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Abstract—Cross-company defect prediction (CCDP) is a 

practical way that trains a prediction model by exploiting one or 

multiple projects of a source company and then applies the model 

to target company. Unfortunately, larger irrelevant cross-

company (CC) data usually makes it difficult to build a 

prediction model with high performance. On the other hand, 

brute force leveraging of CC data poorly related to within-

company (WC) data may decrease the prediction model 

performance. To address such issues, this paper introduces 

Multi-Source TrAdaBoost algorithm, an effective transfer 

learning approach to perform CCDP. The core idea of our 

approach is that: 1) employ limited amount of labeled WC data 

to weaken the impact of irrelevant CC data; 2) import knowledge 

not from one but from multiple sources to avoid negative transfer. 

The experimental results indicate that: 1) our proposed approach 

achieves the best overall performance among all tested CCDP 

approaches; 2) only 10% labeled WC data is enough to achieve 

good performance of CCDP by using our proposed approach. 

Keywords—software defect prediction;cross-company defect 

prediction; transfer learning; Multi-Source TrAdaBoost 

I.  INTRODUCTION  

Software defect prediction is one of the most important 
software quality assurance techniques. It aims to detect the 
defect proneness of new software modules via learning from 
defect data. So far, many efficient software defect prediction 
approaches [1-6] have been proposed, but they are usually 
confined to within company defect prediction (WCDP). WCDP 
works well if sufficient data is available to train a defect 
prediction model.  However, it is difficult for a new company 
to perform WCDP if there is limited historical data. Cross-
company defect prediction (CCDP) is a practical approach to 
solve the problem. 

1
It trains a prediction model by exploiting 

one or multiple projects of a source company and then applies 
the model to target company [7]. 

Most existing CCDP approaches [7-14] focus on using only 
cross-company (CC) data to build a proper prediction model. 
Unfortunately, larger irrelevant CC data usually makes it 
difficult to build a prediction model with high performance 
[15]. In fact, if there is limited amount of labeled WC data, the 
data is not enough to perform WCDP, but it may help a lot to 
improve the performance of CCDP. Another scenario is that 
companies may already have their defect prediction models in 
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place and making use of CC data may improve the 
performance of models [16]. 

The challenges of performing CCDP with limited amount 
of labeled WC data usually include: 

1) How to weaken the impact of irrelevant CC data to 
improve the performance of CCDP. 

The ability to transfer knowledge from a source company to 
a target company depends on how they are related. The 
stronger the relationship, the more usable will be CC data. The 
performance of CCDP is generally poor because of larger 
irrelevant CC data. The irrelevant data has bad effects on the 
prediction outcome [17]. 

2) How to avoid negative transfer when leveraging multiple 
cross-companies data. 

Brute force leveraging of CC data poorly related to WC 
data may decrease the prediction model performance. Lin et al. 
developed the double transfer boosting (DTB) approach [15] 
for CCDP. DTB approach merges all CC data as a source, 
relies on only the source, and therefore is intrinsically 
vulnerable to negative transfer. 

Considering the above challenges, this paper introduces 
Multi-Source TrAdaBoost algorithm [17], an effective transfer 
learning approach to perform CCDP. We call the proposed 
approach for CCDP as MSTrA. The core insight of MSTrA is 
that: 1) in order to narrow the distribution gap between CC data 
and WC data, MSTrA firstly uses NN filter [10] to select the k 
most similar CC data to each WC data and then use data 
gravitation [18] for reweighting the whole distribution of CC 
data to fit WC data; 2) MSTrA then trains and combines a set 
of weak prediction models for building a stronger ensemble 
defect prediction model using not only reweighted CC data but 
also limited amount of WC data; 3) in each training round, 
MSTrA transfers knowledge from multiple sources and reduces 
the weights of irrelevant CC data continuously. 

To assess the MSTrA approach, this paper explores the 
following research questions. 

RQ1: How effective is our proposed MSTrA approach 
when comparing to other approaches for CCDP? 



 

 

RQ2: How much labeled WC data is enough to help the 
prediction model achieve better performance by using our 
proposed MSTrA approach? 

