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Abstract

Clustering is the process of partitioning a dataset into
groups based on the similarity between the instances. Many
clustering algorithms were proposed, but none of them
proved to provide good quality partition in all situations.
Consensus clustering aims to enhance the clustering pro-
cess by combining different partitions obtained from differ-
ent algorithms to yield a better quality consensus solution.
In this work, we propose a new consensus method that uses
a pattern mining technique in order to reduce the search
space from instance-based into pattern-based space. In-
stead of finding one solution, our method generates mul-
tiple consensus candidates based on varying the number
of base clusterings considered. The different solutions are
then linked and presented as a tree that gives more insight
about the similarities between the instances and the differ-
ent partitions in the ensemble.

keywords Unsupervised learning; Clustering; Consensus
clustering; Ensemble clustering; Frequent closed itemsets.

1. Introduction

Clustering is one of the important tasks in data mining.
It can discover patterns in a dataset by classifying the in-
stances into groups based on their similarities. However,
different algorithms were proposed in the last decades to
enhance this unsupervised learning process. Unfortunately,
none of these algorithms proved to provide “good” cluster-
ing solution in all situations. Therefore, a new branch of re-
search emerged in the last years that focuses on combining
different clusterings into one consensus solution, known as
Consensus Clustering or Clusterings Aggregation. The idea
behind it is that we can benefit from the advantages of each
algorithm used in building the initial clusterings ensemble,
to produce a new solution that is more stable and achieves
better quality final result.

Different approaches were used to generate the consen-
sus solution. However, until very recently, all these meth-
ods search for the optimal consensus in the whole search

space, making some of them inapplicable for large datasets.
Thus, new research focused on finding the consensus par-
tition in a pruned space. Wu et. al. [22] worked on a re-
duced space of “data fragments” instead of the instances
space. Vega-Pons and Avesani [20] defined two functions
to prune the search space, namely the unanimity and the
majority prune functions. In this work, we use the Frequent
Closed Itemsets (FCI) [14] technique from the domain of
pattern mining and association rules discovery, in order to
find a different pruning of the search space. FCI, a tech-
nique designed to discover patterns in very large datasets,
can be used to transform the search space from instance-
based into pattern-based space. Each pattern defines agree-
ment between a set of base clusters on grouping a set of in-
stances. Therefore, we can even partition this patterns space
into subspaces based on the number of base clusterings that
define the patterns. On each subspace, we find a consensus
solution by clustering the patterns based on their similar-
ity. Thus, our approach involves generating multiple con-
sensuses, then recommend the one the most similar to the
ensemble. All these solutions are linked and presented in
a tree of consensus clusters that enables the analyst to dis-
cover which clusters are more stable than others, pointing
out strong intra-cluster similarity between the instances.

This paper is organized as follows: The next section pro-
vides a brief summary of the main categories of consensus
clustering methods. The proposed approach is explained in
Sect. 3. Description of the performed tests and the achieved
results is presented in Sect. 4. We conclude in Sect. 5.

2. Related Work

Different methods were proposed to find a consensus
partition from an ensemble of clusterings. They can be cat-
egorized based on the underlying approach used:

• Graph partitioning methods: By representing the
relation between the instances and the base clusters
they belong to as a graph, a consensus solution is
obtained using a graph partitioning algorithm. For
example: Cluster-based Similarity Partitioning Al-
gorithm (CSPA), HyperGraph Partitioning Algorithm
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(HGPA), Meta CLustering Algorithm (MCLA) (Strehl
and Ghosh [17]), and Hybrid Bipartite Graph Formu-
lation (HBGF) (Fern and Brodley [5]).

• Voting methods: These methods try first to find a uni-
fied labeling among the base clusterings, then apply a
voting approach to generate the consensus solution. In
the Plurality Voting method (Dudoit and Fridlyand[4],
Fischer and Buhmann[6]), the relabeling problem is
solved using the Hungarian algorithm, then the final
label of an instance is the one the mostly assigned to it
in the relabeled ensemble.

