
Keyword Search over Graph-structured Data for

Finding Effective and Non-redundant Answers

Chang-Sup Park

Department of Computer Science

Dongduk Women’s University

 Seoul, Korea

cspark@dongduk.ac.kr

Abstract—In this paper, we propose a new method for keyword

search over large graph-structured data to find a set of answers

which are not only relevant to the query but also reduced and

duplication-free. We define an effective answer structure and a

relevance measure for the candidate answers to a keyword query

on graph data. We suggest an efficient indexing scheme on

relevant and useful paths from nodes to keywords in the graph.

We present a top-k query processing algorithm to find relevant

and non-redundant answers in an efficient way by exploiting pre-

constructed indexes. We show by experiments using real datasets

that the proposed approach can produce effective and non-

redundant answers efficiently compared to the previous methods.

Keywords-graph data; keyword search; top-k query processing

I. INTRODUCTION

Recently, graph-structured data is widely used in various
fields such as social networks, semantic web, linked open data,
and knowledge bases. A relational database also can be
considered a directed graph based on the foreign-key
relationships among tuples. A graph data consists of nodes and
edges, which can represent relationships among entities
effectively. As the amount of data increases rapidly, an
efficient and effective query system is much needed. Keyword
search has been attracting a lot of attention since it allows users
to express their information need using simple keywords [1-10].

Keyword search on graph data usually returns a set of
connected sub-structures, showing that which nodes include
query keywords and how they are inter-connected. Many
approaches find minimal connected sub-trees as succinct
answers to a given query [1-6, 8, 10]. Since there can be a
significant number of answer sub-trees in a large graph data, a
relevance scoring function is often used to rank candidate
answers and select top-k ones having the highest relevance.
There have been proposed several approaches based on the
distinct root semantics, where the relevance of a sub-tree is
computed as a function of the shortest paths from the root to
the nodes containing query keywords. For each node in the
graph, they choose at most one sub-tree rooted at the node as a
candidate answer to the query [2, 3, 5, 10]. By reducing the
number of candidates significantly, they can process top-k
query over a large volume of data more efficiently than other
approaches. It also facilitates exploitation of indexes on graph
data to improve query performance [3].

However, the previous methods have a common limitation;
they can produce ineffective answers called a non-reduced tree
and duplicate tree. The former is a sub-tree where the root node
contains no query keyword and has only a single child node.
For example, consider a directed weighted graph G1 in Fig. 1
where nodes v6 ~ v9 contain keywords and edges are labeled
with a weight representing distance between nodes. Given a
keyword query q = {k1, k2, k3} over G1, five sub-trees shown in
the figure can be answers to q since they have all the keywords
in q in their nodes. Note that T2 and T'2 are rooted at the same
node v2 while having different nodes containing keyword k3, i.e.
v8 and v9, respectively. Since the distance from v2 to v8 is
shorter than that from v2 to v9, search methods usually select T2
as the answer rooted at v2. However, it should be noted that T2
is a non-reduced answer tree which has a smaller reduced
answer T1 as its sub-tree while T'2 is a reduced answer. If T1 is
included in top-k results, selecting T'2 instead of T2 makes the
search results more diverse even though the relevance score of
T'2 is lower than that of T2. It is also desirable to choose a
reduced sub-tree T'3 instead of a non-reduced tree T3 as an
answer rooted at node v1.