The remainder of this paper is organized as follows. Section 
2 presents the related work. Section 3 describes the proposed 
MSTrA approach for CCDP. Section 4 demonstrates the 
experimental results. Finally, Section 5 addresses the 
conclusion and points out the future work. 

 

II. RELATED WORK 

In this section, we briefly review the existing cross-
company and cross-project defect prediction approaches. These 
approaches can be categorized into two main types: defect 
prediction using only CC data [7-14], defect prediction using 
not only CC data but also limited amount of labeled WC data 
[15-16]. 

A. Defect prediction using only CC data 

In order to solve the problem that the new companies have 
too limited historical data to perform WCDP well, the cross-
project and cross-company defect prediction appeared.  

Briand et al.[8]  used logistic regression and MARS models 
to learn a defect predictor, which is also the earliest work on 
CCDP. Zimmermann et al. [9] studied CCDP models on 12 
real-world applications datasets. Their results indicate that 
CCDP is still a serious challenge. Turhan et al. [10] 
investigated the applicability of CC data for building localized 
defect predictors using 10 projects collected from two different 
companies including NASA and SOFTLAB. And they have 
proposed a nearest neighbor (NN) filter to select CC data.  He 
et al. [11] investigates defect predictions in the cross-project 
context focusing on the selection of training data. Furthermore, 
they proposed an approach to automatically select suitable 
training data for projects without historical data so that the 
results of their experiments are comparable with WCDP, which 
indicated that some approach of  CCDP can comparable to 
WCDP. They noted that learning predictors using the data from 
other projects can be a potential way to defect prediction 
without any historical data. In order to find data for quality 
prediction, Peters et al. [12] introduced the Peters filter to 
select training data via the structure of other projects. They 
compared the filter with two other approaches for quality 
prediction to assess the performance of the Peters filter, and 
found that 1) WCDP are weak for small data sets; 2) the Peters 
filter + CCDP builds better and more useful predictors. Zhang 
et al. [13] proposed sample-based methods for software defect 
prediction. For a large software system, they could select and 
test a small percentage of modules, and then built a defect 
prediction model to predict defect-proneness of the rest of the 
modules. They described three methods for selecting a sample 
and proposed a novel active semi-supervised learning method 
ACoForest to facilitate the active sampling. The results showed 
that the proposed methods are effective and have potential to 
be applied to industrial practice. Ma et al. [14] proposed a 
novel algorithm called Transfer Naive Bayes (TNB) to transfer 
cross-company data information into the weights of the training 
data and then build the predictor based on re-weighted CC data. 
The results indicated that TNB is more accurate in terms of 

AUC, within less runtime than the state of the art methods and 
can effectively achieve the CCDP task. The heterogeneous 
CCDP (HCCDP) task is that the source and target company 
data is heterogeneous.  Jing et al. [7] provided an effective 
solution for HCCDP. They proposed a unified metric 
representation (UMR) for the data of source and target 
companies and introduced canonical correlation analysis 
(CCA), an effective transfer learning method, into CCDP to 
make the data distributions of source and target companies 
similar. Results showed that their approach significantly 
outperforms state-of-the-art CCDP methods for HCCDP with 
partially different metrics and for HCCDP with totally different 
metrics, their approach is also effective.   

The approaches above are focus on using only CC data to 
build predictors. Considering there is limited amount of labeled 
WC data, the data is not enough to perform with company 
defect prediction, but it may help a lot to improve the 
performance of CCDP. 

B.  Defect prediction with limited amount of labeled WC data 

Turhan et al. [16] introduced a mixed model of within and 
cross data for CCDP to investigate the merits of using mixed 
project data for binary defect prediction. Results showed that 
when there is limited project history, mixed model for CCDP 
can achieve good performance which can be comparable to 
WCDP. It provided a new idea to CCDP that the use of a small 
amount of labeled WC data would be very valuable to improve 
the performance of CCDP. 

Lin et al. [15] introduced a novel approach named Double 
Transfer Boosting (DTB) to narrow the gap of different 
distributions between CC data and WC data and to improve the 
performance of CCDP by reducing negative samples in CC 
data. However, it merges all CC data as one source and the 
result only relies on the single source so that it is prone to 
negative transfer, which is exactly what we will solve in this 
paper. 

