
Developer Recommendation with Awareness of Accuracy and Cost

*Jin Liu, Yiqiuzi Tian

State Key Lab of Software Engineering

Computer School, Wuhan University

Wuhan, China

*Corresponding author

jinliu@whu.edu.cn

tianyiqiuzi@whu.edu.cn

Liang Hong

School of Information Management

Wuhan University

Wuhan, China

hong@whu.edu.cn

Zhou Xu

State Key Lab of Software Engineering

Computer School, Wuhan University,

Wuhan, China

zhouxullx@whu.edu.cn

Abstract—As the scale and complexity of software products

increase, software maintenance on bug resolution has become a

challenging work. In the process of software implementation,

developers often use bug reports, source code and change history

to help solve bugs. However, hundreds of bug reports are being

submitted every day. It is time-consuming and effortless for

developers to review all the bug reports. To facilitate the

assignment of bug reports, existing developer recommendation

systems typically recommend the developer who has the fullest

potential. However, bug reports are highly varied; time that the

developers may spend fixing them is also important. To address

the problem of developer recommendation, we propose a

developer recommendation system with awareness of accuracy

and cost (DRAC). This recommendation system is based on

modern portfolio theory by striking a balance between accuracy

and cost (time). We evaluate our approach with experiments on

data collected from Bugzilla
1
.

Keywords—Recommendation System; Portfolio Theory; Bug

Triage; Accuracy and Cost

I. INTRODUCTION

Software development life cycle usually consists of six
phases, i.e. requirements analysis, software design,
implementation, testing, integration and maintenance. In the
phase of implementation, many bugs appear with causes
stemming from various stages. Previous studies have shown
that more than 45% of modern software development is used to
locate and fix bugs [1][2]. Generally, developers upload bug
reports to bug-tracking platform, such as Bugzilla1, Mantis2,
Trac3 and Redmine4 with a fixed format when they encounter
bugs during implementation phase. It can also be considered as
a crowdsourcing problem[3][4]. The bug reports are viewed
and solved by the users of the platform, and it can be very
time-consuming. Having a framework that makes predictions
about the right developer with higher accuracy and less time is
essential to shorten the lifecycle of the bugs [5]. Another fact
about the bug report is that its volume is big and grows at a
high rate at the same time. So strategy should be taken to
response quickly when a new bug report is brought up [6].

1 http://www.bugzilla.org/.
2 http://www.mantisbt.org/.
3 http://trac.edgewall.org/.
4 http://www.redmine.org/.

This work is partly supported by the grants of National Natural Science

Foundation of China (61572374, U1135005, 61303025).

DOI reference number: 10.18293/SEKE2016-125

Above all, the main problem in this area is the absent
consideration of time cost. Existing works only do study on
optimizing the possibility of finding the developer with the
most similar history bug reports, but they fail to explore the
cost. However, cost is very important, for it implies the time
needed to get this bug fixed by a specific developer, and time
cost has a great influence on software development process.

 These observations lead to two goals: First, we need to for-
mulate a recommendation framework to make predictions
about developers with the consideration of both accuracy and
cost. Second, to make quick response when a new bug report is
brought up, we need to come up with a strategy managing the
data efficiently.

In this paper, we propose a developer recommendation
system with awareness of accuracy and cost (DRAC), which is
modeled on the description of the bug reports. We divide the
whole process into two phases - the offline learning stage and
online recommendation stage. The first stage aims at learning
the value of parameters; and the second stage uses the portfolio
theory to make prediction about the best developer with a
balance between accuracy and time cost. Finally, we evaluate
our developer recommendation approach with experiments on
a large-scale real-world dataset collected from project
“Eclipse” on Bugzilla [7]. The experiment results validate the
effectiveness and efficiency of our approach.

