
A Query Language of Data Provenance Based on

Dependency View for Process Analysis

Xuan Sun

Beijing Information Science

& Technology University

Peking, China

sunxuanbupt@126.com

Xin Gao

The National Computer

network Emergency

Response technical Team

Coordination Center of

China

Peking, China

gaoxin54@126.com

Huiying Du

Beijing Information Science

& Technology University

Peking, China

huiyingdu@bistu.edu.cn

Wei Ye

National Engineering

Research Center for

Software Engineering,

Peking University

Peking, China

wye@pku.edu.cn

Abstract—For the scale of data in process keep increasing, data

provenance also becomes large and constantly growing, which

brings challenges to the efficiency of provenance tracking in

process analysis. This paper proposes a kind of dependency view

to extract a global data provenance description of the data

process instance, and then defines a contextual query language

based on dependency view to implement an efficient provenance

query mechanism for process analysis. The elements of the

language are based on a set of dependency view query operations,

which can decrease the steps of provenance tracking based on the

elements of data provenance and support the descriptive power

of the language for complex provenance tracking. Experimental

results show that complex provenance tracking by the language is

efficient and ease to use.

Keywords—provenance; query language; dependency view

I. INTRODUCTION

Data provenance records the related operations and data in
the execution of data process, which is regarded as an
important data in many process-aware systems. In the
application domains of data provenance, it is used for auditing
in the data base and supporting analysis in the complex science
experiment environment in the early times, process analysis
and process verification following the development of
workflow, semantic resolving in the web, and now existing as
metadata in the cloud environment [1, 2, 3]. Following the
development of the application of data provenance, we can find
out that the scale of the data object supported by data
provenance becomes more and more huge. Therefore it directly
increases the amount of the intermediate data in the process of
the source data. So now we need to satisfy the efficient
requirement of data provenance analysis. Currently, many
researchers try to deal with this problem based on distributed
data management platform, like cloud platform, which takes
the advantage of large-scale storage and computing power of
cloud platform. Ikeda et al. [4] propose an approach for
tracking the provenance of workflow modeled as MapReduce
jobs. Malik et al. [5] introduce an approach for recording
provenance in distributed environment and each node stores
parts of entire provenance graph. Based on cloud environment,
it can temporarily increase the efficiency of data provenance

query, but its cost becomes higher when the scale of data
provenance keep increasing and meanwhile it still needs to
program the query function in the cloud environment. So we
finally still need to optimize the query mechanism of data
provenance when the query requirement becomes more and
more complex as the data provenance dataset keeps growing.
However, current data provenance models are always not ready
for directly implement the query requirements, because they
aim at describing the dependency relations among the elements
of data provenance. So extracting the dependency relations
from data provenance and providing higher view of data
provenance is a way to improve the efficiency of data
provenance query. In this paper, we focus on the efficient and
usable querying of data provenance and carry out our research
from the aspect of data provenance description and
corresponding query mechanism. We try to extract dependency
elements from data provenance directed graphs to form the
dependency view and define corresponding query operations of
dependency view for provenance tracking, which can make
data provenance records suit to be queried. Then we propose a
query language based on dependency view to describe the
requirement of complex provenance tracking.

The remainder of this paper is organized as follows. We
introduce the related work in section 2, introduce dependency
view of data provenance in section 3, define the query
operations for data provenance based on dependency view in
section 4, propose the data provenance query language in
section 5, and validate the efficiency of query language in
section 6. In the end, we make our conclusions in section 7.

II. RELATED WORK

Data provenance as the key technology for data-intensive
research provides a kind of causal relationship model among
the result, operation, middle data, and human and so on. There
has been significant progress on formal models for data
provenance. However, the difficulty to support process analysis
based on data provenance is mainly the complexity and variety
of the analysis requirement, which proposes a serious
description problem for data provenance querying. Then the
issue of data provenance querying is just addressed in a
application-independent way to in recent years, the query

DOI reference number: 10.18293/SEKE2016-049

This work was supported by the Scientific research project of Beijing
Municipal Education Commission under Grant No.SM201511232004 and

National Natural Science Foundation of China under Grant No.61202070.

languages of data provenance are proposed to resolve the
problem, like OPQL [6], VQuel [7], ProQL [8], QLP [9], etc.
These query languages are based on formal models for data
provenance, which cause the difficulty in writing query by
these languages. Therefore, we need a flexible and extensible
query language of data provenance to support dependency
deducing of data provenance while the complex and various
requirements of process analysis are proposed.

