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Abstract—In this paper, we propose a new method for keyword 

search over large graph-structured data to find a set of answers 

which are not only relevant to the query but also reduced and 

duplication-free. We define an effective answer structure and a 

relevance measure for the candidate answers to a keyword query 

on graph data. We suggest an efficient indexing scheme on 

relevant and useful paths from nodes to keywords in the graph. 

We present a top-k query processing algorithm to find relevant 

and non-redundant answers in an efficient way by exploiting pre-

constructed indexes. We show by experiments using real datasets 

that the proposed approach can produce effective and non-

redundant answers efficiently compared to the previous methods. 

Keywords-graph data; keyword search; top-k query processing 

I.  INTRODUCTION 

Recently, graph-structured data is widely used in various 
fields such as social networks, semantic web, linked open data, 
and knowledge bases. A relational database also can be 
considered a directed graph based on the foreign-key 
relationships among tuples. A graph data consists of nodes and 
edges, which can represent relationships among entities 
effectively. As the amount of data increases rapidly, an 
efficient and effective query system is much needed. Keyword 
search has been attracting a lot of attention since it allows users 
to express their information need using simple keywords [1-10]. 

Keyword search on graph data usually returns a set of 
connected sub-structures, showing that which nodes include 
query keywords and how they are inter-connected. Many 
approaches find minimal connected sub-trees as succinct 
answers to a given query [1-6, 8, 10]. Since there can be a 
significant number of answer sub-trees in a large graph data, a 
relevance scoring function is often used to rank candidate 
answers and select top-k ones having the highest relevance. 
There have been proposed several approaches based on the 
distinct root semantics, where the relevance of a sub-tree is 
computed as a function of the shortest paths from the root to 
the nodes containing query keywords. For each node in the 
graph, they choose at most one sub-tree rooted at the node as a 
candidate answer to the query [2, 3, 5, 10]. By reducing the 
number of candidates significantly, they can process top-k 
query over a large volume of data more efficiently than other 
approaches. It also facilitates exploitation of indexes on graph 
data to improve query performance [3]. 

However, the previous methods have a common limitation; 
they can produce ineffective answers called a non-reduced tree 
and duplicate tree. The former is a sub-tree where the root node 
contains no query keyword and has only a single child node. 
For example, consider a directed weighted graph G1 in Fig. 1 
where nodes v6 ~ v9 contain keywords and edges are labeled 
with a weight representing distance between nodes. Given a 
keyword query q = {k1, k2, k3} over G1, five sub-trees shown in 
the figure can be answers to q since they have all the keywords 
in q in their nodes. Note that T2 and T'2 are rooted at the same 
node v2 while having different nodes containing keyword k3, i.e. 
v8 and v9, respectively. Since the distance from v2 to v8 is 
shorter than that from v2 to v9, search methods usually select T2 
as the answer rooted at v2. However, it should be noted that T2 
is a non-reduced answer tree which has a smaller reduced 
answer T1 as its sub-tree while T'2 is a reduced answer. If T1 is 
included in top-k results, selecting T'2 instead of T2 makes the 
search results more diverse even though the relevance score of 
T'2 is lower than that of T2. It is also desirable to choose a 
reduced sub-tree T'3 instead of a non-reduced tree T3 as an 
answer rooted at node v1.     
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Figure 1. Reduced answers vs. non-reduced answers 
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 Figure 2. Duplicate answers vs. duplication-free answers 
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The other ineffectiveness in the previous approaches is that 
search results can include similar answer trees containing same 
set of content nodes for the query keywords. In Fig. 2, for 
instance, when a query q = {k1, k2, k3} is given on G2, the set of 
top-3 answers to the query based on the distinct root semantics 
is {T4, T5, T6}. Note that these sub-trees have different root 
nodes but share the same set of content nodes {v5, v6}. If we 
select T'5 and T'6 instead of T5 and T6, respectively, into top-3 
answers, we can obtain results which are duplication-free and 
diverse in terms of the content nodes. 