v2

v8

v1

v4

v6 v7

v3

v5

T1 T2G1

v9 v8

v4

v6 v7

{k1}{k2} {k3} {k3} {k1}{k2} {k3}

1 1

1 1
2 2

1 1 1 2 1 1 1

T3 T'3

v2

v1

v4

v6

v3

v5

v7 v9

v2

v8

v4

v6 v7

v1

{k1}{k2} {k3} {k1}{k2} {k3}

1 1 1

1 11

1 1 21 1 1

v2

v8

v4

v6 v7

{k1}{k2} {k3}

1

1 1 1

v2

v4

v6 v7

v5

v9

{k1}{k2} {k3}

1 2

1 1 2

T'2

Figure 1. Reduced answers vs. non-reduced answers

v1

v7

v3

v5
v6

v4

G2

v8

{k1, k2} {k2, k3} {k1} {k3}

1 2

2
1

3 1

v2

2

1
2

v5
v6

v2

1 2

v1

v3

v5
v6

1

1

v2

2

1

v5
v6

2 1

v3

v1

v5

v2

2

1

v6

1

v7

3

v4

v8

2

1

{k1, k2} {k3} {k1} {k3}{k2, k3} {k1} {k2, k3} {k2, k3} {k1} {k1, k2}

T4 T5 T'5 T'6T6

v3

 Figure 2. Duplicate answers vs. duplication-free answers

DOI reference number: 10.18293/SEKE2016-140

The other ineffectiveness in the previous approaches is that
search results can include similar answer trees containing same
set of content nodes for the query keywords. In Fig. 2, for
instance, when a query q = {k1, k2, k3} is given on G2, the set of
top-3 answers to the query based on the distinct root semantics
is {T4, T5, T6}. Note that these sub-trees have different root
nodes but share the same set of content nodes {v5, v6}. If we
select T'5 and T'6 instead of T5 and T6, respectively, into top-3
answers, we can obtain results which are duplication-free and
diverse in terms of the content nodes.

Top-k search results including many non-reduced and
duplicate answer trees have drawbacks. First, similar and
redundant answer trees decrease diversity of the search results
and do not satisfy users who want to get various answers.
Second, if an answer tree turns out to be irrelevant to the query,
non-reduced or duplicate answer trees related with the answer
would be also irrelevant to the query.

In this paper, we propose a new approach to keyword
search over graph data which can produce not only relevant but
also diverse results by searching top-k answers consisting of
only reduced and duplicate-free answer trees. We suggest an
extended indexing scheme on the selected paths in the graph
and propose an efficient search algorithm exploiting the indices
to find relevant and non-redundant answer trees.

II. RELATED WORK

Most previous approaches to keyword search on graph data
find minimal sub-trees containing query keywords based on
either Steiner-tree semantics [1, 4, 6] or distinct-root semantics
[2, 3, 5, 10]. Under distinct-root semantics, sub-trees returned
as query answers should be rooted at a distinct node. Thus, for
each potential root node in the graph, only a single sub-tree
having a minimal weight is considered a candidate answer,
where the weight is defined by the sum of the lengths of the
shortest paths from its root to keyword nodes. This semantics
can deal with queries over a large graph data more efficiently
than Steiner-tree semantics [11].

The Bi-directional Search proposed in [2] performs
backward explorations of the graph starting from the nodes
containing query keywords and also executes forward search
from a potential root of an answer tree toward keyword nodes.
However, it does not take advantage of any prior knowledge on
the graph and depends on a heuristic activation strategy hence
it shows poor performance on large graphs. BLINKS approach
[3] proposes an efficient indexing scheme on the graph to speed
bi-directional exploration with a good performance guarantee.
It pre-computes the shortest paths and their distances from
nodes to keywords in the graph and stores them in sorted
inverted lists and a hash map. By exploiting indexes, it can
avoid a lot of explorations in the graph and find top-k answers
efficiently. For efficient search of a large graph data, [5]
suggests creating and utilizing a multi-granular representation
of graph data, and presents search algorithms on a multi-
granular graph extended from BANKS [1] and Bi-directional
Search. A recent study in [10] has proposed an extended
answer structure with a new relevance measure and proposed
an indexing and query processing scheme similar to BLINKS
to produce effective and various top-k answers.