III. DEPENDENCY VIEW OF DATA PROVENANCE

Figure 1. An execution instance of data process

For each task in the process execution, its dependency
elements always include the related input data, tasks, operators
and constraint, just as figure 1. All these dependencies consist
of the context for the executing task, which can be extracted as
directed graph from the executed part of the instance. We call
these extracted directed graphs as dependency view of
execution instance. According the type of the node in
dependency view, we divide them into three categories: data
dependency view, process dependency view and collaboration
dependency view. The data dependency view is signed as
DFDepView=<D, DFDep>. D stands for data set of input data
and output data, and DFDep stands for the casual relationships
of “was Derived From”. The process dependency view is
signed as PFDepView=<P,PFDep>. P stands for the task
instance set, and PFDep stands for “was Triggered By”. The
collaboration dependency view is signed as HFDepView=<H,
HFDep>. H stands for operator set, and HFDep stands for the
collaboration relationships among H. So we use an abstract
model <N, E> to describe these three dependency views, where
N stands for the nodes in dependency view and E stands for the
dependency relationship in dependency view. Assuming that A
and B belong to the same kind of dependency view, and the
operations for dependency view are defined as table I.

TABLE I. DESCRIPTION OF OPERATIONS FOR DEPENDENCY VIEW

Operation Description

A∪B=<A.N∪B.N, A.E∪B.E>
union operation for

dependency view

A∩B=<A.N∩B.N, A.E∩B.E>

intersection

operation for
dependency view

A-B=<A.N-B.N, {e|e ∈ (A.E-B.E) ∧ e.source ∈

(A.N-B.N) ∧e.destination∈(A.N-B.N)}>

complement

operation for
dependency view

A⊕B=<A.N⊕B.N, {e|e∈(A.E⊕B.E) ∧e.source

∈(A.N⊕B.N) ∧e.destination∈(A.N⊕B.N)}>

symmetric

difference
operation for

dependency view

Beside these basic operations, there are also the operations
for the set of dependency view. Assuming the set A consists of

A1 ， A2 ， … ， An which belong to the same kind of

dependency view, signed as A={A1，A2，…，An}. Then the

corresponding union and intersection operation can be carried
out as following:

∪A=A1∪A2∪... ∪An; ∩A=A1∩A2∩... ∩An

From the point view of dependency view, any OPM
instance can transform into the three dependency views and can
be analyzed based on the operations of dependency view. Thus
dependency view provides a more coarse-grained description
than OPM[10], which provides a base for the improvement of
data provenance tracking. So we describe the context of the
task at runtime based on dependency view in this paper, and try
to deduce the requirement of provenance tracking based on
dependency view. Assuming task p is going to be executed in
the data process execution instance and the input data of p is
the data set{d1,…,dn}, we use PGrap(d) to describe the data
provenance of data d, and the data provenance of the process
execution instance before p executes can be described as

InputP=PGrap(d1) ∪... ∪PGrap(dn).

Definition (The context of the task at runtime): the context
for task p is described as following:

Context(p)={ Contraints(p), DFDepView(InputP),

PFDepView(InputP), HFDepView(InputP) }

IV. THE QUERY OPERATIONS FOR DATA PROVENANCE

BASED ON DEPENDENCY VIEW

A. Basic query operation

TABLE II. DESCRIPTION OF BASIC QUERY OPERATION

Operation Query form Description

Q1 {p}…Pd What tasks directly or indirectly involve in the

production of data Pd?
Q2 {Pd}…p What data directly or indirectly affect the

execution of task p?

Q3 {h}…p Who joins the collaboration triggering task p?