II. BACKGROUND

A. Data with Big Data Features

Big data has drawn huge attention from researchers
recently [8]. Gartner listed big data as the second place in “Top
10 Critical Tech Trends for the Next Five Years” [9].
Technically speaking, big data is a collection of very huge
dataset with a great diversity of types, so it becomes difficult to
process by using state-of-the-art data processing approaches or
traditional data processing platform. Big data has three features:
variety, volume and velocity. Bug reports repository complies
with these three specifications with its different-formatted
components, large data scale and high growth rate. In Fig. 1,
we can see that the size of bug report repository increases at a
steady speed. At the end of the year 2015, the total amount of
bug reports has passed 480,000, with nearly 50 reports brought
up every day. It’s essential to reduce the volume of data before
making recommendation. The applicable way includes feature
selection and instance selection [10].

Figure 1. The increasing size of bug report repository

B. Recommendation System

Recommendation systems have become extremely
common in recent years and are applied in a variety of
applications. They typically produce a list of recommendations.
Main methods in the area include content-based
recommendation (CBR), collaborative filtering (CF) and
association rule-based recommendation (ARBR). Each method
adapts to different scenarios [11].

Considering our problem, the data source has two different
forms [12]. The first is called metadata. It contains data like ID
of the bug, the platform the bug belongs to, keywords and so
on. The amount of metadata is fixed, and its value has a
specific range. Using metadata to classify bug reports can be
very hard, for that the information it implicates is very limited.
The second is text data, which consist of description, summary
and other developers’ comments. With unlimited size and
range, text data contain much richer information. So, different
data sources should be weighted differently. In the field of
developer recommendation, to accurately assign developers to
bug reports, recent research treats it as a problem that
optimizes recommendation accuracy and proposes solutions
that are essentially instances of content-based recommendation
(CBR). CBR mainly uses the content of the item and make
predictions based on the similarity between contents. In this
case, the data we use are the text content of bug reports.

In the recommendation system about bug reports, related
researches aim at recommending right developers to bug re-
ports which only consider the recommendation accuracy with
old bug reports and the source code as data source. The main
technology includes machine learning [13][14], information
retrieval technique [14][15], tossing graph[16], fuzzy set[17]
and Euclidean distance [18][19]. Compared to DRAC, this
recommendation strategy has an obvious flaw. It only
recommends the right developer who is capable of solving the
problem, but doesn’t consider the time the developer may
spend on solving it. For urgent bug reports which have high
severity level, it can be devastating to developing process.

C. Modern Portfolio Theory

Modern portfolio theory is originally proposed in the field
of finance, which focus on the investment problem of financial
market [20]. It’s a mathematical framework for assembling a
portfolio of assets such that the expected return is maximized
for a given level of risk. Its key insight is that an asset’s risk
and return should not be assessed by itself, but by its
contribution to a portfolio’s overall risk and return. For
example, an investor often wants to select a portfolio of n

stocks with a fixed investment budget, which will provide the
maximum future return and the minimum risk. In our problem,
the stocks can be regarded as bug reports, the future return and
risk can be regarded as accuracy and cost of recommending
bug reports.

In this problem, each bug report is taken as a recommender
which recommends its own fixer to the considered bug report.
When the modern portfolio theory is applied, risk vector and
return risk are both needed, which in our case are cost vector
and accuracy vector individually. By combining these two
vectors, portfolio theory generates the weight of each bug
report, i.e. the weight of the recommender.

III. APPROACH

In this section, we clarify the basic algorithm, framework
of our recommendation system and the recommending strategy
we used.

A. Similarity Computation

We need to get the similarity between bug reports in both
online and offline stages. It’s also used as input of the
portfolio based algorithm in the last step. So in this section, we
clarify the computational formula to get it.

Each of the bug reports in the repository is turned into a
word count vector and a topic vector. The words in bug reports
are collected in a dictionary, and each of the word is assigned
with a unique label. Formally, wa and ta are in the form of
wa(wa,1,wa,2, …, wa,i, …,wa,n) and ta(ta,1, ta,2, …, ta,i, …, ta,n),
where a refers to the bug report a, wa,i means the times that the
word i appears in the bug report a, and ta,i means the possibility
that the bug report a belongs to the ith topic.

