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Abstract—An important measure of clone detection perfor-
mance is precision. However, there has been a marked lack of
research into methods of efficiently and accurately measuring
the precision of a clone detection tool. Instead, tool authors
simply validate a small random sample of the clones their tools
detected in a subject software system. Since there could be many
thousands of clones reported by the tool, such a small random
sample cannot guarantee an accurate and generalized measure of
the tool’s precision for all the varieties of clones that can occur
in any arbitrary software system. In this paper, we propose a
machine-learning based approach that can cluster similar clones
together, and which can be used to maximize the variety of
clones examined when measuring precision, while significantly
reducing the biases a specific subject system has on the generality
of the precision measured. Our technique reduces the efforts
in measuring precision, while doubling the variety of clones
validated and reducing biases that harm the generality of the
measure by up to an order of magnitude. Our case study with
the NiCad clone detector and the Java class library shows that
our approach is effective in efficiently measuring an accurate and
generalized precision of a subject clone detection tool.

I. INTRODUCTION

Clones are pairs of code fragments that are similar. Develop-
ers create clones when they reuse code using copy and paste,
although clones may arise for a variety of other reasons [1].
Clone detection tools locate clones within or between software
systems. Developers need to detect and manage their clones
in order to maintain software quality, detect and prevent bugs,
reduce development risks, and so on [1]. It is therefore impor-
tant that the developers have high-quality clone detection tools,
which requires knowledge of their detection performance.

Clone detection tools are evaluated in terms of recall and
precision. Recall is the ratio of the clones within a software
system a tool is able to detect, and precision is the ratio of
the detected clones that are true positives, not false positives.
While high-quality benchmarks have been proposed for mea-
suring recall [2]-[4], accurately measuring precision remains
difficult. In general, there has been a marked lack of research
into methodologies for measuring a generalized precision both
accurately and efficiently.

Precision is typically measured by validating a random
sample of the clones the tool detects within a software system.
For example, tool authors have checked on the order of 100
clones detected by their tool [5], [6]. However, this leads to a
precision that is not generalizable and therefore not accurate.
While a tool often detects a diverse variety of clones within
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a software system, the detection report is often dominated
by a few large groups of similar clones. These groups are
distinct varieties of clone pairs that are common in the subject
system, and are similar in terms of clone validation, but
are not necessarily clones of each other (clone classes). A
random sampling will mostly select from these similar clones,
and a significant variety of clones are missed. This biases
the measurement of precision to the varieties of clones that
are most common in this subject system, but which may be
rare in another software system. The result is a precision
measurement that is not generalizable to another arbitrary
software system, and is therefore not an accurate or useful
measure for the users of the tool. While the variety of clones
examined could be increased by sampling clones from a
variety of software systems, this is difficult because clone
validation is a very time-consuming process. Previous studies
have had difficulty measuring precision for more than two [7]
to eight [8] subject systems. The reliability of judges is also
a major concern [9]-[11], so one cannot simply hire a large
number of non-experts (e.g., undergraduate students) to scale
the task. Random sampling is simply not an efficient way to
select a variety of clones for measuring precision.

We propose a novel machine-learning-based approach for
selecting a better sample of clones for measuring an accurate
and generalized precision. This approach involves unsuper-
vised clustering of the similar clone pairs detected in a
software system (or collection of software systems) together.
The goal is to cluster together the clone pairs that are similar
in terms of the syntax and/or semantics that causes them
to be validated as true or false positives, and which should
be considered a distinct variety of clones when measuring
precision. This is a finer-granularity concept than clone types.
Precision can then be measured by validating a randomly
chosen exemplar clone from each cluster. This efficiently
maximizes the variety of the clone pairs examined when
measuring precision. It also minimizes the bias caused by
the particular distribution of the varieties of clones in the
specific subject system, allowing a more generalized result to
be obtained.

We evaluate our approach by clustering the clones detected
by NiCad in the Java class library using K-means and measure
precision. We compare this against the random sampling ap-
proach. Our approach doubles the varieties of clones examined
within a sample size of 100 clones, while reducing biases in
the measurement by up to an order of magnitude.