Q4 {p’}…p What tasks directly or indirectly trigger task p?
Q5 { Pd’}…Pd What data directly or indirectly involve in the

production of data Pd?
Q6 {h’}…h Who directly or indirectly joins the collaboration

with operator h?
Q7 { p }…h What tasks directly or indirectly affect operator

h?
Q8 {h}…Pd Whose collaborations directly or indirectly affect

the production of data Pd?
Q9 { Pd }…h What data are directly or indirectly used by

operator h?
Based on the dependency views of the task at runtime, the

formal expressions of these basic query operations in table II
can be expressed as table III.

TABLE III. FORMAL EXPRESSIONS OF BASIC QUERY OPERATION

Operation Formal expression

Q1(Pd) ∪{Context(p). PFDepView∪{ p}} ,

where p ∈{ p’│(Generatedby: Pd→p’) }
Q2(p) Context(p). DFDepView

Q3(p) Context(p). HFDepView

Q4(p) Context(p). PFDepView

Pd4

p3

Pd6 p4 Pd7

Pd5 Pd2
U1

U2

p5

p6

p7

Pd8

Pd9

U4

U3

U5

Pd10

Pd1 p1 Pd2 p2 Pd3

U3 U4
WF1

WF2

Q5(Pd) ∪{Context(p). DFDepView},

 where p∈{ p’│(Used: p’→Pd)}
Q6(h) ∪{Context(p).HFDepView}–h,

where p { p’│(Controlledby: p’→h)}
Q7(h) ∪{Context(p).PFDepView}, where p∈{ p’│(Controlledby: p’

→h)};
Q8(Pd) ∪{Context(p). HFDepView∪{h} }, where p∈

{ p’│(Generatedby: Pd→ p’)}  (Controlledby: p→h);
Q9(h) ∪{Context(p). DFDepView }，where p∈{ p’│(Controlledby:

p’→h)}

B. Influence query operation

TABLE IV. DESCRIPTION OF INFLUENCE QUERY OPERATION

Operation Query form Description

DataAffectQ1 Pd…{Pd’} What data directly or indirectly are

affected the production of data Pd’?

DataAffectQ2 Pd…{p} What tasks directly or indirectly are

affected by data Pd?

DataAffectQ3 Pd…{h} Whose collaborations are directly or

indirectly are affected by data Pd?

ProcessAffectQ1 p…{p’} What tasks directly or indirectly are

affected by task p’ ?

ProcessAffectQ2 p…{ Pd } What data directly or indirectly are

affected by task p ?

ProcessAffectQ3 p…{h} Whose collaborations are affected by

task p?

HumanAffectQ1 h…{h’} Whose collaborations are affected by h?

HumanAffectQ2 h…{ Pd } What data are directly or indirectly

affected by the collaborations with h?

HumanAffectQ3 h…{p} What tasks are directly or indirectly
affected by the collaborations with h?

Assuming PDepViewofAll, DDepViewofAll and
CDepViewofAll stands for the process dependency view, data
dependency view and collaboration dependency view of the
whole process execution instance, the formal expressions of
basic query operations in table IV can be expressed as table V.

TABLE V. FORMAL EXPRESSIONS OF INFLUENCE QUERY OPERATION

Operation Formal expression

DataAffectQ1(Pd) DDepViewofAll - Q5(Pd)
DataAffectQ2(Pd) PDepViewofAll - Q1(Pd)

DataAffectQ3(Pd) CDepViewofAll- Q8(Pd)

ProcessAffectQ1(p) PDepViewofAll - Q4(p)
ProcessAffectQ2(p) DDepViewofAll - Q2(p)
ProcessAffectQ3(p) CDepViewofAll - Q3(p)
HumanAffectQ1(h) CDepViewofAll - Q6(h)
HumanAffectQ2(h) DDepViewofAll - Q9(h)
HumanAffectQ3(h) PDepViewofAll - Q7(h)

V. QUERY LANGUAGE

Though query operations based on dependency view has
improve the efficient of data provenance tracking, we still need
to deal with the complexity of the transformation from the
requirements of data provenance analysis to the query
operations. Therefore we propose a contextual query language
base on these query operations.

A. Data set based on dependency view

Dependency view is the basic element for the context of
task at runtime, the result of basic query operation and the
result of influence query operation. Therefore the data related
to data provenance tracking is based on dependency view

which can be seen as a kind of virtual data table in this paper,
and any operation based on dependency view is actually the
query to these virtual data tables. Therefore basic query
operations, influence query operations and specific dependency
views can be divided into three categories from the point view
of dependency view, which can carry out the operations to one
another internally. The partitions are show as table VI, in which
“Instance” stands for the process execution instance.