These approaches, however, have a common drawback of
producing sub-trees that are non-reduced or duplicate in
content nodes. Although graph exploration approaches such as
BANKS and Bi-directional Search can detect and exclude such
answer trees, an exponential number of sub-trees should be
probed, resulting in severe performance overhead. BLINKS
does not consider redundancies in answers, and even if a
redundant sub-tree is detected, no other sub-tree rooted at the
same node can be found since the method stores in its index
only one optimal path from a node to keyword in the graph.
That is, all alternative sub-trees sharing a root node are
excluded from consideration. For example, BLINKS cannot
produce answer trees T'2 in Fig. 1 and T'5 in Fig. 2 as
alternatives to the redundant answers T2 and T5. This can result
in a set of limited and less relevant top-k answers to the query
than the other approaches.

III. PROBLEM DEFINITION

A data graph G(V, E) is a directed weighted graph where
nodes in V contain keywords and edges in E have a weight
representing distance between two incident nodes. The nodes
containing a keyword k are called keyword nodes or content
nodes regarding k and the set of those nodes is denoted by V(k).
The length of a directed path between two nodes in G is
defined as the sum of the weights on edges in the path. Based
on [11], we define an answer to a keyword query as follows.

Definition 1. Given a graph G(V, E) and a query q = {k1, k2, …,
kl} over G, an answer to q is a sub-tree T of G which contains a

multiset C = {v1, v2, …, vl} of keyword nodes where viV(ki)

(1il) and satisfies the following conditions: (a) T contains the
shortest path from its root to each node in C, (b) all the leaf
nodes of T belong to C, and (c) if the root of T has only one
child, the root also belongs to C. □

We denote an answer tree having a root node n and a
multiset C of keyword nodes by T(n, C). The shortest path from
the root n to a keyword node vi in C is called a root-to-keyword

path for ki and denoted by nki or nvi. The conditions in
Definition 1 specify that answer trees should only have the
nodes which are necessary and sufficient to connect their
content nodes. In particular, condition (c) requires that answer
trees should be reduced, i.e., the root of answer trees should
have at least two child nodes or be a keyword node in itself.
Assume that the root of an answer tree T has only one child and
is not a keyword node. Then there exists a sub-tree T' in T
which is reduced and has the same set of keyword nodes as T.
Since T' is usually given the higher relevance score and
preferred by a search method, T becomes a redundant answer to
the query.

To find the most relevant answers to a given query, we
propose a measure to the relevance of answer trees considering
both content nodes and root-to-keyword paths in them. Given a
node v having a keyword k, the relevance of v to k can be
computed based on the TF-IDF weighting scheme which is
popularly used in Information Retrieval [13]. For instance,
adopting the weighting scheme used in Apache Lucene text
search engine, relevance of v to k is defined by

𝑟𝑒𝑙�𝑘, 𝑣 = 𝑡𝑓(𝑘, 𝑣) ∙ 1 + log
 𝑉

|𝑉�𝑘 |+1

2

where |V| and |V(k)| are the numbers of nodes in V and V(k) and
tf(k, v) is the number of occurrences of k in v.

We also consider the length of the path from the root to
each keyword node to measure structural relevance of answer
trees. We consider that given an answer tree T, the shorter the
distance dist(n, vi) from its root n to a keyword node vi, the
more relevant to the query the tree T is. Now, the relevance
scoring function for answer trees is defined as follows.

Definition 2. Given an answer tree T(n, {v1, v2, …, vl}) for a
query q = {k1, k2, …, kl}, the relevance of T to the query q is

𝑟𝑒𝑙�𝑇, 𝑞 = 𝑟𝑒𝑙(𝑛, 𝑘𝑖 , 𝑣𝑖)
1≤𝑖≤𝑙

where

𝑟𝑒𝑙(𝑛, 𝑘𝑖 , 𝑣𝑖) =
𝑟𝑒𝑙(𝑘𝑖 , 𝑣𝑖)

𝑟𝑚𝑎𝑥
∙ �1 + log �

1

𝑑𝑖𝑠𝑡�𝑛, 𝑣𝑖 + 1

and rmax is the maximal value of rel(k, v) for all keyword terms
k and nodes v in G. □

Note that, in the above definition, relevance rel(T, q) is
computed as the sum of relevance rel(n, ki, vi) defined on each
keyword node and root-to-keyword path in T.