Top-k search results including many non-reduced and 
duplicate answer trees have drawbacks. First, similar and 
redundant answer trees decrease diversity of the search results 
and do not satisfy users who want to get various answers. 
Second, if an answer tree turns out to be irrelevant to the query, 
non-reduced or duplicate answer trees related with the answer 
would be also irrelevant to the query. 

In this paper, we propose a new approach to keyword 
search over graph data which can produce not only relevant but 
also diverse results by searching top-k answers consisting of 
only reduced and duplicate-free answer trees. We suggest an 
extended indexing scheme on the selected paths in the graph 
and propose an efficient search algorithm exploiting the indices 
to find relevant and non-redundant answer trees. 

II. RELATED WORK 

Most previous approaches to keyword search on graph data 
find minimal sub-trees containing query keywords based on 
either Steiner-tree semantics [1, 4, 6] or distinct-root semantics 
[2, 3, 5, 10]. Under distinct-root semantics, sub-trees returned 
as query answers should be rooted at a distinct node. Thus, for 
each potential root node in the graph, only a single sub-tree 
having a minimal weight is considered a candidate answer, 
where the weight is defined by the sum of the lengths of the 
shortest paths from its root to keyword nodes. This semantics 
can deal with queries over a large graph data more efficiently 
than Steiner-tree semantics [11].  

The Bi-directional Search proposed in [2] performs 
backward explorations of the graph starting from the nodes 
containing query keywords and also executes forward search 
from a potential root of an answer tree toward keyword nodes. 
However, it does not take advantage of any prior knowledge on 
the graph and depends on a heuristic activation strategy hence 
it shows poor performance on large graphs. BLINKS approach 
[3] proposes an efficient indexing scheme on the graph to speed 
bi-directional exploration with a good performance guarantee. 
It pre-computes the shortest paths and their distances from 
nodes to keywords in the graph and stores them in sorted 
inverted lists and a hash map. By exploiting indexes, it can 
avoid a lot of explorations in the graph and find top-k answers 
efficiently. For efficient search of a large graph data, [5] 
suggests creating and utilizing a multi-granular representation 
of graph data, and presents search algorithms on a multi-
granular graph extended from BANKS [1] and Bi-directional 
Search. A recent study in [10] has proposed an extended 
answer structure with a new relevance measure and proposed 
an indexing and query processing scheme similar to BLINKS 
to produce effective and various top-k answers. 

These approaches, however, have a common drawback of 
producing sub-trees that are non-reduced or duplicate in 
content nodes. Although graph exploration approaches such as 
BANKS and Bi-directional Search can detect and exclude such 
answer trees, an exponential number of sub-trees should be 
probed, resulting in severe performance overhead. BLINKS 
does not consider redundancies in answers, and even if a 
redundant sub-tree is detected, no other sub-tree rooted at the 
same node can be found since the method stores in its index 
only one optimal path from a node to keyword in the graph. 
That is, all alternative sub-trees sharing a root node are 
excluded from consideration. For example, BLINKS cannot 
produce answer trees T'2 in Fig. 1 and T'5 in Fig. 2 as 
alternatives to the redundant answers T2 and T5. This can result 
in a set of limited and less relevant top-k answers to the query 
than the other approaches. 

III. PROBLEM DEFINITION 

A data graph G(V, E) is a directed weighted graph where 
nodes in V contain keywords and edges in E have a weight 
representing distance between two incident nodes. The nodes 
containing a keyword k are called keyword nodes or content 
nodes regarding k and the set of those nodes is denoted by V(k). 
The length of a directed path between two nodes in G is 
defined as the sum of the weights on edges in the path. Based 
on [11], we define an answer to a keyword query as follows. 

