
combination of both devices.

In Table V, it is possible to see the results of the statistical
tests performed during our study to evaluate the 9 proposed hy-
potheses (Subsection III-F), each test with 95% of confidence
(i.e., @ = 0.05). In order to identify which dataset obtained the
greater accuracy, we consider two alternative hypotheses for
each null one.

After performing the tests, we have the following results:

e For J48 classifier: we accept H for feature vectors
based on AM and SA. In the other hand, we reject Hy
and accept H; for feature vectors based on STD;

e For NB classifier: we reject Hy and accept H; for
all types of feature vectors;

e  For SVM classifier: we accept Hy for feature vectors
based on SA. In the other hand, we reject H, and
accept H; for feature vectors based on AM and STD.

Therefore, we can conclude with 95% of confidence that on
6 of the 9 cases the addition of smartwatch accelerometer data
improved the accuracy of activity recognition. Additionally,
we do not achieve greater results on any of the 3 remaining
situations using only smartphone data as input source.

We still observe that the preprocessing phase used to create
the feature vectors directly affects the results. For example, we
obtain an accuracy of 56.4% with SVM classifier and feature
vectors based on AM (data from smartphones only) and an
accuracy of 89.6% with the same classifier, but taking feature
vectors based on SA. These results represent a significant
improvement in the accuracy of the recognition.

IV. THREATS TO VALIDITY
A. Construct Validity

In this work, we just evaluate the accuracy of activity
recognition. However, several evaluation metrics could be
applied, for example, precision, recall, insertion, merge, over-
fill, and confusion matrix [14]. Thus, we suggest in future
replications of this experiment to investigate these metrics too.

B. Conclusion Validity

Due to the low number of participants in the dataset
collection phase, we have a threat to conclusion validity, since
it is recommended to have a larger dataset, for matters of
statistical power. Therefore, we intend to continue the dataset
collection process with other participants, in order to replicate
the experiments with a larger dataset, with different classifiers
and different feature vectors.

V. CONCLUSION AND FUTURE WORK

In this paper, we performed an experimental evaluation to
investigate the impact, in terms of accuracy, of the activity
recognition using accelerometer data from smartwatches along
with smartphones as input source.

For the best of our knowledge, this is the first experimental
evaluation to measure and statistically analyze the impact
of accuracy in activity recognition, achieved by combining
simultaneously collected data from marketable wearable de-
vices sensors (i.e. smartwatch accelerometer) and from smart-
phones. Although some previous works present studies with



TABLE V: Statistical Analysis

Classification methods Feature vectors Normal data Equal variance p-values
Mean Yes Yes 0.7974
148 Std Yes Yes 0.04658
Mean and Std No N/A 0.9073
Mean Yes Yes 7.878e-09
NB Std Yes Yes 7.927e-12
Mean and Std Yes Yes 0.0002158
Mean Yes Yes 0.009503
SVM Std Yes Yes 1.373e-07
Mean and Std Yes Yes 0.8867

these devices, they did not perform experiments evaluating
the accuracy of the recognition with different input feature
vectors and different classifiers, as we showed in our work.
Furthermore, our work presents significant evidences that the
use of marketable smartwatch sensor data in addition to smart-
phone data can increase the accuracy of activity recognition
approaches. Therefore, our study can be used as baseline of
future experimental works.

We found some works in literature that focus on features
extraction approaches [18], [1]. Therefore, as future work, we
will carry out a study about different ways to extract features
from accelerometer raw data and replicate this experiment with
different input vectors, in order to obtain more representative
activity feature vectors, and hence, to get greater accuracy in
the activity recognition. Another possible future work is to
investigate a greater range of activities based on sensor data
from smartwatches and smartphones combined, for example
complex activities (e.g., cooking, watching TV, etc) [17].
Additionally, we could do a comprehensive discussion on the
sensor data that may affect the physical activity recognition,
since mobile devices are equipped with many sensors and
provide many kinds of data from them. Then, we could propose
new techniques or frameworks to accomplish the activity
recognition with these collected data.
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