II. DEFINITIONS

Code Fragment: A continuous segment of source code,
specified by the triple (I, s,e), including the source file, I,
the line the fragment starts on, s, and the line it ends on, e.
Clone Pair: A pair, (f1, f2), of similar code fragments.
Clone Class: A set of similar code fragments. Specified by
the tuple (f1, fo, ..., fn). Each pair of distinct code fragments
is a clone pair: (f;, f;), ¢,7 € L.n, i # j.

Type-1 Clone: Identical code fragments, except for differences
in white space, layout and comments [1], [8].

Type-2 Clone: Identical code fragments, except for differences
in identifier names and literal values, in addition to Type-1
clone differences [1], [8].

Type-3 Clone: Similar code fragments that differ at the state-
ment level. The fragments have statements added, modified
and/or removed with respect to each other, in addition to Type-
1 and Type-2 clone differences [1], [8]. There is no agreement
on the minimum similarity of a Type-3 clone [1].

ITII. CLUSTERING BACKGROUND

Clustering is an unsupervised learning technique for group-
ing similar objects. The goal is to group the objects such
that an object is more similar to those within its own group,
called a cluster, than those in other clusters. Given a dataset
of n objects (data points), where each object is represented by
a d-dimensional vector of measured features; the clustering
problem is to label each data point with a value [1,k], for
a target number of clusters k. The data labels constitute a
clustering solution to the data. Most algorithms require the
data to be formatted in a n by d matrix of numerical values
and for a number of clusters, k, to be specified.

A. Silhouette Metric

The silhouette metric [13] measures the quality of a clus-
tering solution by how well each data point is clustered. The
silhouette of data point ¢ is shown in Eq. 1, where a(i) is the
average distance between data point ¢ and the other points in its
own cluster, and b(7) is the lowest average distance between
data point ¢ and the data points in the other clusters. a(i)
measures how dissimilar the data point is to other members
of its own cluster, while b(i) measures how dissimilar the data
point is to its most similar neighboring cluster. The silhouette
of a data point ranges from -1.0 to 1.0. In this study we
measure similarity and dissimilarity using the cosine similarity
metric (Eq. 3).

) b(i) — a(i)
s(0) = maz{a(i),b(i)}

A silhouette closer to 1.0 indicates that data point ¢ is much
more similar to the data points in its own cluster than those in
its neighboring clusters (a(i) << b(4)), and is appropriately
clustered. A silhouette closer to -1.0 indicates the data point
is much more similar to data points in a neighboring cluster
than those within its own cluster (a(¢) >> b(7)), and would be
more appropriately placed in the neighboring cluster. A value
closer to 0.0 indicates that the data point lies on the border
of two clusters (a(i) ~= b(i)). The silhouette of a clustering
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solution is measured as the average silhouette of its data points.
This measures how well the data has been clustered, with a
value closer to 1.0 being preferable.

The silhouette has a flaw that we must control for. If a
cluster is created per unique data point, the silhouette trivially
returns 1.0, a “perfect” clustering. Although such a clustering
is unlikely to be useful. We want to cluster similar clones, not
only identical clones. To control for this we also measure the
percentage of singleton clusters. This is the ratio of the clusters
that contain only a single unique data point (although they may
contain multiple duplicate data points). We use this metric
to determine if an increase in silhouette by adding additional
clusters is due to a more natural clustering or due to an increase
in singleton clusters.

B. Choosing a Number of Clusters

Often clustering is performed on data where the number
of classifications in the data is unknown, as is the case
with our clone data. A technique must be used to choose
the number of clusters. In this paper we use the ‘elbow
method’ [14] to estimate the natural number of clusters in
the data. This involves plotting the quality (silhouette) of the
clustering solutions as a function of the number of clusters,
k, then looking for an ‘elbow’ in the plot where the gain
in cluster silhouette by adding additional clusters suddenly
and significantly drops. This estimates the natural number of
clusters as the point where adding additional clusters no longer
significantly improves the quality of the clustering solution.