Definition 1. Given a graph G(V, E) and a query q = {k1, k2, …, 
kl} over G, an answer to q is a sub-tree T of G which contains a 

multiset C = {v1, v2, …, vl} of keyword nodes where viV(ki) 

(1il) and satisfies the following conditions: (a) T contains the 
shortest path from its root to each node in C, (b) all the leaf 
nodes of T belong to C, and (c) if the root of T has only one 
child, the root also belongs to C.                   □ 

We denote an answer tree having a root node n and a 
multiset C of keyword nodes by T(n, C). The shortest path from 
the root n to a keyword node vi in C is called a root-to-keyword 

path for ki and denoted by nki or nvi. The conditions in 
Definition 1 specify that answer trees should only have the 
nodes which are necessary and sufficient to connect their 
content nodes. In particular, condition (c) requires that answer 
trees should be reduced, i.e., the root of answer trees should 
have at least two child nodes or be a keyword node in itself. 
Assume that the root of an answer tree T has only one child and 
is not a keyword node. Then there exists a sub-tree T' in T 
which is reduced and has the same set of keyword nodes as T. 
Since T' is usually given the higher relevance score and 
preferred by a search method, T becomes a redundant answer to 
the query.  

To find the most relevant answers to a given query, we 
propose a measure to the relevance of answer trees considering 
both content nodes and root-to-keyword paths in them. Given a 
node v having a keyword k, the relevance of v to k can be 
computed based on the TF-IDF weighting scheme which is 
popularly used in Information Retrieval [13]. For instance, 
adopting the weighting scheme used in Apache Lucene text 
search engine, relevance of v to k is defined by 
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where |V| and |V(k)| are the numbers of nodes in V and V(k) and 
tf(k, v) is the number of occurrences of k in v.  

We also consider the length of the path from the root to 
each keyword node to measure structural relevance of answer 
trees. We consider that given an answer tree T, the shorter the 
distance dist(n, vi) from its root n to a keyword node vi, the 
more relevant to the query the tree T is. Now, the relevance 
scoring function for answer trees is defined as follows. 

Definition 2. Given an answer tree T(n, {v1, v2, …, vl}) for a 
query q = {k1, k2, …, kl}, the relevance of T to the query q is  
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and rmax is the maximal value of rel(k, v) for all keyword terms 
k and nodes v in G.                      □ 

Note that, in the above definition, relevance rel(T, q) is 
computed as the sum of relevance rel(n, ki, vi) defined on each 
keyword node and root-to-keyword path in T. 

In this paper, we search for the answer trees which are not 
only reduced but also duplication-free in regard of their content 
nodes. It means that the answer trees should have different sets 
of content nodes, as well as should be rooted at distinct nodes. 
Based on this semantics, we aim to finding k most relevant 
answers to the query using the relevance function defined 
above. 

IV. PROPOSED METHOD 

A. Indexing Scheme 

To enable efficient search of top-k answers in a large graph 
data, we propose an indexing scheme for selected node-to-
keyword paths in the graph, based on that of BLINKS [3]. It 
pre-computes the most relevant and useful paths using the 
relevance function proposed in Definition 2 and stores them in 
the index consisting of the following components. 

 KNList(Keyword-Node Lists) is a set of inverted lists 
KNList(k) defined for each keyword k in the graph. It 
stores the most relevant node-to-keyword path from each 
node to a keyword node for k. Specifically, let P(n, k) = 

{nvi | vi  V(k)} for a node n and keyword k, and pm(n, 
k) be the optimal path in P(n, k) which has the highest 
value of rel(n, k, vi). KNList(k) stores entries representing 
pm(n, k) for all nodes n in the graph. Entries are 
quadruples (n, vm, fm, rm), where vm denotes the keyword 
node containing k, fm is the first node except the start node 
n (i.e., the next node of n), and rm is the relevance of the 
path, rel(n, k, vm). The entries in the list are sorted in a 
decreasing order of relevance, which enables efficient 
search of most relevant paths for keyword k.  