• Co-association based methods: A co-association ma-
trix can be used to define the similarity between the in-
stances in terms of how many times each pair belongs
to the same cluster in the ensemble. Then, a clustering
algorithm can be applied to find the consensus parti-
tion. For example, Fred and Jain [7] used the single-
linkage hierarchical clustering algorithm on the matrix
to generate a consensus solution.

• Finite mixture methods: The labels of the base clus-
terings are considered as random variables drawn from
a probability distribution. The consensus partition here
is the solution of a maximum likelihood estimation
problem, using for example the EM algorithm as done
by Topchy et. al. [18].

More details in the surveys by Ghaemi et al. [8], Saru-
mathi et al. [16], and Vega-Pons & Ruiz-Shulcloper [21].

3. The Proposed Pattern-Based Approach

To discover the relationships between the instances and
the base clusters in the ensemble, we use the frequent closed
itemset technique from pattern mining discipline. FCI finds
first the sets of instances that are clustered together by all
base clusterings, similar to the data fragments in [22] or
the unanimity function in [20]. Instead of using the algo-
rithms proposed in [22], or the majority function in [20]
that provides further pruning to the search space, FCI finds
also the sets of instances that are clustered together by dif-
ferent combinations of base clusterings. Therefor, FCI does
not just transform the search space from instance-based into
patterns-based, but it also enables us to divide this pruned
space into subspaces based on the number of base cluster-
ings used to define the patterns, and search for a consensus
solution in each subspace. The proposed approach is ex-
plained in detail in the following subsections.

3.1. Clusterings Ensemble

The first step in any consensus clustering method is to
build an ensemble of different partitions for the dataset.

However, some consensus methods may impose restrictions
on the ensemble generation process. For example, voting
methods require that all the partitions in the ensemble have
the same number of clusters [8, 21]. For our approach, there
are no limitations, as long as the base clusterings define hard
partitions, that is, an instance belongs to only one cluster in
each base clustering.

3.2. Cluster Membership Matrix

As in [1], we use a cluster membership matrix M to
record the relationships between the instances and the base
clusters as a binary relation. M consists of n rows and m
columns, where n is the number of instances, and m is the
total number of clusters of all base clusterings.

Definition 1 A cluster membership matrix M is a triplet
(I, C, R) where I is a finite set of instances represented
as rows, C is a finite set of clusters represented as columns,
and R is a binary relation defining relationships between
rows and columns: R ⊆ I × C. Every couple (i, c) ∈ R,
where i ∈ I and c ∈ C, means that instance i belongs to
cluster c. This binary relation is represented in the matrix
by 1 atMic, and 0 if there is no relationship.

Consider as an example a dataset of eight instances D =
{1, 2, 3, 4, 5, 6, 7, 8}. Suppose that we partitioned it with
4 clusterings as follows: P1= {{1, 2, 3}, {4, 5, 6, 7, 8}},
P2= {{1, 2}, {{3, 4, 5}, {6, 7, 8}}, P3= {{5, 6, 7, 8},
{1, 2, 3, 4}}, and P4= {{1, 2, 3}, {{4, 5}, {6, 7, 8}}. The
resulting cluster membership matrix is shown in table 1.
Each column P ij defines cluster j in partition i as a binary
vector where values ‘1’ identify the instances that belong to
the cluster.

Table 1: Example cluster membership matrix.

Instance ID P 1
1 P 1

2 P 2
1 P 2

2 P 2
3 P 3

1 P 3
2 P 4

1 P 4
2 P 4

3

1 1 0 1 0 0 0 1 1 0 0
2 1 0 1 0 0 0 1 1 0 0
3 1 0 0 1 0 0 1 1 0 0
4 0 1 0 1 0 0 1 0 1 0
5 0 1 0 1 0 1 0 0 1 0
6 0 1 0 0 1 1 0 0 0 1
7 0 1 0 0 1 1 0 0 0 1
8 0 1 0 0 1 1 0 0 0 1

3.3. Frequent Closed Clustering Patterns

M can be viewed as a pattern mining problem, where
each column (cluster) represent an item as defined below.