In this paper, we search for the answer trees which are not
only reduced but also duplication-free in regard of their content
nodes. It means that the answer trees should have different sets
of content nodes, as well as should be rooted at distinct nodes.
Based on this semantics, we aim to finding k most relevant
answers to the query using the relevance function defined
above.

IV. PROPOSED METHOD

A. Indexing Scheme

To enable efficient search of top-k answers in a large graph
data, we propose an indexing scheme for selected node-to-
keyword paths in the graph, based on that of BLINKS [3]. It
pre-computes the most relevant and useful paths using the
relevance function proposed in Definition 2 and stores them in
the index consisting of the following components.

 KNList(Keyword-Node Lists) is a set of inverted lists
KNList(k) defined for each keyword k in the graph. It
stores the most relevant node-to-keyword path from each
node to a keyword node for k. Specifically, let P(n, k) =

{nvi | vi  V(k)} for a node n and keyword k, and pm(n,
k) be the optimal path in P(n, k) which has the highest
value of rel(n, k, vi). KNList(k) stores entries representing
pm(n, k) for all nodes n in the graph. Entries are
quadruples (n, vm, fm, rm), where vm denotes the keyword
node containing k, fm is the first node except the start node
n (i.e., the next node of n), and rm is the relevance of the
path, rel(n, k, vm). The entries in the list are sorted in a
decreasing order of relevance, which enables efficient
search of most relevant paths for keyword k.

 NKMap(Node-Keyword Map) is a hash table to store
information about the most relevant paths for each pair (n,
k) of node and keyword in the graph. It stores entries of a

pre-defined number of n-to-k paths with the highest
relevance, including the optimal path pm(n, k). The entries
are triples (vi, fi, ri) where the fields denote the same as
those in KNList(k).

 NKMaps is a secondary hash table to store information
about an alternative node-to-keyword path for all pairs of
node n and keyword k in the graph. It is the most relevant
path which has the first node different from that of the
optimal path pm(n, k). This index is used to find the most
relevant reduced answer trees.

B. Query Processing Algorithm

Our query processing model is based on the Threshold
Algorithm [12] which is used to evaluate top-k queries on
multi-dimensional data such as multimedia objects. Algorithm
1 shows the sketch of our search algorithm, which uses a
priority queue Qt called top-k queue to maintain top-k candidate
answers.

Given a query q = {k1, k2, …, kl}, let L(q) be the set of
keyword-node lists KNList(ki) for all keywords ki in q. The
algorithm performs sequential scan on the lists in L(q) in
parallel (line 5~6). Whenever a new entry is read from a list, its
relevance value is stored in an array curRel (line 7). If an entry
(n, v, f, r) regarding an optimal path from a node n is first
retrieved from L(q), entries of the optimal paths pm(n, kj) for all
the other keywords kj in q are looked up in NKMap and
aggregated into an array V (line 8~13). If all the optimal paths
are found, an optimal answer tree rooted at n can be derived.
We examine whether it has a reduced form and has a unique set
of content nodes compared to the other candidates in top-k
queue. If it does not, we seek an alternative reduced and unique
answer tree using algorithms which will be detailed later (line

Algorithm 1. Keyword Search

Input: a keyword query q = {k1, k2, …, kl}, kZ+

Output: a set of top-k answer trees for q

1: a priority queue Qt and a set C of nodeID’s by .

2: curRel[i]  0.0 and V[i]  null for all i[1,l]

3: Let L(q) = {KNList(ki) | kiq (1il)}.

4: while an entry exists in a list in L(q) do

5: Select a list Li in L(q) in a round-robin manner.

6: Read an entry (n, v, f, r) at the current position in Li.

7: curRel[i]  r

8: if n  C then

9: V[i]  (v, f, r)

10: for-each kj  q such that j ≠ i do

11: Look up the first entry (vj, fj, rj) with key (n, kj) in

NKMap.