 NKMap(Node-Keyword Map) is a hash table to store 
information about the most relevant paths for each pair (n, 
k) of node and keyword in the graph. It stores entries of a 

pre-defined number of n-to-k paths with the highest 
relevance, including the optimal path pm(n, k). The entries 
are triples (vi, fi, ri) where the fields denote the same as 
those in KNList(k).  

 NKMaps is a secondary hash table to store information 
about an alternative node-to-keyword path for all pairs of 
node n and keyword k in the graph. It is the most relevant 
path which has the first node different from that of the 
optimal path pm(n, k). This index is used to find the most 
relevant reduced answer trees. 

B. Query Processing Algorithm 

Our query processing model is based on the Threshold 
Algorithm [12] which is used to evaluate top-k queries on 
multi-dimensional data such as multimedia objects. Algorithm 
1 shows the sketch of our search algorithm, which uses a 
priority queue Qt called top-k queue to maintain top-k candidate 
answers.  

Given a query q = {k1, k2, …, kl}, let L(q) be the set of 
keyword-node lists KNList(ki) for all keywords ki in q. The 
algorithm performs sequential scan on the lists in L(q) in 
parallel (line 5~6). Whenever a new entry is read from a list, its 
relevance value is stored in an array curRel (line 7). If an entry 
(n, v, f, r) regarding an optimal path from a node n is first 
retrieved from L(q), entries of the optimal paths pm(n, kj) for all 
the other keywords kj in q are looked up in NKMap and 
aggregated into an array V (line 8~13). If all the optimal paths 
are found, an optimal answer tree rooted at n can be derived. 
We examine whether it has a reduced form and has a unique set 
of content nodes compared to the other candidates in top-k 
queue. If it does not, we seek an alternative reduced and unique 
answer tree using algorithms which will be detailed later (line 

Algorithm 1. Keyword Search 

Input: a keyword query q = {k1, k2, …, kl}, kZ+ 

Output: a set of top-k answer trees for q 

1: a priority queue Qt and a set C of nodeID’s by . 

2: curRel[i]  0.0 and V[i]  null for all i[1,l] 

3: Let L(q) = {KNList(ki) | kiq (1il)}. 

4:  while an entry exists in a list in L(q) do 

5:  Select a list Li in L(q) in a round-robin manner. 

6:  Read an entry (n, v, f, r) at the current position in Li. 

7:  curRel[i]  r 

8:  if n  C then 

9:   V[i]  (v, f, r) 

10:  for-each kj  q such that j ≠ i do 

11:   Look up the first entry (vj, fj, rj) with key (n, kj) in 

NKMap. 

12:   if the entry was found then V[j]  (vj, fj, rj)  

13:  else goto line #21 

14:  if T(n, V) is a non-reduced answer then   

15:   V  findReducedAnswer(n, V, q) 

16:  if V ≠  and T(n, V) is a duplicate answer then 

17:     V  findUniqueAnswer(n, V, q) 

18:    if V ≠  then Qt  Qt  {(n, V)} 

19:  C  C  {n} 

20: if |Qt| = k and  then break 

21: Derive top-k answer trees from the top-k entries in Qt. 



14~17). The result tree is stored in Qt if it is one of the k most 
relevant found yet (line 18). Since the entries in each list are 
sorted in a decreasing order of relevance, the sum of the values 
in curRel can serve as an upper bound of relevance of the 
answer trees which have not been found yet. Thus, the 
algorithm can terminate safely with the correct top-k answers in 
Qt if the condition in line 20 is met, where relk is the relevance 
of the k-th answer tree in Qt. 

C. Finding Reduced and Unique Answer Trees 

Given a potential root node n, Algorithm 1 searches for an 
optimal answer tree consisting of the best root-to-keyword 
paths for each query keyword. If the optimal answer is a non-
reduced tree where its root has only one child but is not a 
keyword node, the first nodes of l root-to-keyword paths are 
the same to the child of the root. Thus, we can find if the 
optimal tree is reduced or not by examining the first nodes of 
all the root-to-keyword paths retrieved from NKMap. However, 
it should be considered that if the root contains all the query 
keywords and is selected as keyword nodes for them, the root 
itself can be a reduced answer tree. 