 

III. METHODOLOGY 

In this section, we present our MSTrA approach for CCDP. 
Its main steps are as follows: 1) in order to narrow the 
distribution gap between CC data and WC data, MSTrA first 
uses NN filter [10] to select the k most similar CC data to each 
WC data and then uses data gravitation [18] for reweighting the 
whole distribution of CC data to fit WC data; 2) MSTrA mixes 
limited amount of labeled WC data with reweighted CC data to 
build the prediction model by using Multi-Source TrAdaBoost 
algorithm. 

A. Data Preprocessing 

Previous work [10] found that using raw CC data directly 
would increase false alarm rates due to irrelevant instance in 
CC data, so several data preprocessing works should be done 
before building the prediction model. To decrease the negative 
effect of the irrelevant instance in CC data for building the 
prediction model, we employ NN filter proposed by Turhan et 
al. [10] to form the training set. Based on the widely used 
classification method KNN algorithm, NN filter can find out 
the most similar K×N instances from CC data while N is the 



 

 

number of WC instances and K is the parameter of the KNN 
method.  Note that duplicate instances may exist in this filtered 
dataset, as some instances in WC data may have some common 
neighbors in CC data. Thus, the final filtered CC training data 
can be formed by using only unique ones. 

Then we apply the data gravitation method [18] to change 
the entire distribution of CC data. Suppose that an instance xi 
can be described by xi={ai1,ai2,…,aik},where aij is the j-th 
attribute value of the i-th instance and k is the number of the 
attributes. 

(1) We compute two vectors, Max= {max1, max2 ,…, maxk} 
and Min= {min1, min2, …, mink} to represent the attribute 
value distribution of WC data, where maxi is the maximum 
value of the i-th attribute, mini is the minimal value of the i-th 
attribute. 

(2) For each instance xi in CC data, the degree si of 
similarity to WC data is computed according to Eq.(1) 

si=∑ ℎ(𝑎ij)  𝑘
𝑖=1       (1) 

where aij is the j-th attribute value of the instance xi, h(aij) = 1, 

if minj ≤ aij ≤ maxj; otherwise, h(aij) = 0. 

(3) The weight wi of instance xi in CC data can be 
calculated by Eq.(2) according to the formulation of data 
gravitation [18]. 

wi=si/(k-si+1)
2
    (2) 

where k is the number of the attributes.  

According to this formula, the weight wi of instance xi 
shows the similarity of xi to WC data, and the greatest wi will 
be assigned when si = k. 

Though the above steps, the entire distribution of CC data 
is reweighted to be close to WC data. 

B. Multi-Source TrAdaBoost Approach 

Let D
SK

={(x1
S1

,c1
S1

),…,(xn
SK

,cn
SK

)} be the k-th cross-
company data, where n is the number of instances in the k-th 

cross company data, ci
SK∈{true, false} is the class label of 

instance xi
SK

. Let D
T
={(x1

T
,c1

T
),…,(xm

T
,cm

T
)} be limited amount 

of labeled WC data, where m is the number of instances in 
labeled WC data, ci

T
 is the class label of instance xi

T
. During 

NN filter and  data gravitation, filtered CC data DS1,…DSN and 
labeled WC data DT are assigned different weight according 
Eq.(2). 

In each training round, combine the k-th cross-company 
data and labeled WC data to train a candidate weak prediction 
model. In our paper, we choose Naïve Bayes [19] as the base 
prediction model due to its effectiveness in defects prediction 
[20]. The final weak prediction model ft(x) in t-th iteration is 
one of the candidate weak prediction models which has the 
minimal prediction error on labeled WC data. In other words, 
every weak prediction model is selected from CC data that 
appears to be the most closely related to WC data. The 
prediction error function is defined according Eq.(3). 