12: if the entry was found then V[j]  (vj, fj, rj)

13: else goto line #21

14: if T(n, V) is a non-reduced answer then

15: V  findReducedAnswer(n, V, q)

16: if V ≠  and T(n, V) is a duplicate answer then

17: V  findUniqueAnswer(n, V, q)

18: if V ≠  then Qt  Qt  {(n, V)}

19: C  C  {n}

20: if |Qt| = k and then break

21: Derive top-k answer trees from the top-k entries in Qt.

14~17). The result tree is stored in Qt if it is one of the k most
relevant found yet (line 18). Since the entries in each list are
sorted in a decreasing order of relevance, the sum of the values
in curRel can serve as an upper bound of relevance of the
answer trees which have not been found yet. Thus, the
algorithm can terminate safely with the correct top-k answers in
Qt if the condition in line 20 is met, where relk is the relevance
of the k-th answer tree in Qt.

C. Finding Reduced and Unique Answer Trees

Given a potential root node n, Algorithm 1 searches for an
optimal answer tree consisting of the best root-to-keyword
paths for each query keyword. If the optimal answer is a non-
reduced tree where its root has only one child but is not a
keyword node, the first nodes of l root-to-keyword paths are
the same to the child of the root. Thus, we can find if the
optimal tree is reduced or not by examining the first nodes of
all the root-to-keyword paths retrieved from NKMap. However,
it should be considered that if the root contains all the query
keywords and is selected as keyword nodes for them, the root
itself can be a reduced answer tree.

Assuming that T(n) is a non-reduced answer tree rooted at
node n, if there are multiple reduced answer trees rooted at the
same node n, we should select one with the highest relevance
score as an alternative to T(n). For keyword ki in q, let pa(n, ki)
be the path from n to a node v in V(ki) which has the first node
different from that of pm(n, ki) and has the highest score of rel(n,
ki, v). Also suppose that Ti(n) be the sub-tree obtained by
replacing the optimal path pm(n, ki) with pa(n, ki) in T(n). Note
that Ti(n) is a reduced answer to q since the first node of pa(n,
ki) is not equal to those of the other root-to-keyword paths pm(n,

kj) for keywords kj in q (j ≠i). Now, among l alternative sub-

trees Ti(n), the one with the highest relevance is the best
reduced answer tree rooted at n.

Algorithm 2 exploits NKMaps index proposed in Section
4.1, which pre-computes and stores the optimal alternative
paths pa(n, k) for all pairs of node n and keyword k in the graph.
Given a non-reduced answer T(n), it first looks up information
on alternative paths from n to all the query keywords in
NKMaps (line 2~4). An optimal reduced answer tree can be
easily obtained by selecting such a keyword ki that difference
between pm(n, ki) and pa(n, ki) is the smallest and replacing pm(n,
ki) with pa(n, ki) in T(n) (line 7~8).

Algorithm 2. findReducedAnswer

Input: a nodeID n, an array V of (nodeID, nodeID, rel)'s, a query q

Output: an array V[1..l] of (nodeID, nodeID, rel)'s

1: Let A[1..l] be an array and A[i]  null for all i[1,l].

2: for-each ki  q do

3: Look up entry (vi, fi, ri) with key (n, ki) in NKMaps.

4: if the entry was found then A[i]  (vi, fi, ri)

5: if A[i] = null for all i[1,l] then return 

6: else

7: Find i[1,l] such that (V[i].rel - A[i].rel) is minimal.