Definition 2 An item of a cluster membership matrixM =
(I, C, R) is a cluster identifier c ∈ C, and an itemset is a
non-empty finite set of items C = {c1, ..., ck} ⊆ C in M.



The frequency of C is defined as F(C) = |{I ∈ I | ∀i ∈
I, ∀c ∈ C, we have (i, c) ∈ R}|.

Applying FCI technique on M produces Frequent
Closed Pattern (FCP)s, that is, a set of instance identifiers
that share a binary pattern of cluster memberships (item-
set)1. Table 2 shows the FCPs extracted from table 12. The
closed patterns represent maximal rectangles of ‘1’s in the
membership matrix.

Definition 3 A pattern ρ= (C, I) in the cluster membership
matrixM = (I, C, R) is a pair of sets C ⊂ C and I ⊂ I
such that ∀i ∈ I and ∀c ∈ C, we have (i, c) ∈ R. If C ⊂
C ′, then ρ is a frequent closed pattern iff F(C) 6= F(C ′).

The closed property ensures not generating redundant
patterns for our approach, that is, those with identical in-
stance sets. This reduces greatly memory consumption and
execution time compared to generating all the possible fre-
quent patterns3.

Table 2: Frequent closed patterns extracted from table 1.

FCP ID Itemset (FCIs) Instance ID set
1 {P 1

2 , P 2
2 , P 3

2 , P 4
2 } {4}

2 {P 1
2 , P 2

2 , P 3
1 , P 4

2 } {5}
3 {P 1

1 , P 2
2 , P 3

2 , P 4
1 } {3}

4 {P 2
2 , P 3

2 } {3,4}
5 {P 1

2 , P 2
2 , P 4

2 } {4,5}
6 {P 1

1 , P 2
1 , P 3

2 , P 4
1 } {1,2}

7 {P 2
2 } {3,4,5}

8 {P 1
1 , P 3

2 , P 4
1 } {1,2,3}

9 {P 1
2 , P 2

3 , P 3
1 , P 4

3 } {6,7,8}
10 {P 3

2 } {1,2,3,4}
11 {P 1

2 , P 3
1 } {5,6,7,8}

12 {P 1
2 } {4,5,6,7,8}

3.4. Multiple Consensuses

After generating the FCPs that summarize the relation
between the instances and sets of clustering decisions, we
will work on this patterns space to find consensus solutions.
First, we partition this patterns space into subspaces based
on the number of base clusterings that define the pattern.
We use a Decision Threshold (DT) to identify each sub-
space, as it defines the size of the itemset in each pattern.

1In association rule mining, the support of an itemset is the percent-
age of instances that have the itemset. Only the itemsets with support >
minsupport threshold are considered. However, in our approach, we use
minsupport = 0 to consider all the possible closed patterns.

2For small datasets, we can have more patterns than the number of
instances. However, in large datasets, the number of patterns will be much
smaller compared to dataset size, since many instances will share the same
pattern.

3See [2] for more details about association rules mining techniques.

The first subspace consists of the patterns having itemsets
of size max DT (the number of base clusterings used in the
ensemble). The instance identifier sets of the patterns in this
initial subspace represent the clusters (“data fragments”) of
the first consensus. Next, we sequentially decrement DT to-
ward 1, and in each subspace, a consensus solution is built
from the instance identifier sets of the patterns in that sub-
space, plus the clusters of the previous consensus.