εt=∑
𝑤𝑖

𝑡|𝒇𝒕(𝑥𝑖)−𝑐𝑖|

∑ 𝑤𝑖
𝑡𝑚

𝑖=1

𝑚
𝑖=1     (3) 

Set  βt = 
1

2
 ln

1−𝜀𝑡

𝜀𝑡
     (4) 

In this way, we import knowledge not from one but from 
multiple sources, thus decreasing the risk for negative transfer. 
At t-th iteration, the instances in WC data are given more 
importance if the instances are misclassified. They are believed 
to be the “most informative” for the next round, so the weight 
of the misclassified instances are increased according Eq.(5). 

wi
T
=wi

T
 𝑒𝛽𝑡|𝑓𝑡(𝑥𝑖

𝑇)−𝑐𝑖
𝑇|     (5) 

The instances in CC data are given less importance if the 
instances are misclassified. They are believed to be the most 
dissimilar to WC data, so the weight of the misclassified 
instances are decreased according Eq.(6) in order to weaken 
their impacts in the next round through multiplying the 
Hedge(β) defined in Eq.(7).  

wi
SK

=wi
SK

 𝑒−𝛽𝑠|𝑓𝑡(𝑥𝑖
𝑆𝐾−𝑐𝑖

𝑆𝐾)|   (6) 

βs=
1

2
 ln (1 + √2 𝑙𝑛

𝑛𝑠

𝑀
)    (7) 

After several iterations, the instances in CC data that fit 
WC data will have larger training weights, while the instances 
in CC data that are dissimilar to WC data will have lower 
weights.  The instances in CC data with larger training weights 
intend to build a better prediction model. The final prediction 
model F(x) can be expressed as follows: 

F(x)=sign(∑ 𝛽𝑡𝒇𝒕(𝑥)𝑡 )   (8) 

Algorithm 1 presents the pseudo-code of MSTrA approach 
to perform CCDP. 

Algorithm 1.  MSTrA approach 

Input: filtered CC data  D
S1

,…, D
SN

, limited amount of 
labeled WC data D

T
, and the maximum number of iterations 

M 

Output:  a prediction model F(x) 

1. Initialize a weight vector (w
S1

,…,w
SN

,w
T
) using Eq.(2) 

2. for t=1,…,M do 

3.    Empty the set of candidate weak prediction models 

4.    Normalize to 1 the weight vector (w
S1

,…,w
SN

,w
T
) 

5.    for k=1,…,N do 

6.      Train the candidate weak prediction model ft
K
(x)  over         

the  combined data D
SK

 ∪ D
T
, using weight ( w

SK
,w

T
) 

7.      Compute the error of  ft
K
(x) on D

T
 using Eq.(3) 

8.     end for 

9.     Find the weak prediction model ft(x) which has the 
minimal error  

10.     Update weights vector (w
S1

,…,w
SN

,w
T
) for the next 

round using Eq.(5) and Eq.(6) 

11.   end for 

12.   return  F(x)=sign(∑ 𝛽𝑡𝒇𝒕(𝑥)𝑡 ) 



 

 

IV. EXPERIMENTS 

In this section, we evaluate our proposed MSTrA approach 
to perform CCDP empirically. We first introduce the 
experiment dataset and the performance measures. Then, in 
order to investigate the performance of MSTrA, we perform 
some empirical experiments to find answers to the research 
questions mentioned above. 

A. Data set 

In this experiment, we employ 15 available and commonly 
used datasets which can be obtained from PROMISE [21]. The 
15 datasets have the same 20 attributes, so we can apply all 
attribute information directly. Table 1tabulates the details about 
the datasets. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Examples %Defective Description 

ant 125 16 Open-source 

arc 234 11.5 Academic 

camel 339 3.8 Open-source 

elearn 64 7.8 Academic 

jedit 272 33.1 Open-source 

log4j 135 25.2 Open-source 

lucene 195 46.7 Open-source 

poi 237 59.5 Open-source 

prop 660 10 Proprietary 

redaktor 176 15.3 Academic 

synapse 157 10.2 Open-source 

systemdata 65 13.8 Open-source 

tomcat 858 9 Open-source 

xalan 723 15.2 Open-source 

xerces 162 47.5 Open-source 

 

B. Performance measures 

In the experiment, we employ three commonly used 
performance measures including pd, pf and g-measure. They 
are defined in Table 2 and summarized as follows. 

TABLE II.  PERFORMANCE MEASURES 

 Actual 

yes no 

Predicted yes TP FP 

no FN TN 

pd 𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

pf 𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

g-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)
 

 

● Probability of detection or pd is the measure of defective 
modules that are correctly predicted within the defective class. 
The higher the pd, the fewer the false negative results. 

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the 
results. 