8: V[i]  A[i]

9: return V

Now, we consider finding top-k answer trees which are
duplication-free in regard of content nodes. An answer tree T(n,
C) is duplicate if and only if (a) its relevance score is greater
than that of the k-th candidate answer tree in Qt and (b) there
exists an answer tree T(m, C) in Qt which contains the same set
of content nodes as T(n, C) and has no smaller relevance score
than T(n, C). Given a duplicate tree T, we should find another
answer tree T(n, C') which is rooted at the same node n as T
and has a set of content node different from all the other
answers in Qt. Assuming that the graph has p root-to-keyword
paths from n to each keyword in the query of size l, p

l
 answer

trees rooted at n can be derived from the combinations of the
paths. To find the optimal one which is not duplicate and has
the highest relevance score efficiently without generating all
the possible answers, we suggest a state space search algorithm
based on branch-and-bound strategy, shown in Algorithm 3. It
exploits NKMap index which has information on p most
relevant paths from a node to keyword in a decreasing order of
relevance. As shown in an example in Fig. 3, the search space
forms a tree of states each of which represents a combination of
root-to-keyword paths for query keywords and derives an
answer tree. A state at level i selects one of p paths for ki

(1il) and has the optimal paths for all keywords kj where

i<jl. For the other keywords, it inherits the selection of paths
from its parent state. In Fig. 3, the indexes of the selected paths
are presented in the states. We can see that an answer tree
represented by a state s has no smaller relevance score than
those derived from the descendent states of s in the states tree.
Also note that sibling states choose a different path to the same
keyword in a decreasing order of relevance from left to right
hence the answer tree from s has no smaller relevance than
those derived from the right sibling states of s. Considering
these features, Algorithm 3 explores the search space in an
efficient way by pruning a large portion of unnecessary states.

In Algorithm 3, a priority queue Qs is used to store states to
be explored, starting from the initial state which has the
optimal paths for all the query keywords (line 2). At each stage,
a state e with the highest relevance score is selected from the
queue (line 4~5). If the score of e is greater than that of the best
state found yet, denoted by LB, the next sibling state s of e is
generated and investigated (line 8~16). If the score of s is no
greater than LB, all of its descendent states can be safely
excluded from further exploration. If s derives a reduced and
unique candidate answer tree and its score is greater than LB, it
is considered a new best solution state (line 12~14). Otherwise,
it is stored in Qs. If e is not a leaf state, the first child of e is

[1,1,1]

[1,1,1] [1,1,2] [1,1,3]

[1,1,1]

[1,2,1] [1,3,1]

[2,1,1] [3,1,1] Level 1

Level 2

Level 3

s0

root

Figure 3. State space search performed by Algorithm 3

generated and the above process is repeated on it (line 17~19).
Fig. 3 shows the states generated in the first round of the
outermost loop in Algorithm 3. During the best-first search, if a
state selected from Qs derives no better answer trees than the
best solution state found yet, the search can terminate and
return the best answer tree (line 6).

Algorithm 3. findUniqueAnswer

Input: a nodeID n, an array V of (nodeID, nodeID, rel)'s, a query q

Output: an array V'[1..l] of (nodeID, nodeID, rel)'s

1: UB  score(T(n, V)), LB  relk, bestSolution  

2: a priority queue Qs {s0}, where s0 is an initial state.

3: while there exists a state in Qs do

4: e  a state in Qs whose score is maximal

5: Qs  Qs / {e}

6: if score(e)  LB then break

7: loop

8: if e has the next sibling state then

9: Generate the next sibling state s of e.

10: if score(s) > LB then

11: if score(s)  UB then

12: if s is a solution state then

13: bestSolution  s

14: LB  score(s)

15: else Qs  Qs  {s}

16: else Qs  Qs  {s}

17: if e is a non-leaf state then

18: Generate the first child state c of e.

19: e  c

20: else break

21: if bestSolution ≠  then

22: for-each ki  q do

23: V'[i]  an entry (vi, fi, ri) which is looked up in NKMap

with the key (n, ki) and selected by bestSolution

24: return V'
25: else return 

V. PERFORMANCE EVALUATION

We evaluate effectiveness and efficiency of the proposed m
by experiments using real graph data. We compare the
performance of our method with BLINKS [3], which uses path
indexes similar to our method, and a modified version of it,
called BLINKS-N, which detects and excludes non-reduced or
duplicate sub-trees from the candidates. We implemented two
versions of the proposed method; Reduced method only finds
top-k reduced answers while Reduced&Unique method
produces both reduced and duplication-free answers. All the
algorithms are implemented in Java. We used JGraphT

1
 library

to construct in-memory graph structures and compute the
shortest paths between pairs of nodes. We exploited Apache
Lucene

2
 library to extract keywords from nodes in the graph

and compute the relevance of the nodes to keyword terms.