TABLE VI. DATA SET BASED ON DEPENDENCY VIEW

Dependency

view

Corresponding data set

Data

dependency
view

Instance.Context().DDepViewofAll;

Instance.Context(p). DFDepView;
Q2, Q5 and Q9;

DataAffectQ1, ProcessAffectQ2 and HumanAffectQ2

Process
dependency

view

Instance.Context().PDepViewofAll;
Instance.Context(p). PFDepView;

Q1, Q4 and Q7;

ProcessAffectQ1, DataAffectQ2 and HumanAffectQ3

Collaboration
dependency

view

Instance.Context().CDepViewofAll;
Instance.Context(p). HFDepView;

Q3, Q6 and Q8;

HumanAffectQ1, DataAffectQ3 and ProcessAffectQ3

B. Operators for data set based on dependency view

Product operation merges one dependency view to another
dependency view by eliminating duplicate nodes and edges.
Assuming the product of data set t1 and t2 is signed as t1×t2,
product operation between t1 and t2 is described as follow:

t1×t2=<N∪N', E∪E'>

where the corresponding direct graph of t1 is <N, E> and the
corresponding direct graph of t2 is < N', E'>.

Selection operation selects out the tuples satisfied predicate,
which use σ to stand for selection operation and set predicate to
the subscript of σ. For the data set based on dependency view,
there are two differences from relation database. First, the
variables in predicate must be the variables defined in
dependency view. These variables include: node (standing for
data, task and human), edge (standing for the dependency like
“Generatedby”, “Used”, “Triggeredby” and so on), and
subgraph (standing for the part of dependency view satisfying
specific constraint). Second, it only permit to use the operators

including =, ∈ and ⊆. The operators likes ≠, ≤, ≥, < and > are

refused. But it can compose the bigger predicate by the

operators of single predicate, like ∧, ∨ and . For example,

to find the process nodes affected by both p7 and Pd2 in figure1
can be described as follow:

2 7 2 2 2subGraph . .Context .PFDepView subGraph DataAffectQ (.)

2 .Context .PFDepViewAll

WF P WF Pd

WF

   

 （ ）

Projection operation for data set based on dependency view
can be signed by ∏. The subscript of ∏ consists of node, edge
and sub graph, meanwhile the rear parameters consists of the
data set and the corresponding operators. For example, to find
out the tasks which depend on task p7 can be described as
follow:

∏nodeWF2.p7.Context.PFDepView

C. Syntax of contextual query language

As SQL of relation database, the contextual query language
also includes three clauses: select, from and where.
Corresponding to projection operator, select clause is used to
get the specific elements from process execution instance to
satisfy the requirement of data provenance analysis. These
elements which are part of context of the task at runtime
include: the node (standing for data, task and human), the edge
(standing for the dependency) and the sub graph.
Corresponding to product operator, from clause is used to list
the data set based on dependency view related to the
requirement of data provenance analysis. Corresponding to the
predicate of selection operator, where clause is used to describe
the condition and the constraint for filtering the data set based
on dependency view satisfied the requirement of data
provenance analysis. Referring to the structure of relation
database query language, the many-to-many query of data
provenance based on context can be abstracted as follow:

Select c1, c2, …, cn From DepView1, DepView2, …, DepViewm
Where predicates

DepViewj stands for the data set based on dependency view,
and ci stands for the node, edge, or sub graph in the data set.
Therefore the query statement of contextual query language is
equivalent to the corresponding data set based on dependency
view with their operators, and many-to-many query can also
be described as follow:

VI. EXPERIMENT

To validate the advantage of our query mechanism based on
dependency view to the query based on OPM at the aspect of
the data provenance tracking, we assess the performance of
data provenance query as follow: Firstly, select one node from
WF2 randomly, and then execute query related to the node,
which is seen as one test case. Secondly, collect the time cost
through the execution of test case as the performance of the
query statement. We use the number of database access to
stands for the time cost, because the time cost of provenance
tracking mainly spend on database access and each database
access cost the similar time. Thirdly, set the parameter n as the
least number of test case executions, carry out the executions of
test case at n times, and increase by 10n times. Finally, sort out
the data of performance index of test execution by the
parameter n, and then sum the data with the same parameter n.