With these two vectors, we calculate similarities between
the new bug report and each bug report in the repository,
which include SimilarityW(a,u) and SimilarityT(a,u). They are
the similarity between the word vector and topic vector of the
bug report a,u respectively. The word vector similaritiy
between bug report a and u is defined as

2
(,)

a u

a u

I I
SimilarityW a u

I I

 



,

(1)

where |Ia∩Iu| is the total count of words that appear in both the
two bug reports, and |Ia| and |Iu| are the total number of words
appearing in bug reports a and u, respectively. Both of the
number of words that bug report a and u share and their
corresponding counts have an influence on the similarity.
When the co-appearing word count |Ia∩Iu| is small, the
significance weight SimilarityW(a,u) will decrease the
similarity estimation value between the bug reports a and u.
Since the value SimilarityW(a,u) is between the interval of
[0,1], the closer the value is to 1, the more similar bug reports a
and u are. The similarity between the topic possibility vectors
is defined as

 ' 2

, ,(,) a i u iSimilarityT a u t t 
,

(2)

where i is the label of the topic, ta,i and tu,i refer to the
possibility that bug report a and u belongs to topic i,

respectively. We take the cosine distance between them as
their distance. The interval of SimilarityT(a,u) is [0,+∞]. To
normalize the topic similarity, we take its reciprocal and add 1
to the denominator avoiding the similarity to be infinite. Thus,
the topic similarity is

'

1
(,)

(,) 1
SimilarityT a u

SimilarityT a u


 .
(3)

We can see the range of similarity of topic SimilarityT(a,u) is

[0,1], which is comparable with SimilarityW(a,u).

B. Recommendation Framework

Here, we first define the problem of developer
recommendations with similarity and cost awareness, and then
clarify the recommendation framework.

DEFINITION 1 (PROBLEM STATEMENT). Given a new
bug report b, the goal of recommendation with accuracy and
cost awareness is to build an optimal ranked list of developers
based on both the developers’ possibility of solving the
problem and the time they need to solve it.

 The above problem statement raises two issues:

 How to get developers’ possibilities of solving the bug

report and produce a ranked list.

 How to combine the risk-based rank list with the time-

based ranked list to produce final ranking to strike a bal-

ance between accuracy and cost, which means lessen the

time without much influence to the accuracy.

There are often many developers as candidates for rec-
ommendations. Thus, how to efficiently manage developers for
recommendation is also an open question. To that end, we pro-
pose a novel recommendation framework to solve these prob-
lems.

Offline Learning Stage Online Recommedation Stage

Bug Reports

Topic Possibility

Vector

Word Count

Vector

Turn bug reports into two

vectors

Similarity Vector of Bug Reports

Cost Vector of Bug Reports

Optimize Weight ω
of Vectors

Portfolio Optimization

Developer Recommendation

Use ω to Combine Two

Vectors

Figure 2. The recommendation framework

As we can see in Fig. 2, the whole recommendation
framework contains two stages. The first stage is offline
learning stage, where we learn the value of parameters that is
needed in the second stage. And in online recommendation
stage, we use modern portfolio theory [21] to combine the
accuracy with the time cost to make recommendation about the
best developer to solve the bug report. The specific method we
apply will be clarified in the following specifications.

1) Offline Learning Stage

In this stage, we focus on determining the weight between
the word count vector and the topic possibility vector.

These two vectors are different. Their contribution to the
final prediction should differ too. So we need to determine
their influences on the final prediction result.

For each bug report in testing set, we calculate their
similarities and recommend the developer of the bug report
which has the biggest similarity, and get the count of right
recommendations. By varying the value of ω, we observe the
change of the prediction similarity and take the value of ω
when the similarity is the highest.