Definition 4 Let α = Max(DT ). The first consensus is
Pα = {πα1 , πα2 , ..., παm}, where παk is an instance set of
a FCP built from α base clusterings. Let β < α and
Sβ = Iβ ∪ Pβ+1 is the pool of instance sets at β = DT ,
where Iβ is the instance sets of the FCPs built from β base
clusterings, and Pβ+1 is the instance sets (clusters) of the
previous consensus. A new consensus Pβ is the result of ap-
plying a consensus functionY on Sβ , that is, Pβ =Y(Sβ) =
{πβ1 , π

β
2 , ..., π

β
n} such that πβi ∩π

β
j = ∅, ∀(i, j) ∈ {1, ..., n},

i 6= j, and
⋃i=n
i=1 π

β
i = I.

In each subspace, an instance identifier set I ⊆ I has
one of the three following properties:

i) Uniqueness: It does not intersect with any other set
I ′ ⊆ I, that is, I ∩ I ′ = ∅.

ii) Inclusion: It is a subset of another set I ′ ⊆ I, that is,
I ⊆ I ′.

iii) Intersection: It intersects with another set I ′ ⊆ I, that
is, I ∩ I ′ 6= ∅, I \ I ′ 6= ∅ and I ′ \ I 6= ∅.

The objective of our consensus function is to build dis-
joint clusters from the instance sets, that is, all the sets have
uniqueness property. For the first consensus, all the instance
sets are unique. However, for the following consensuses,
the sets of instance identifiers can have any of the above
properties, because when we consider fewer base cluster-
ings, instances can belong to several patterns. The instance
sets with inclusion property are usually the clusters of the
previous consensus, as they will become subsets of new
grouping of the instances defined by fewer number of base
clusters. Thus, they are removed to consider the new deci-
sions. What remains are the sets with intersection property.
To make unique clusters from them, we need to either merge
or split intersecting sets based on their similarity. Jaccard
index [11] is a well known measure of the similarity be-
tween two sets X and Y:
J(X,Y ) = |X∩Y |

|X∪Y | =
|X∩Y |

|X|+|Y |−|X∩Y |
For example, let us take the 3 cases of sets intersection

shown in Fig. 1 and calculate the Jaccard score for each
case:
J(A,B) = 3

27 , J(B,C) = 7
23 , J(D,E) = 7

23

But the same score is given to cases 2 and 3, despite
that in case 2, most of set B is part of set C. Thus, instead



of using Jaccard, we define a new measure for deciding to
merge or split sets based on the size of intersection to the
size of each set:
Avg I(X|Y ) = ( |X∩Y ||X| + |X∩Y ||Y | )× 0.5

Going back to the sets in Fig. 1:
Avg I(A|B) = ( 3

20 + 3
10 )× 0.5 = 0.225

Avg I(C|B) = ( 7
20 + 7

10 )× 0.5 = 0.525

Avg I(D|E) = ( 7
16 + 7

14 )× 0.5 = 0.469

Thus, our new measure gave the highest score to case 2.

Figure 1: Examples of sets intersection

Based on the new measure, our consensus function will
decide to merge/split intersecting sets using a Merging
Threshold (MT). That is, if the score given to 2 intersecting
sets is more than or equals MT, then the 2 sets are merged
using a union operation. Else, they are split into 2 dis-
joint sets, by removing the shared instances from the largest
set, and keeping them in the smaller set as it represent a
more coherent cluster. To enhance the merge/split process,
the consensus function searches, for each set, which of the
other sets produces the highest score by the average inter-
section ratio measure, before comparing with MT. This pro-
cess repeats until having all the remaining sets as unique.
After generating all the possible consensuses, the one the
most similar to the ensemble is recommended. The similar-
ity is calculated using Jaccard index. Algorithms 1 and 2
present in detail the proposed multiple consensuses genera-
tion method.