●  g-measure is a trade-off measure that balances the 
performance between pd and pf. A good prediction model 

should have high pd and low pf, and thus leading to a high g-
measure. 

C. Results for Q1 

In order to confirm whether the MSTrA approach can 
perform better than other CCDP approaches, we compared our 
approach with four state-of-the-art CCDP approaches. More 
details are provided below: 

● NN filter [10] is based on the widely used classification 
method K-Nearest Neighbors (KNN) algorithm to filter 
irrelevant CC data. It can find out the most similar K×N 
instances from CC data while N is the number of instances in 
WC data and K is the parameter of the KNN method. In our 
experiment, we choose K as 10. After NN filter, Naïve Bayes 
classifier is chosen as the basic prediction model.  

●  TNB [14] first reweights the CC data by the data 
gravitation method, then builds a transfer Naïve Bayes 
classifier on reweighted CC data.  

● NN+WC (Nearest-Neighbor filter with WC data) [16] 
mixes p% WC data with CC data which was processed by NN 
filter as training data. In our experiment, we choose p as 10.  
Then Naïve Bayes classifier is chosen as the basic prediction 
model on the training data.  

● DTB [15] first uses NN filter ,SMOTE [22] and data 
gravitation to process CC data. Then limited amount of labeled 
WC data and reweighted CC data are mixed to build prediction 
model using the transfer boosting algorithm.  

 In every experiment, one dataset is selected as WC data and 
the rest are regarded as CC data to conduct the experiment. The 
CC data is considered as basic training data which will be 
adjusted in every experiment. WC data will be randomly 
divided into two parts: 10% labeled WC data as training data 
with CC data in our MSTrA approach, DTB approach and 
NN+WC approach, and the remainder is taken as test data for 
all CCDP approaches in order to be fair.  Then the values of the 
performance measures for our MSTrA approach, DTB 
approach and NN+WC approach are calculated.  

The comparison results are summarized in Table 3 with 
three performance measures mentioned above. It shows that the 
NN approach often achieves the best pd but the worst pf so that 
it usually ends up with low g-measure value. The performance 
of NN+WC approach seems sometimes have lower pf than the 
NN approach but mostly have similar result with NN approach. 
The effect of WC data seems not very obvious.  

It’s very clear that the transfer learning models including 
TNB, DTB and MSTrA have lower pf than the other two 
models. In the aspect of pf value, the MSTrA approach reduces 
the pf to a large extent. The pf results of 7 projects are better 
than others. On more than half tests, MSTrA achieves higher g-
measure than other models.  

 In total, the MSTrA approach has acceptable pd value and 
can obtain better pf values in most experiments we conducted, 
and it almost always achieve the higher g-measure value than 
other models. In other words, the MSTrA approach 
outperforms other CCDP approaches, therefore it can be an 
effective approach for CCDP. 



 

 

TABLE III.  PD,PF AND G-MEASURE  VALUES, THE REASULTS OF FIVE APPROACH 

No. Test data MSTrA DTB TNB NN NN+WC 

PD PF G PD PF G PD PF G PD PF G PD PF G 

1 ant 0.823 0.313 0.749 0.811 0.370 0.709 0.819 0.524 0.602 0.371 0.270 0.492 0.399 0.275 0.099 

2 arc 0.409 0.106 0.561 0.605 0.272 0.661 0.745 0.413 0.655 0.745 0.629 0.495 0.807 0.648 0.488 

3 camel 0.417 0.066 0.576 0.487 0.300 0.574 0.564 0.290 0.629 0.784 0.709 0.424 0.784 0.710 0.423 

4 elearn 0.75 0.283 0.733 0.675 0.243 0.713 1.000 0.393 0.756 0.900 0.383 0.724 0.900 0.383 0.724 

5 jedit 0.646 0.181 0.722 0.568 0.237 0.651 0.475 0.168 0.605 0.932 0.616 0.544 0.932 0.628 0.532 

6 log4j 0.576 0.247 0.652 0.611 0.234 0.679 0.635 0.134 0.733 0.936 0.706 0.444 0.936 0.709 0.444 

7 lucene 0.722 0.474 0.608 0.581 0.382 0.598 0.580 0.221 0.665 0.762 0.554 0.563 0.750 0.548 0.564 