C. K-Means Clustering with K-Means++ Initialization

K-means [15], [16] is an iterative clustering algorithm that
aims to partition the data in a way that minimizes a loss
function: the within-cluster sums of squares as shown in Eq. 2.
Where k is the number of clusters, C; is the set of data
points in cluster i, ji; is the center of cluster 4, and d(Z, ;)
is the distance between data point Z in cluster C; and the
cluster’s center ji;. In document clustering, where documents
are represented as weighted term-frequency vectors, the cosine
distance, Eq. 3, is the preferred distance metric [17]. The
algorithm is guaranteed to converge to a local optimum,
although this may not be the global optimum.
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Given an initial set of cluster centers, the K-means algorithm
iteratively updates the cluster centers to a local minimum of
the loss function using the algorithm below. The clustering
solution returned depends on the number of clusters and the
initial cluster centers used.

1) Assign each data point to its nearest cluster center using

the chosen distance measure.

2) Update the cluster centers as the mean of the points

assigned to them.

3) Repeat steps 1-2 until the sums of squares converges or

a maximum number of iterations has been reached.



We initialize the cluster centers using the K-means++ al-
gorithm [18]. It aims to avoid poor clusterings by choosing
random but evenly distributed cluster centers amongst the data.
It guarantees a clustering solution that is at least O(log k) com-
petitive with the optimal solution, and generally improves the
speed and accuracy of K-means [18]. The algorithm chooses
clustering centers using the following procedure, where D is
the dataset:

1) Choose one x € D with uniform probability to be the

first initial cluster center.

2) For each data point « € D the distance, d(x), between x
and its nearest previously chosen initial cluster center is
measured.

3) Choose the next initial cluster center from xz € D with a
probability of choosing = of ZLLZ(”

yep dW)
4) Repeat steps 2-3 until £ initial cluster centers have been
chosen.

D. Principal Component Analysis (PCA)

Principle component analysis [19] is an orthogonal linear
transformation of the data onto a new basis of linearly un-
correlated axes called principal components. These axes are
chosen in decreasing order of the greatest data variance they
explain. The dimensionality of the transformed data can be
reduced by dropping the principal components that explain
the least variance in the original data. Since the principal
components are ordered by variance explained, only the Top-
T principal components are kept for some target preservation
of total variance explained.

IV. CLONE VARIETY

We define a clone variety as a collection of clones that
are similar in terms of their clone validation for measuring
precision. Two clone pairs are of the same clone variety if
they share the same syntax, code-patterns and/or semantics
that determine their validation as a true or false positive clone.
This is different from clone type, which is a classification of
clones based on the tool features (e.g. normalizations) needed
to detect them (recall-focused). Clones of the same clone
type can be very different, and be unrelated in how they are
validated to measure precision.

As an example, clone detectors often report simple construc-
tors as clones, that take a number of arguments and initialize
member fields with their values. The clone detector reports
similar pairs of these simple constructors as clones. These
clone pairs are not necessarily clones of each other. They
may vary by length, contents (e.g., names and number of
parameters), and may be of different clone types. However,
in all cases, validation depends on the decision of if two
simple constructors form a true clone, so we consider these
clones to be of the same variety of clone. Some other clone
varieties observed in this study include: clones of methods that
register action listeners, of auto-generated equals() methods, of
methods implementing buffer slicing, and so on. While these
clones can be found in many software systems, their frequency
of occurrence depends on the subject system in question.

When measuring precision, we ideally only want to validate
a single exemplar from each clone variety, as additional ex-
emplars do not tell us anything new about the clone detector’s
precision. To measure a generalized precision, we want to
give each variety of clone equal weighting, as different clone
varieties may be more common or more rare in different
subject systems. A generalized precision should be measured
for a flat distribution of the different clone varieties found.

We do not attempt to build a taxonomy of all varieties of
clones from the perspective of clone validation. Across the
entire software development community, there is likely an
unlimited number of clone varieties, and these varieties may
overlap. Our interest is simply to judge if a cluster contains a
single or multiple varieties of clones, and to measure the total
number of clone varieties in a sample of detected clones.

V. MEASURING PRECISION WITH CLONE CLUSTERS

Here we discuss how precision can be measured using
a clone clustering solution. The subject clone detector is
executed for one or more subject software systems and the
detected clone pairs are clustered. The goal is to produce a
clustering solution where the clone pairs of the same clone
variety are placed in the same cluster, and the clone pairs of
different varieties are placed in different clusters. Precision is
then measured by randomly selecting an exemplar clone pair
from each cluster and manually validating them as true or false
clones. The ratio of the exemplar clones judged as true clones
by a clone expert is the precision of the tool.