Continuing the running example and the FCPs in table
2: We start with DT=4. The first consensus consists of the
instance sets of FCPs 1, 2, 3, 6, and 9 as they are all unique.
The next subspace is DT=3, which consists of FCPs 5 and
8, plus the clusters of the consensus at DT=4. Therefore,
we have the following sets: {4}, {5}, {3}, {1,2}, {6,7,8},
{4,5}, and {1,2,3}. The first 4 sets are subsets of the last
2, thus they are removed. The consensus clusters at DT=3
are the remaining sets. At DT=2, we have: {6,7,8}, {4,5},
{1,2,3}, {3,4}, and {5,6,7,8}. The first set is removed,
while the second intersects with 2 other sets, thus, we will
use average intersection ratio:
Avg I({4, 5}, {3, 4}) = 0.5.

Avg I({4, 5}, {5, 6, 7, 8}) = 0.375.
The higher score is for Avg I({4, 5}, {3, 4}). If

Input : Dataset to cluster, merging threshold MT
Output : ConsTree tree of consensuses, list of consensus

clustering vectors
1 Generate clusterings ensemble of the dataset;
2 Build the cluster membership matrixM;
3 Generate FCPs fromM for minsupport = 0;
4 Sort the FCPs in ascending order according to the size of the

instance sets;
5 MaxDT← Number of base clusterings;
6 BiClust← {instance sets of FCPs built from MaxDT base

clusters};
7 Assign a label to each set in BiClust to build the first

consensus vector and store it in a list of vectors ConsVctrs;
8 for DT = (MaxDT - 1) to 1 do
9 BiClust← BiClust ∪ {instance sets of FCPs built from

DT base clusters};
10 N ← |BiClust | ;
11 Call the consensus function (Algo. 2);
12 Assign a label to each set in BiClust to build a

consensus vector and add it to ConsVctrs;
13 end
14 Find stable consensuses in ConsVctrs and remove extra

duplicates;
15 For each remaining consensus, calculate its average

similarity to the ensemble using Jaccard index;
16 Build a tree from the consensuses in ConsVctrs, with a

recommended solution as the one that has the highest
average similarity to the ensemble;

Algorithm 1: Generate Multiple Consensuses

MT=0.44, then the 2 sets are merged to form {3,4,5}.
Now we have Avg I({1, 2, 3}, {3, 4, 5}) = 0.33 < MT,
then the sets are split into {1,2,3} and {4,5}. The last is
Avg I({4, 5}, {5, 6, 7, 8}) = 0.375 < MT, then split into
{4,5} and {6,7,8}. The final consensus at DT=2 is {1,2,3},
{4,5}, and {6,7,8} which is identical to the consensus at
DT=3, thus it is removed because it becomes redundant so-
lution. A stability counter (ST) is used to reflect that a con-
sensus solution is generated multiple times from different
DT spaces. Therefore, the consensus at DT=3 will have
ST=2. The same process is performed for DT=1, resulting
in grouping all the instances in 1 cluster.

3.5. ConsTree

The final step is presenting all the generated consensuses
in a tree structure that explains how the instances regroup at
each DT subspace. Each level in the ConsTree depicts the
final consensus clusters of a specific DT subspace. The lev-
els are sorted according to DT, where the first consensus is
assigned to the bottom level of the tree. In each tree level,
the node’s label and size reflect the cluster size. The Con-
sTree of the running example is shown in Fig.2.

4Default value based on extensive experimental tests.



1 repeat
2 for i = 1 to N do
3 Bi← ith set in BiClust;
4 BestIntrsc← 0;
5 Index← 0;
6 for j = 1 to N, j 6= i do
7 Bj ← j thset in BiClust;
8 IntrscSz ← |Bi ∩Bj |;
9 if IntrscSz = 0 then

10 Next j ;
11 else if IntrscSz = |Bi| then
12 /* Bi ⊂ Bj */ ;
13 Remove Bi from BiClust;
14 Next i;
15 else if IntrscSz = |Bj | then
16 /* Bj ⊂ Bi */ ;
17 Remove Bj from BiClust;
18 Next j;
19 else
20 IntrscRatio←