Assuming that T(n) is a non-reduced answer tree rooted at 
node n, if there are multiple reduced answer trees rooted at the 
same node n, we should select one with the highest relevance 
score as an alternative to T(n). For keyword ki in q, let pa(n, ki) 
be the path from n to a node v in V(ki) which has the first node 
different from that of pm(n, ki) and has the highest score of rel(n, 
ki, v). Also suppose that Ti(n) be the sub-tree obtained by 
replacing the optimal path pm(n, ki) with pa(n, ki) in T(n). Note 
that Ti(n) is a reduced answer to q since the first node of pa(n, 
ki) is not equal to those of the other root-to-keyword paths pm(n, 

kj) for keywords kj in q (j ≠i). Now, among l alternative sub-

trees Ti(n), the one with the highest relevance is the best 
reduced answer tree rooted at n.  

Algorithm 2 exploits NKMaps index proposed in Section 
4.1, which pre-computes and stores the optimal alternative 
paths pa(n, k) for all pairs of node n and keyword k in the graph. 
Given a non-reduced answer T(n), it first looks up information 
on alternative paths from n to all the query keywords in 
NKMaps (line 2~4). An optimal reduced answer tree can be 
easily obtained by selecting such a keyword ki that difference 
between pm(n, ki) and pa(n, ki) is the smallest and replacing pm(n, 
ki) with pa(n, ki) in T(n) (line 7~8). 

 

Algorithm 2. findReducedAnswer 

Input: a nodeID n, an array V of (nodeID, nodeID, rel)'s, a query q 

Output: an array V[1..l] of (nodeID, nodeID, rel)'s 

1: Let A[1..l] be an array and A[i]  null for all i[1,l]. 

2: for-each ki  q do  

3:   Look up entry (vi, fi, ri) with key (n, ki) in NKMaps. 

4:  if the entry was found then A[i]  (vi, fi, ri) 

5: if A[i] = null for all i[1,l] then return  

6: else  

7:    Find i[1,l] such that (V[i].rel - A[i].rel) is minimal. 

8:    V[i]  A[i] 

9: return V 

 

Now, we consider finding top-k answer trees which are 
duplication-free in regard of content nodes. An answer tree T(n, 
C) is duplicate if and only if (a) its relevance score is greater 
than that of the k-th candidate answer tree in Qt and (b) there 
exists an answer tree T(m, C) in Qt which contains the same set 
of content nodes as T(n, C) and has no smaller relevance score 
than T(n, C). Given a duplicate tree T, we should find another 
answer tree T(n, C') which is rooted at the same node n as T 
and has a set of content node  different from all the other 
answers in Qt. Assuming that the graph has p root-to-keyword 
paths from n to each keyword in the query of size l, p

l
 answer 

trees rooted at n can be derived from the combinations of the 
paths. To find the optimal one which is not duplicate and has 
the highest relevance score efficiently without generating all 
the possible answers, we suggest a state space search algorithm 
based on branch-and-bound strategy, shown in Algorithm 3. It 
exploits NKMap index which has information on p most 
relevant paths from a node to keyword in a decreasing order of 
relevance. As shown in an example in Fig. 3, the search space 
forms a tree of states each of which represents a combination of 
root-to-keyword paths for query keywords and derives an 
answer tree. A state at level i selects one of p paths for ki 

(1il) and has the optimal paths for all keywords kj where 

i<jl. For the other keywords, it inherits the selection of paths 
from its parent state. In Fig. 3, the indexes of the selected paths 
are presented in the states. We can see that an answer tree 
represented by a state s has no smaller relevance score than 
those derived from the descendent states of s in the states tree. 
Also note that sibling states choose a different path to the same 
keyword in a decreasing order of relevance from left to right 
hence the answer tree from s has no smaller relevance than 
those derived from the right sibling states of s. Considering 
these features, Algorithm 3 explores the search space in an 
efficient way by pruning a large portion of unnecessary states.  