This procedure maximizes the variety of the clones con-
sidered when measuring precision. It minimizes biases in
the measured precision caused by the particular distribution
of clone varieties in the particular subject systems under
test, therefore measuring a more generalizable precision with
respect to any arbitrary software system. It also minimizes
the number of clone pairs that must be validated to achieve a
desired variety of clones examined when measuring precision.

We cluster the clone pairs as a whole unit, not their
individual code fragments. We cluster clone pairs rather than
clone classes because clone detectors might mix true and false
positives, and different varieties of clone pairs, within the same
clone class. Clone classes can be unwieldy to validate, and
there is no standard way of validating a whole clone class.
Additionally, not all tools support clone class output, while
all clone detection tools report clone pairs. We do not cluster
clones of different clone types separately as it is not typical
to consider them separately when measuring precision [1].

It is not realistic to expect a perfect clustering. The cluster-
ing solution might split clone varieties across multiple clusters,
which can cause the clone varieties to have an uneven influence
on the precision measured. The clustering solution may cluster
multiple clone varieties into the same cluster, which may cause
some clone varieties to be missed when choosing the exemplar
clone pairs. Despite this, the goal is to achieve a better result
than measuring precision by a pure random sampling of the
detected clones. In our experiment, we find our approach
achieves twice the clone variety in the same sample size,



1: Original Code Fragment
static Period readExternal(Datalnput in)
throws |OException {
int years = in.readInt();
System.out.printin(years);
int months = in.readInt();
int days = in.readInt();
return Period.of(years, months, days);

static ChronoPeriodimpl readExternal(Datalnput in) throws I0Exception {
Chronology chrono = Chronology.of(in.readUTF());
intyears = in.readInt();
System.out.printin(years);
int months = in.readInt();
int days = in.readInt();
return new ChronoPeriodlmpl(chrono, years, months, days);
} }
2: Type-1 and Type-2 Normalization to Single-Statement Code Patterns
static x x(x x) throws x {
XX = xX(xX();
intx=x.x();
X.X.X(X);
intx =x.x();
intx =x.x();
return new x(x, X, X, X);

static x x(x x) throws x {
intx =x.x();

XXX(X);

int x =x.x();

int x = x.x();

return x.x(x, x, x);

}
}
3: Higher Level Code Patterns Using 3-Statement (3-gram) Transformation

static x x(x x) throws x { x x = x.x(x.x()); int x = x.x();
X x = xX(x.X()); int x = x.x(); x.x.x(x);
int x = x.x(); x.x.x(x); int x = x.x();
xx.X(x); int x = x.x(); int x = x.x();
int x = x.x(); int x = x.x(); return new x(x, x, x, x);
int x = x.x(); return new x(x, X, X, x); }
4: Shared Higher-Level Code Patterns
X X = X.X(x.X()); int x = x.x(); X.X.x(x);
int x = x.x(); X.x.x(x); int x = x.x();
x.X.X(x); int x = x.x(); int x = x.x();

static x x(x x) throws x { int x = x.x(); X.x.x(x);
int x = x.x(); x.x.x(x); int x = x.x();

x.x.X(x); int x = x.x(); int x = x.x();

intx = x.x(); int x = x.x(); return x.x(x, X, X);
int x = x.x(); return x.x(x, x, x); }

Fig. 1: Clone-Pair to Single-Document Conversion

while reducing biases that affect the generality of the measured
precision by up to an order of magnitude.

VI. CLONE VECTORIZATION

Clustering algorithms require the data to be represented
by a n by d matrix of numerical values, where n is the
number of data points (clone pairs) and d is the number of
features per data point. To convert the clones into this format
we use standard document vectorization [17]. This treats a
document as a bag-of-terms, and represents it as a vector
of term-frequencies in term-space. The vector is weighted
by the inverse-document-frequencies of the terms, under the
assumption that frequent terms have less discriminating power.
A document has the vector form shown in Eq. 4, where tf,
(term-frequency) is the frequency of term ¢ in the document,
df; (document-frequency) is the number of documents term ¢
appears in, n is the total number of documents, and d unique
terms occur across all of the documents.