In this test, we select the complex query requirement “find
out the tasks that are affected by the data Pd2 and also trigger
the task p7” as the test object. Meanwhile, our query language
can describe the query requirement as follow query statement:

Select node From p7.Context.PFDepView∩DataAffectQ2(Pd2)

Where the cost of this statement consists of the cost of
p7.Context.PFDepView and the cost of DataAffectQ2(Pd2).

Set 5 to the parameter n, and the result is shown in figure 2,
where the ordinate is the number of database access and the
abscissa is the number of the increment of n. In figure 2, the
red line stands for the result of query statement, and the blue
line stands for the result of regular query based on OPM. We

can see that the result of query statement is bigger than the
result of the regular query at the beginning, but soon the result
of query statement is smaller than the result of the regular
query and the gap continues to become wider. The reason is
that the dependency view needs more database access than
regular query based on OPM to extract the dependency view
from the whole data provenance directed graph at the
beginning, and then it can support any basic query operation by
just one database access. Therefore the experiment shows that
the query language based on dependency view is more efficient.

Figure 2. The performance comparing between query statement and

corresponding regular query based on OPM

VII. CONCLUSION

In this paper, we study the query language for the data
provenance which keeps growing as the development of data
intensive systems and process-aware system. Through the
study, we review the challenge and requirement to current data
provenance query, and try to find a new language to solve the
process analysis problem base on dependency view of data
provenance. In the future, we will continue our work to support
more and more complex requirements of process analysis
based on data provenance.

ACKNOWLEDGEMENTS

Xin Gao is the corresponding author of this paper.

REFERENCES

[1] R. Bose and J. Frew. Lineage retrieval for scientific data processing: a
survey, ACM Comput. Surv., 37(1): 1-28, 2005.

[2] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in
e-science, SIGMOD Record, 34(3): 31–36, 2005.

[3] Muniswamy-Reddy, K., Seltzer, M., Provenance as First-Class Cloud
Data, 3rd ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware (LADIS'09), October 2009.

[4] Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and
reduce workflows. In: CIDR. pp. 273-283 (2011)

[5] Malik, T., Nistor, L., Gehani, A.: Tracking and sketching distributed
data provenance. In: eScience. pp. 190-197, 2010.

[6] Chunhyeok Lima, Shiyong Lua, Artem Chebotkob, Farshad Fotouhia,
Andrey Kashleva, OPQL: Querying scientific workflow provenance at
the graph level, Data & Knowledge Engineering, Volume 88, Pages 37–
59, November 2013

[7] Amit Chavan, Silu Huang, Amol Deshpande, Aaron Elmore, Samuel
Madden, Aditya Parameswaran,Towards a Unified Query Language for
Provenance and Versioning, International Workshop on Theory and
Practice of Provenance, 2015.

[8] Grigoris Karvounarakis , Zachary G. Ives , Val Tannen, Querying Data
Provenance, SIGMOD, pages: 951-962, 2010

[9] M. K. Anand, S. Bowers, and B. Ludäscher. Techniques for efficiently
querying scientific workflow provenance graphs. In EDBT, volume 10,
pages 287–298, 2010.

[10] Moreau L，Freire J，Futrelle J，et al. The open provenance model,
Southampton: School of Electronics and Computer Science，University
of Southampton，2007．

1 2
predicates 1 2, ,

(())
n

mc c c
   DepView DepView DepView




javascript:void(0);
javascript:void(0);
http://www.eecs.harvard.edu/~margo/papers/ladis09/
http://www.eecs.harvard.edu/~margo/papers/ladis09/
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/article/pii/S0169023X13000840
http://www.sciencedirect.com/science/journal/0169023X
http://www.sciencedirect.com/science/journal/0169023X/88/supp/C
http://arxiv.org/find/cs/1/au:+Chavan_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Huang_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Deshpande_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Elmore_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Madden_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Madden_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Madden_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Parameswaran_A/0/1/0/all/0/1