As for the test graph datasets, we use a geographic data
Mondial

3
 and a movie database IMDB

4
. From Mondial, we

selected a subset of entities and relationships to build a graph
including 6,431 nodes, 19,951 edges, and 15,815 keyword

1 http://www.jgrapht.org/
2 http://lucene.apache.org/java/docs/index.html
3 http://www.dbis.informatik.uni-goettingen.de/Mondial/
4 http://www.imdb.com/

terms. In IMDB database, we derived a large graph consisting
of 831K nodes, 2.82M edges, and 303K keyword terms. For
the sake of simplicity and efficiency of experiments, we
assume that all edges have the same weight of 1 and only use
the node-to-keyword paths the length of which are no longer
than 5. Our experiments have been conducted on a LINUX
server having 10 1.7GHz hexa-core CPUs and 32GB RAM.

Table 1 shows a subset of the test queries used in
experiments. We executed the search methods to find top-k
answers to the queries. Fig. 4 shows top-10, top-20, and top-30
answers to the queries on Mondial obtained by BLINKS. It
shows that the results include respectively 1, 6, and 13 non-
reduced answers and 3, 10, and 18 duplicate answers on
average while the proposed method has returned no non-
reduced or duplicate answer at all.

Fig. 5 presents relevance scores of top-30 answers to the
queries on Mondial obtained by each method. It shows that the
results by our method have lower relevance scores than those
by BLINKS, but Reduced method achieves higher relevance
than BLINKS-N for all test queries. Fig. 6 shows that the
average relevance score of the results by Reduced is about
6.6% lower than the results by BLINKS, but about 3.1% higher
than the answers obtained by BLINKS-N. This indicates that
even though our method replaces non-reduced answers with
reduced ones which may have lower relevance scores, it can
produce more effective results than BLINKS-N.

Fig. 6 also shows that average execution times of two
versions of our method increase by about 37.8% and 52.7%
respectively compared to BLINKS, due to the overhead

TABLE 1. TEST QUERIES

Mondial IMDB

Query Keyword list Query Keyword list

Q1 caldera, lake, america Q11 drama, sports, competition

Q2 cape, gulf, africa Q12 friendship, love, marriage

Q3 vienna, donau, alps Q13 emperor, war, battle

Q4 lake, quebec, canada Q14 hitchcock, mystery, thriller

Q5 himalaya, india, pakistan Q15 police, crime, violence

Q6 river, minnesota,
louisiana

Q16 human, vampire, fight

Q7 city, desert, california Q17 thriller, murder, crime

Q8 lake, michigan, ontario Q18 natural, disaster, war

Q9 island, vancouver, seattle Q19 president, politics, drama

Q10 alaska, arctic, sea Q20 accident, explosion, crash

0

5

10

15

20

25

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

top-10 top-20 top-30

0

5

10

15

20

25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

top-10 top-20 top-30

(a) non-reduced answers (b) duplicate answers

Figure 4. Number of non-reduced and duplicate answers by BLINKS

occurred by additional search for the optimal reduced and
duplication-free answers. However, we can observe that
BLINKS-N is also degraded by 39.1% and our Reduced method
slightly outperforms it.

In Fig. 7, we compare execution performance of the best-
first state search strategy employed in Reduced&Unique
method with that of a naïve approach to conducting brute-force
search to find optimal duplication-free answers, based on the
search result for the test queries on IMDB dataset. Fig. 7-(a)
shows the number of states, i.e., answer trees explored in each
method, and Fig. 7-(b) presents their execution time. We
observe that our method achieves performance improvement
about 62.0% in the number of states generated and 65.9% in
execution time.