( IntrscSz
|Bi|

+ IntrscSz
|Bj |

)× 0.5;

21 if IntrscRatio > BestIntrsc then
22 BestIntrsc← IntrscRatio;
23 Index← j;
24 end
25 if BestIntrsc > 0 then
26 j ← Index;
27 Bj ← j th set in BiClust;
28 if BestIntrsc ≥MT then
29 /* merge */ ;
30 Bj ← Bi ∪Bj ;
31 Remove Bi from BiClust;
32 else
33 /* split */ ;
34 if |Bi| ≤ |Bj | then
35 Bj ← Bj \Bi ;
36 else
37 Bi ← Bi \Bj ;
38 end
39 until All sets in BiClust are unique;

Algorithm 2: Consensus function

Definition 5 A tree of consensuses is an ordered set (P , �)
of consensusesP =

⋃DT=MinDT
DT=MaxDT PDT ordered in descend-

ing order of DT values. Let’s denote Pα = {πα1 , ..., παm}
and Pβ = {πβ1 , ..., πβn} the consensuses generated for α and
β DT values respectively. Let’s denote παq the qth cluster in
Pα and πβr the rth cluster in Pβ , with 1 ≤ q ≤ m and 1 ≤
r ≤ n. For α > β we have Pα � Pβ , that is ∀παq ∈ Pα,
∃πβr ∈ Pβ such that παq ∩ πβr 6= ∅. Pα is a predecessor of
Pβ in the tree of consensuses.

Another example of a ConsTree is shown in Fig. 3. By
reading the tree from the bottom level to the root, we can see
that all the clusters are linked to only 1 cluster at the next

Figure 2: The ConsTree of the running example.

level, except 2 clusters at DT=8 that are linked to 2 clus-
ters at DT=7, meaning that theirs instances are regrouped
differently at DT=7. This shifting of the instances may hap-
pen for many of the clusters in other examples (especially
for real datasets), making the tree difficult to visualize and
analyze. Therefore, we developed a tree refinement pro-
cess, on which we remove the instances that shift. Figure 4
shows the refined version of the tree in Fig. 3. The Removed
Instances (RI) at the bottom tells how many instances are
removed. Tree refinement do not alter the original consen-
suses, it just simplifies the visualization. What we can un-
derstand from the trees is not just how the instances regroup
on different view points of a set of base clusterings, but also
what clusters (or consensuses) are stable. Stable clusters,
those that do not change over several consecutive tree lev-
els, suggest strong intra-cluster similarity. Even the merg-
ing of the clusters at a higher tree level explains that the
merged clusters are very close in the data space compared
with others. The recommended solution, the one circled in
a red line, is the consensus that has the highest average Jac-
card similarity to the ensemble. However, the most stable
consensus can also be considered, as it usually identify a
well separated clusters structure in the data space. In this
example, it is the consensus of DT=5, with stability ST=4.

4. Experiments

The proposed method was implemented using R
language [15] on a DELL PRECISION M4800 with
Intel R© CoreTM i7-4710MQ @ 2.50GHz, 32 GB of RAM,
and Microsoft Windows 10 Professional (64-bit) operat-
ing system. Function apriori in arules R package [9] was
used to discover the FCPs, by setting the target parame-
ter to “closed frequent itemsets” and support = 1 / Data-
size5. By considering the clusters of the different consen-
suses as nodes in a graph, that are linked by edges based

5A faster algorithm for generating the FCPs called FIST is proposed by
[13], and an implementation of it in Java is available on the website of the
authors.



Figure 3: Example of a ConsTree.

Figure 4: The result of refining the tree in Fig. 3.

on the shared instances between them, the ConsTree can be
drawn using the plot function in the igraph R package [3].
If a node at a certain tree level is connected to several nodes
at the next level (reading the tree from the bottom), then the
refinement process keeps only one edge of the node that has
the maximum shared instances with the next node.