Algorithm 1 Automatic Detection of weight ω

Input: Bug reports training set B1 = {B1i}; Bug reports

testing set B2 = {B2i}; Step sizeε; Developer Set D =

{Di};
Output: The weight ω

1. Calculate SimilarityW and SimilarityT in B1 and B2
2. maxcount = 0;

3. for each Δ∈[0,1] with a step size ε, do

4. for each B2i ∈B2

5. count = 0;
6. get B1j with the biggest Similarity(B1j,B2i)
7. if (Di = Dj) then
8. count ++;
9. end if

10. end for
11. if (count > maxcount) then
12. maxcount = count; ω = Δ;
13. end if
14. end for
15. return ω

2) Online Recommendation Stage

After we get the weight ω in the offline learning stage, we
can carry on to the online recommendation stage. In this stage,
ω is used to get the similarity vector between bug reports. With
ω adjusting weights, the similarity between bug report a and u
Similarity(a,u) is

(,) (,) (1) (,)Similarity a u SimilarityW a u SimilarityT a u    .
(4)

Similarity (a,u) ranges between 0 and 1. It implies ascending
similarity with its value changing from 0 to 1. With
Similarity(a,u), we can get the accuracy vector:

  1 , ,(, ,)i nAccuracy u accuracy accuracy accuracy  
(5)

  ,i iaccuracy Similarity a u .
(6)

Each bug report has a time cost attribute which we use as the
normalized cost of the bug report to form the cost vector,
which is

  1 , , , ,()i nu coCost cos tt st cos   .
(7)

where costi is calculated as

 
i

1/
=

1/ min()

itime
cos

Cost u
t

(8)

timei is the time bug report i used to be fixed.

With these two vectors, the portfolio theory is applied to
strike a balance between accuracy and cost to make the most
appropriate recommendation by assigning a weight to each of
the bug report. Ordering the bug reports by the weight
ascendingly gets us the final recommendation result.

The detailed algorithm is shown in Algorithm 2.

Algorithm 2 Automatic Developer Recommendation

Input: Bug reports training set B = {Bi}; New bug report
b;
Output: The recommended developer D

1. Take bug reports from B with severity level higher than
b as training set as B’

2. Take each bug report in B’ and get its cost and Accuracy
to the new bug report as Cost ={Costi} and
Accuracy={Accuracyi}

 , respectively
3. Apply modern portfolio theory and get a weight vector

W={w1, w2, …, wn} with wi as the ith bug report in B’
4. Get the bug report with the largest w and take its fixer

as D
5. return D

C. Using Modern Portfolio Theory to Rank

When a new bug report comes up, it’s useless to take bug
reports with lower severity level as candidate recommender,
for that the developer it recommends is highly impossible to
fix the bug in time. So we take a strategy to filter out bug
reports with lower severity level. This action is also beneficial
for the instantaneity of recommendation. There are two types
of ranking principles for recommendation.

 Accuracy Principle: We first rank bug reports in as-

cending order by their accuracy, and bug reports with the

same accuracy will be further ranked by their cost.

 Cost Principle: We first rank bug reports in descending

order by the cost, and bug report having the same cost

will be further ranked by accuracy.

To make a finer recommendation structure, we need strike
a balance between these two attributes, and thus modern
portfolio theory [21] is used. This theory is first introduced in
the field of portfolio investment. For example, there are n
stocks; each stock has a future return with a risk. The theory
aims at acquiring more future return with lower risk. In our
problem, bug reports can be taken as the stocks, their accuracy
can be regarded as the future return and their cost as risk. In
specific, this theory assigns a weight to each of the bug reports
which can be used to rank the bug reports. The bug report with
the biggest weight should be the recommender.

Specially, a bug report portfolio can be represented by a
collection of n bug reports with a corresponding weight
assigned to each bug report b, i.e.

 γ={(ai, ωi)}, s.t.
i

i

=1 . (9)

The weight ω in our problem indicates how much attention
the recommendation system wants the user to pay on the bug
report bi. Therefore, the weights can be used to determine the
ranks of bug reports; that is, bug reports should be ranked by
the descending order of their weights. The future return of bug
reports is E[γ], which can be computed by

  1

i

i

E
n

i    . (10)

where
i is the rank of bug reports bi in the accuracy based

rank list. Also, the future risk of bug reports is defined as R[γ],

which can be computed as

  2 2 1 1

i 1

R 2
n n

i i i j i j ij

j i

J    

 

 
     

 
  . (11)

where i is the rank of bug report bi in the cost based ranked

list, and Jij is the risk correlation between Apps bi and bj. Here,

we estimate Jij as Similarity(bi, bj).