In Algorithm 3, a priority queue Qs is used to store states to 
be explored, starting from the initial state which has the 
optimal paths for all the query keywords (line 2). At each stage, 
a state e with the highest relevance score is selected from the 
queue (line 4~5). If the score of e is greater than that of the best 
state found yet, denoted by LB, the next sibling state s of e is 
generated and investigated (line 8~16). If the score of s is no 
greater than LB, all of its descendent states can be safely 
excluded from further exploration. If s derives a reduced and 
unique candidate answer tree and its score is greater than LB, it 
is considered a new best solution state (line 12~14). Otherwise, 
it is stored in Qs. If e is not a leaf state, the first child of e is 
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Figure 3. State space search performed by Algorithm 3  



generated and the above process is repeated on it (line 17~19). 
Fig. 3 shows the states generated in the first round of the 
outermost loop in Algorithm 3. During the best-first search, if a 
state selected from Qs derives no better answer trees than the 
best solution state found yet, the search can terminate and 
return the best answer tree (line 6). 

Algorithm 3. findUniqueAnswer 

Input: a nodeID n, an array V of (nodeID, nodeID, rel)'s, a query q 

Output: an array V'[1..l] of (nodeID, nodeID, rel)'s 

1: UB  score(T(n, V)), LB  relk, bestSolution   

2: a priority queue Qs {s0}, where s0 is an initial state. 

3: while there exists a state in Qs do 

4:  e  a state in Qs whose score is maximal 

5:  Qs  Qs / {e} 

6: if score(e)  LB then break 

7:  loop  

8:   if e has the next sibling state then 

9:   Generate the next sibling state s of e. 

10:  if score(s) > LB then  

11:  if score(s)  UB then 

12:     if s is a solution state then  

13:     bestSolution  s 

14:     LB  score(s)  

15:    else Qs  Qs  {s}  

16:    else Qs  Qs  {s}  

17: if e is a non-leaf state then  

18:   Generate the first child state c of e. 

19:   e  c 

20: else break 

21: if bestSolution ≠  then 

22:   for-each ki  q do  

23:  V'[i]  an entry (vi, fi, ri) which is looked up in NKMap 

with the key (n, ki) and selected by bestSolution  

24:   return V' 
25: else return  

V. PERFORMANCE EVALUATION 

We evaluate effectiveness and efficiency of the proposed m 
by experiments using real graph data. We compare the 
performance of our method with BLINKS [3], which uses path 
indexes similar to our method, and a modified version of it, 
called BLINKS-N, which detects and excludes non-reduced or 
duplicate sub-trees from the candidates. We implemented two 
versions of the proposed method; Reduced method only finds 
top-k reduced answers while Reduced&Unique method 
produces both reduced and duplication-free answers. All the 
algorithms are implemented in Java. We used JGraphT

1
 library 

to construct in-memory graph structures and compute the 
shortest paths between pairs of nodes. We exploited Apache 
Lucene

2
 library to extract keywords from nodes in the graph 

and compute the relevance of the nodes to keyword terms. 

As for the test graph datasets, we use a geographic data 
Mondial

3
 and a movie database IMDB

4
. From Mondial, we 

selected a subset of entities and relationships to build a graph 
including 6,431 nodes, 19,951 edges, and 15,815 keyword 

                                                           
1 http://www.jgrapht.org/ 
2 http://lucene.apache.org/java/docs/index.html 
3 http://www.dbis.informatik.uni-goettingen.de/Mondial/ 
4 http://www.imdb.com/ 

terms. In IMDB database, we derived a large graph consisting 
of 831K nodes, 2.82M edges, and 303K keyword terms. For 
the sake of simplicity and efficiency of experiments, we 
assume that all edges have the same weight of 1 and only use 
the node-to-keyword paths the length of which are no longer 
than 5. Our experiments have been conducted on a LINUX 
server having 10 1.7GHz hexa-core CPUs and 32GB RAM. 