We used the following real datasets from the UCI repos-
itory [12] for testing: Magic Gamma, Zoo, E.Coli, Iris,
Breast Cancer, Congress Votes and Wine. Wingnut, Terta
and EngyTime are synthetic datasets from [19]. Table 3
shows the properties of each dataset (size, number of at-
tributes, number of actual classes), how many clusterings
used in the ensemble, that each partitioned the dataset into
a number of clusters within the k range. Among the cluster-
ing algorithms used to build the ensemble (all available in
R): K-means, PAM, agglomerative hierarchical clustering,
AGNES, DIANA, MCLUST (Gaussian Model-Based Clus-

tering), C-Means, FANNY, Bagged Clustering, and SOM.
In-ensemble similarity is a measure of the similarity be-
tween the base clusterings, calculated using Jaccard in-
dex. As all the datasets have true class labels, we used
them to validate the quality of the base partitions (ensem-
ble min and max similarity to the true class calculated
also using Jaccard). In addition, we used the true classes
to compare the performance of our proposed method (the
“recommended consensus” with MT=0.4) against voting-
based consensus methods available in R package CLUE
[10], which include the following: SE, GV1, DWH, HE,
GV3, SM, soft/symdiff, and consensus medoid. Note that
the CLUE methods require specifying the number of clus-
ters in the consensus solution, which is unnecessary for our
method. Thus, we present also how many discovered clus-
ters in our recommended consensus, while we used the true
number of classes for CLUE methods.



The Magic Gamma dataset test is not about the qual-
ity of the results, but more about the applicability of our
method on large datasets. Note that CLUE methods GV3
and soft/symdiff failed to work on this dataset as they re-
quired more than 32 GB of memory. For Magic Gamma,
Breast Cancer and EngyTime tests, we considered that we
have domain knowledge on how many clusters there should
be in the dataset (like differentiating between positive and
negative instances). Thus, all the base clusterings generate
the same number of clusters, which is the best scenario for
voting-based consensus methods.

In table 4, we present the execution time (in seconds) of
the consensus methods used. For our method, we separated
between the time required to discover the FCPs, and the
time required to generate all the consensuses and find the
recommended one. We can see that the total time of our
method is acceptable, although not the fastest compared to
CLUE, but much faster than GV3, SM, and Soft/symdiff. In
fact, the execution time of our method is related to the size
of the ensemble, and the in-ensemble similarity, as both will
determine the number of generated FCPs.

5. Conclusions

We presented a new consensus clustering method, us-
ing the frequent closed pattern mining technique in order to
transform the relation between the instances and the parti-
tion ensemble into clustering patterns. By dividing this pat-
tern space into subspaces, we were able to generate multiple
consensuses from different combinations of base cluster-
ings. In each subspace, we tried to re-cluster the instances
based on the information provided in the patterns, rather
than finding a “median” partition for the ensemble. The
consecutive processing of the different clustering views en-
ables us to discover the number of hidden clusters in the
dataset (without the need to specify this explicitly), and to
build a ConsTree to visualize the relationships between the
instances.

The proposed method achieved good results in terms of
quality and the number of discovered clusters, with accept-
able execution time considering that it generates multiple
solutions. As the FCI technique was designed to efficiently
discover patterns in very large datasets, our method can be
applied on large datasets, as the patterns space will be a high
pruning for the actual instances space. For example, for the
Magic Gamma dataset (19020 instances), the patterns space
contains 156 patterns only. The number of discovered pat-
terns depends on the size of the ensemble, and how much
agreement exists between the base clustering decisions.

Using the ConsTree, the analysts are not limited to one
final solution, but rather they can choose another one based
on their observation and preferences. For example, they
may prefer to choose a solution where a certain cluster is di-

vided into two, as this may reflect a more meaningful group-
ing for them.
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