In our problem, the objective is to learn a set of bug report
weights w for maximizing the accuracy and minimizing the
cost, i.e.

    arg max
w

E b R   . (12)

where b is a specified risk preference parameter, which can be

defined as the given severity level in our experiments. The

simplest way is to set b to a default value of 1, which

equalizes the importance of the accuracy and the cost. We

leave method defining the value of b under different

circumstances to future work. In the experiment, we vary the

value of b to see the relationship between accuracy and cost.

IV. EXPERIMENTAL SETUP

In this section, we evaluate the developer recommendation
system with awareness of accuracy and cost (DRAC) approach
with a large-scale real-world dataset.

A. Data Collection

This section presents our analysis on data we acquire and
discuss the rationality of their appearance. We collect 484,870
bug reports from the project ‘Eclipse’ which is publicly
accessible on the open source platform-Bugzilla. Those bug
reports have different status. The status of bugs includes:
unconfirmed, new, assigned, resolved, verified, closed and
reopened. They represent different phases of bug fixing
process. Only fixed bugs appear valid in the experiment. So we
filter out non-fixed bug reports and that leaves 265,280 of
them.

We mainly use the description of the bug reports by turning
them into word count vectors and topic possibility vectors.
First, we preprocess description by stemming, removing stop
words, numerals and words with length over 20 characters.
After preprocessing, bug reports become a set of words. To get
the word count vector, dictionary is formed, and we take the
count of the word in each bug report as the value of that word.
For the topic vector, we apply LDA to the words to extract the
corpus' topics and then calculate bug reports’ possibility
belonging to each of the topics as the topic vector. In this pro-

cess, we adopt a widely used LDA implementation LDA4j5.
We followed guides in [22] and set the number of topics to 17.
The format of the topic is shown in TABLE 1. Each topic has a
set of words which correspond to its possibility of appearing in
this topic. We take the square error of word frequency as the
similarity between a bug report and a topic.

TABLE I. EXAMPLE WORD DISTRIBUTION OF TOPICS

Topic 1 Topic 14 Topic 17

property 0.043 org 0.042 file 0.092

persist 0.027 java 0.020 project 0.066

connect 0.018 eclipse 0.014 build 0.032

test 0.015 report 0.013 plugin 0.027

map 0.014 birth 0.012 create 0.022

query 0.013 apache 0.010 jar 0.018

jpa 0.010 engine 0.009 package 0.018

value 0.010 service 0.009 path 0.016

service 0.009 jetties 0.009 folder 0.014

session 0.008 invoke 0.009 workspace 0.013

B. Baseline: Costriage

To our best knowledge, there is only one similar research
[23]. It brought up the method Costriage. Costriage follows
three steps. First, it constructs the developer profiles, which is
a numeric vector with each element denotes the developer’s
estimated cost LC for fixing a certain bug type. To fill in the
blanks in developer’s profile, collaborative filtering is used to
predict the missing value. Thus, it gets the developers’ cost to
solve every bug type. Second, it trains a multi-class classifier,
when a new bug came, it estimates each developer’s score for
the new bug and form the vector LS by extracting its feature
vector and applying the classifier. LC and LS are

             C 1 2 1 2
L , , , ,L , , ,SC C C n S S S n

s s s s s s    . (13)

where sc[i] means the ith developer’s estimated cost to fix the
given bug, and ss[i] denotes the ith developer’s success
possibility for fixing the new bug.

Third, LC and LS are merged into one vector LH, and then
the first developer is assigned to the new bug report.

      H 1 2
L , , ,

H H H n
s s s  (14)

SH[i] is obtained by

   
 

 
[] []

i

1/
1

max 1/ min

S i C i

H

S C

s s
s

L L
      , (15)

where 0≤α≤1.