8 poi 0.551 0.241 0.638 0.632 0.415 0.607 0.416 0.228 0.540 0.910 0.678 0.475 0.910 0.684 0.469 

9 prop-6 0.655 0.299 0.678 0.670 0.331 0.669 0.529 0.336 0.589 0.860 0.635 0.512 0.860 0.628 0.519 

10 redactor 0.591 0.336 0.625 0.616 0.679 0.422 0.634 0.513 0.550 1.000 0.899 0.184 1.000 0.891 0.196 

11 synapse 0.786 0.285 0.748 0.871 0.490 0.643 0.775 0.422 0.662 0.935 0.777 0.360 0.935 0.781 0.355 

12 system 0.75 0.490 0.607 0.717 0.340 0.687 0.563 0.260 0.640 0.817 0.341 0.730 0.817 0.341 0.730 

13 tomcat 0.418 0.163 0.558 0.712 0.396 0.653 0.914 0.592 0.564 0.632 0.380 0.614 0.690 0.359 0.660 

14 xalan 0.458 0.175 0.589 0.654 0.400 0.625 0.604 0.356 0.623 0.961 0.679 0.481 0.961 0.685 0.474 

15 xerces 0.586 0.392 0.595 0.370 0.274 0.490 0.319 0.268 0.444 0.437 0.631 0.400 0.437 0.631 0.400 

 Average 0.609 0.270 0.643 0.639 0.358 0.625 0.638 0.341 0.617 0.799 0.592 0.496 0.808 0.593 0.472 

 

D. Results for Q2 

 In order to confirm how much labeled WC data is enough 
to help the prediction model achieve better performance by 
using our proposed MSTrA approach, we randomly select p% 
(10%,15%,20%,25%,30%) WC data as training data with CC 
data, and the remainder data is taken as test data. In every 
experiment, one dataset is selected as WC data and the rest are 
regarded as CC data. We repeated our proposed MSTrA 
approach 20 times in every experiment to avoid sample bias. 
Then the mean values of g-measure for MSTrA are recorded in 
Figure 1.  

As shown in Figure 1, using only 10% labeled WC data 
with CC data is enough to achieve good performance by using 
our MSTrA approach. In particular, better performance is 
achieved on ant, elearn, jedit and xlalan datasets when using 
only 10% labeled WC data. There is no significant 
improvement on arc, synapse, system, xerces, tomcat, lucene, 
poi and prop6 datasets when incrementally adding labeled WC 
data. In total, we only need limited amount of labeled WC data 
(i.e. 10% is enough) to achieve good performance of CCDP by 
using our proposed MSTrA approach. Therefore, a new 
company can exploit our proposed MSTrA approach to 
perform CCDP at the early stages of development activities if 
there is limited historical data. 

 

(a) ant, arc, camel, elearn, jedit 

 

 

 

(b) synapse, system, tomcat, xalan, xerces 

 

(c) log4j,lucene,poi,prop6,redektor 

Fig. 1. G-measure performances with different size of labeled WC data 

V. CONCLUSION AND FUTURE WORK 

In this paper, we address the issues of how to weaken the 
impact of irrelevant CC data and how to avoid negative transfer 
when leveraging multiple source companies data to improve 
the performance of CCDP. We introduce Multi-Source 
TrAdaBoost algorithm to improve the performance of CCDP. 
First of all, we use NN-filter and data gravitation for 
reweighting the whole distribution of CC data to fit WC data. 



 

 

Then we train and combine a set of weak prediction models for 
building a stronger ensemble defect prediction model using not 
only reweighted CC data but also limited amount of labeled 
WC data. In each training round, we transfer knowledge from 
multiple sources to avoid negative transfer and reduce the 
weights of irrelevant instances in CC data to weaken the impact 
of irrelevant CC data continuously. 

We conduct experiments on the 15 datasets to evaluate the 
performance of the proposed approach. The experimental 
results indicate that the proposed approach can effectively 
weaken the impact of irrelevant data and avoid negative 
transfer to improve the performance of CCDP. The proposed 
MSTrA approach is an effective approach for CCDP. 

In the future, we would like to validate the generalization 
ability of our approach on more company data. 
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