Table 1 shows a subset of the test queries used in 
experiments. We executed the search methods to find top-k 
answers to the queries. Fig. 4 shows top-10, top-20, and top-30 
answers to the queries on Mondial obtained by BLINKS. It 
shows that the results include respectively 1, 6, and 13 non-
reduced answers and 3, 10, and 18 duplicate answers on 
average while the proposed method has returned no non-
reduced or duplicate answer at all. 

Fig. 5 presents relevance scores of top-30 answers to the 
queries on Mondial obtained by each method. It shows that the 
results by our method have lower relevance scores than those 
by BLINKS, but Reduced method achieves higher relevance 
than BLINKS-N for all test queries. Fig. 6 shows that the 
average relevance score of the results by Reduced is about 
6.6% lower than the results by BLINKS, but about 3.1% higher 
than the answers obtained by BLINKS-N. This indicates that 
even though our method replaces non-reduced answers with 
reduced ones which may have lower relevance scores, it can 
produce more effective results than BLINKS-N. 

Fig. 6 also shows that average execution times of two 
versions of our method increase by about 37.8% and 52.7% 
respectively compared to BLINKS, due to the overhead 

TABLE 1. TEST QUERIES 

Mondial IMDB 

Query Keyword list Query Keyword list 

Q1 caldera, lake, america Q11 drama, sports, competition 

Q2 cape, gulf, africa Q12 friendship, love, marriage 

Q3 vienna, donau, alps Q13 emperor, war, battle 

Q4 lake, quebec, canada Q14 hitchcock, mystery, thriller 

Q5 himalaya, india, pakistan Q15 police, crime, violence 

Q6 river, minnesota, 
louisiana 

Q16 human, vampire, fight 

Q7 city, desert, california Q17 thriller, murder, crime 

Q8 lake, michigan, ontario Q18 natural, disaster, war 

Q9 island, vancouver, seattle Q19 president, politics, drama 

Q10 alaska, arctic, sea Q20 accident, explosion, crash 
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(a) non-reduced answers                         (b) duplicate answers   

Figure 4. Number of non-reduced and duplicate answers by BLINKS  



occurred by additional search for the optimal reduced and 
duplication-free answers. However, we can observe that 
BLINKS-N is also degraded by 39.1% and our Reduced method 
slightly outperforms  it.  

In Fig. 7, we compare execution performance of the best-
first state search strategy employed in Reduced&Unique 
method with that of a naïve approach to conducting brute-force 
search to find optimal duplication-free answers, based on the 
search result for the test queries on IMDB dataset. Fig. 7-(a) 
shows the number of states, i.e., answer trees explored in each 
method, and Fig. 7-(b) presents their execution time. We 
observe that our method achieves performance improvement 
about 62.0% in the number of states generated and 65.9% in 
execution time. 

VI. CONCLUSION 

In this paper, we proposed a new approach to keyword 
search over graph data to find answers which are not only 
relevant to the query but also reduced and duplication-free. We 
suggested an efficient indexing scheme to index relevant paths 
between nodes and keywords in the graph, and proposed a top-
k query processing algorithm to find the most relevant non-
redundant answers in an efficient way by exploiting the pre-
constructed indexes. By producing non-redundant and relevant 
answer trees, it can provide users with diverse and effective 
query results and thus satisfy the users’ information need. We 
showed by experiments using a real graph dataset that our 
approach is effective and efficient for a large graph data. 
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Figure 5. Relevance of top-30 answers 
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Figure 6. Average relevance and execution time 
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Figure 7. Performance of the state search algorithm to find duplication-free 
answers 