V. EXPERIMENTAL RESULTS

A. Bug Report Severity Levels

To see the relationship between topics and severity levels,
we do statistics about the distribution of severity level with
different topics. Fig. 3(a) shows the percentage of bug reports
with different topics. The bug reports belonging to topic 14
take up the majority of bug report repository. Topic 10, 11, 17
is the following topic with relatively large volume. Fig. 3 (b)-
(d) shows the percentage of bug reports with different
severities in topic 3, 11 and 14, respectively. Based on our

5 https://github.com/hankcs/LDA4j/tree/master/src

results, “Normal” bug reports is the main component of all the
topics with a proportion fluctuating around 70%. It would be
hard to see other severity levels’ status with “Normal” in the
figure. So we leave out bug reports with severity level
“Normal” and clarify other severity levels’ distribution among
topics. In these figures, we can see that topics have their bias
towards different severity level. Topic 14, which has the most
bug reports, contains bug reports with severity level
‘Enhancement’ and ‘Major’ mainly. Half bug reports be-
longing to Topic 11 are ‘Major’ which is much higher than the
other two topics. And Topic 3 is mainly composed of
‘Enhancement’ bug reports. Different topics have slight bias
towards different severity levels. Based on the statistical results,
we can see that there is a correlation between topic and
severity level preference. Different topics have different
severity level components.

Figure 3. The percent of bug reports (a) and bug report topics at different
severity levels (b)-(d)

B. Evaluation of Developer Recommendation

In the offline learning stage, to learn the weight between
word vector and topic vector, we set the step length to 0.2. And
accuracy spikes with 0.6. So we set the value of ω to 0.6. We
order the bug reports in time series, and take the first 80% of
them as training set with the remaining 20% as testing set.
Specifically, we set up the evaluation as follows. First, we im-
plement DRAC and Costriage. Then, we observe the trade-offs
between bug assignment accuracy and bug fix time using
DRAC compared to Costriage. We apply them with varying b
to observe the trade-offs between accuracy and average bug fix
time. Fig. 4 shows the comparison result. The x-axis represents
the average time to fix one bug, and the y-axis represents bug
assignment accuracy.

We can see from Fig. 4 that there is an obvious sign of
trade-off. When the accuracy of the recommendation ascends,
the average time to fix a bug increases with it, which is very
understandable and confirms the idea we brought before. By
altering the weight b, the developer can get different rec-
ommendation results with different purposes.

Figure 4. The trade-offs between accuracy and bug fix time

VI. CONCLUSION

In this paper, we developed a reviewer recommender
system with awareness of accuracy and cost. Specifically, we
learned a function to determine the weight of data from
different sources. Moreover, to consider both reviewers’
accuracy and cost, we introduced a flexible recommendation
method based on modern portfolio theory. A key challenge in
this research field is upholding the recommendation speed with
big volume and high growth rate of the data. To address this
problem, we propose DRAC to reduce the size of dataset and
make recommendation considering the severity level and
importance of bug reports. The experiments on a large-scale
real-world dataset clearly clarified the effectiveness of the
proposed recommendation framework.

Our recommendation framework is not restricted to
developer recommendation. It can be applied to other field
with similar objective. Take code fragment recommendation as
example, it needs to consider both the applicability of the
recommended code fragment (accuracy) and its security. These
two factors correspond to the two objectives we have in this
problem. So for problems with two optimization objectives
like code recommendation, our recommendation algorithm is
theoretically applicable to them.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, 2006. “Who should fix this bug?”
In ICSE’06.

[2] J. Zhang, X. Y. Wang, D. Hao, “A survey on bug-report analysis”[J].
Science China, 2015, 58(2):1-24.

[3] Z. Xu, Y Liu, Y. Xuan J, et al. Crowdsourcing based social media data
analysis of urban emergency events[J]. Multimedia Tools &
Applications, 2015:1-18.

[4] Z. Xu, Y. Liu, N. Y. Yen, et al. Crowdsourcing based Description of
Urban Emergency Events using Social Media Big Data[J]. IEEE
Transactions on Cloud Computing, 2016:1-1.