VI. CONCLUSION

In this paper, we proposed a new approach to keyword
search over graph data to find answers which are not only
relevant to the query but also reduced and duplication-free. We
suggested an efficient indexing scheme to index relevant paths
between nodes and keywords in the graph, and proposed a top-
k query processing algorithm to find the most relevant non-
redundant answers in an efficient way by exploiting the pre-
constructed indexes. By producing non-redundant and relevant
answer trees, it can provide users with diverse and effective
query results and thus satisfy the users’ information need. We
showed by experiments using a real graph dataset that our
approach is effective and efficient for a large graph data.

ACKNOWLEDGMENT

This work was conducted in part while the author was
visiting the Department of Computer Science and Engineering,
University of California, San Diego, USA. The author would
like to thank Prof. Yuanyuan Zhou for inviting him to the UC
San Diego and for providing research environment.

REFERENCES

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using BANKS,” In Proc.
of IEEE 18th Int. Conf. on Data Engineering, pp.431-440, 2002.

[2] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H.
Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” In Proc. of the 31st Int. Conf. on Very Large Data Bases,
pp.505-516, 2005.

[3] H. He, H. Wang, J. Yang, and P. S. Yu, “BLINKS: ranked keyword
searches on graphs,” In Proc. of 2007 ACM SIGMOD Int. Conf. on
Management of Data, pp.305-316, 2007.

[4] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding top-
k min-cost connected trees in databases,” In Proc. of IEEE 23rd Int.
Conf. on Data Engineering, pp.836-845, 2007.

[5] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword search on
external memory data graphs,” Proceedings of the VLDB Endowment,
Vol.1, No.1, pp.1189-1204, 2008.

[6] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword proximity search
in complex data graphs,” In Proc. of 2008 ACM SIGMOD Int. Conf. on
Management of Data, pp.927-940, 2008.

[7] L. Qin, J. X. Yu, L. Chang, and Y. Tao, “Querying communities in
relational databases,” In Proc. of IEEE 25th Int. Conf. on Data
Engineering, pp.724-735, 2009.

[8] T. Tran, S. Rudolph, P. Cimiano, and H. Wang, “Top-k exploration of
query candidates for efficient keyword search on graph-shaped data,” In
Proc. of IEEE 25th Int. Conf. on Data Engineering, pp.405-416, 2009.

[9] M. Kargar and A. An, “Keyword search in graphs: finding r-cliques,”
Proceedings of VLDB Endowment, Vol.4, No.10, pp.681-692, 2011.

[10] C. Park and S. Lim, “Efficient processing of keyword queries over graph
databases for finding effective answers,” Information Proc. and Mgmt,
Vol.51, No.1, pp.42-57, 2015.

[11] J. X. Yu, L. Qin, and L. Chang, “Keyword search in relational databases:
a survey,” Bulletin of the IEEE CS Technical Committee on Data
Engineering, Vol.33, No.1, pp.67-78, 2010.

[12] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” Journal of Computer and System Sciences, Vol.66, No.4,
pp.614-656, 2003.

[13] S. Buttcher, C. Clarke, and G. Cormack, Information retrieval:
implementing and evaluating search engine. MIT Press, 2010.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

BLINKS BLINKS-N Reduced Reduced&Unique

Figure 5. Relevance of top-30 answers

0.577

0.523
0.539

0.506

0.156

0.217 0.215
0.243

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

BLINKS BLINKS-N Reduced Reduced&Unique

Average relevance Average execution time
(sec)

Figure 6. Average relevance and execution time

0

0.5

1

1.5

2

2.5

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Brute-force Reduced&Unique(sec)

0

500

1000

1500

2000

2500

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Brute-force Reduced&Unique

(a) Number of states generated (b) Execution time

Figure 7. Performance of the state search algorithm to find duplication-free
answers