[5] T. T. Nguyen, A. T. Nguyen, T. N. Nguyen, “Topic-based, time-aware
bug assignment”[J]. Acm Sigsoft Software Engineering Notes, 2014,
39(1):1-4.

[6] T. Zhang, H. Jiang, Luo X, “A Literature Review of Research in Bug
Resolution: Tasks, Challenges and Future Directions”[J]. Computer
Journal, 2015.

[7] S. Banerjee, J. Helmick, Z. Syed, “Eclipse vs. Mozilla: A Comparison
of Two Large-Scale Open Source Problem Report Repositories”[C]//
High Assurance Systems Engineering (HASE), 2015 IEEE 16th
International Symposium on. IEEE, 2015:263-270.

[8] C. L. P. Chen, C. Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data[J]. Information
Sciences, 2014, 275(11):314-347.

[9] E. Savitz, Gartner, “10 Critical Tech Trends for the Next Five Years”,
October 2012.<http://www.forbes.com/sites/ericsavitz/2012/10/22/gartn
er-10-critical-tech-trends-for-the-next-five-years/>.

[10] J. Xuan, H. Jiang, Y. Hu, “Towards Effective Bug Triage with Software
Data Reduction Techniques”[J]. IEEE Transactions on Knowledge &
Data Engineering, 2015, 27(1):264-280.

[11] P. Nagarnaik, A. Thomas, "Survey on recommendation system
methods." In Electronics and Communication Systems (ICECS), 2015
2nd International Conference on, pp. 1496-1501. IEEE, 2015

[12] Z. Bo, N. Lulian, G. A. Rajiv, “Cross-platform Analysis of Bugs and
Bug-fixing in Open Source Projects Desktop vs. Android vs. iOS.” In:
Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, Nanjing, China, 2015.

[13] J. Xuan, H. Jiang, Z. Ren, “Automatic bug triage using semi-supervised
text classification.” In: Proceedings of International Conference on
Software Engineering & Knowledge Engineering, Redwood City, 2010.
209–214

[14] G. Canfora, L. Cerulo. “Supporting change request assignment in open-
source development.” In: Proceedings of the ACM Symposium on
Applied Computing, Dijon, 2006. 1767–1772

[15] D. Matter, A. Kuhn, O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers.” In: Proceedings of the
International Working Conference on Mining Software Repositories,
Vancouver, 2009. 131–140

[16] G. Jeong, S. Kim, T. Zimmermann, “Improving bug triage with bug
tossing graphs.” In: Proceedings of the joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Amsterdam, 2009.
111–120

[17] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, “Fuzzy set-based automatic
bug triaging.” In: Proceedings of the International Conference on
Software Engineering, Waikiki, 2011. 884–887

[18] X. Xia, D. Lo, X. Wang, “Accurate developer recommendation for bug
resolution.” In: Proceedings of the Working Conference on Reverse
Engineering, Koblenz, 2013. 72–81

[19] H. Hu, H. Zhang, J. Xuan, “Effective bug triage based on historical bug-
fix information.” In: Proceedings of the IEEE International Symposium
on Software Reliability Engineering, Naples, 2014. 122–132

[20] M. Schulmerich, Y. M. Leporcher, C. H. Eu, “Modern Portfolio Theory
and Its Problems”[M]// Applied Asset and Risk Management. Springer
Berlin Heidelberg, 2015:101-173.

[21] J. Wang and J. Zhu, “Portfolio theory of information retrieval.” In
Proceedings of the 32Nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR '09, pages
115{122, New York, NY, USA, 2009. ACM.

[22] R. Arun, V. Suresh, C. E. V. Madhavan, M. N. N. Murthy, 2010. “On
finding the natural number of topics with latent dirichlet allocation:
Some observations.” In PAKDD’10

[23] J. W. Park, M. W. Lee, J. Kim, “CosTriage: A Cost-Aware Triage
Algorithm for Bug Reporting Systems.”[C]// Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011,
San Francisco, California, USA, August 7-11, 2011. 2011.