n n n
— tfolog —, ..., tf ylog —} (@)
df 4

dfy df

Clones are pairs of similar code fragments (documents),
so to apply document vectorization we need to covert the
clone pairs into a single-document representation and choose
the granularity of a term. From the definitions, the most
important aspect of a clone is the code shared by its code
fragments. The clone types indicate that the Type-1 and Type-
2 differences in the clones should be ignored, so we normalize
these differences in the code fragments, turning them into
sequences of statement-level code patterns. However, it can
be trivial for clones to share normalized code statements.
Instead, we capture higher-level code patterns as sequences of
multiple statements by applying an n-gram transformation over
the normalized code statement patterns. Treating each code
fragment as a bag of n-statement normalized code patterns,
we extract the shared higher-level code patterns by computing
the intersection of these bags, allowing duplicates. The single-
document representation is then this bag of shared higher-level

document = {tf; log
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Fig. 2: Overview of Experimental Procedure

code patterns. An example of this is shown in Figure 1 for n=3.
We drop the terms that appear in only a single clone pair as
it discourages the clustering of similar clones, and singleton
clusters are not desirable in our case. This single-document
version is then vectorized as shown in Equation 4, with the
n-statement code patterns as terms.

The goal is to cluster clone pairs of the same clone variety
(Section IV), which we defined as the high-level shared syntax
and semantics that determine the validation of the clone pair.
We extract a clone pair’s significant high-level cloned code
patterns that define its clone variety. Then clustering is used
to group it with clone pairs of the same clone variety, even if
they are not clones of each other. The vectorization process is
designed to only consider the significant cloned features of a
clone pair, not the fine-grained cloned and non-cloned features
that define variance within a clone variety.

VII. CLONE CLUSTERING PROCEDURE

In this section we describe the clone clustering procedure,
which is summarized in Figure 2. For clustering, we use the
K-means algorithm because of its availability in most data
analysis frameworks. Our intention is for this methodology to
be adopted by the cloning community, so it is important to
use a algorithm which is accessible. In our experiment, we
find K-means provides a good result for our use-case.

First, the clone detection tool is executed for the subject
software system(s) and the detected clone pairs are collected.
The clone pairs are then vectorized into d-dimensional vectors
of real-numbers, as described in Section VI. The vectorized
clones are of a very high dimensionality. Clustering algorithms
are known to perform poorly in high dimensions [20]. In high
dimensions, distance metrics begin to return similar values for
any arbitrary pair of data vectors due to a high degree of
orthogonality, which can cause poor clustering results with K-
means. We perform dimensionality reduction using principal
component analysis (PCA, Section III-D). First the clone
vectors are rotated onto their principal components in order
of decreasing variance explained, and then only the Top-T'



principal components (dimensions) are kept for some target
total variance explained. K-means (Section III-C) is executed
on the transformed/reduced clone vectors to produce the
clustering solution for a target number of clusters K. K-means
is initialized using the K-means++ algorithm and performed
using the cosine distance metric, which is the recommended
metric for document-type data [17].

The final steps of the procedure require choosing 7', the
number of principal components to keep in dimensionality
reduction, and K, the number of clusters. We have developed
a procedure for choosing good 7" and K values based on the
elbow-method (Section III-B) with the silhouette clustering
quality metric (Section III-A).

First, multiple versions of the clone data vectors are pro-
duced for different Top-T' dimensional reductions. For exam-
ple, the Top-T" principal components to preserve 50-90% (in
increments of 10%) of the total data variance explained. For
each Top-T, K-means is executed across a large range of
K values, and for each clustering solution the silhouette is
measured. The range of K should be chosen experimentally
in order to observe the elbow in the plot of the silhouette
versus the number of clusters. For each T' considered, a plot
of silhouette versus K is produced, and good values of T
and K can be chosen from these plots considering the elbow
method.

The value of T is chosen as the Top-7T reduction that
produces a stable plot of silhouette versus K with a well-
defined elbow. We have observed that when too many principal
components are kept, weak or multiple elbows are observed.
When too few principal components are kept, the plot becomes
unstable and no clear elbows are observed. So 7' is chosen as
the reduction that produces the best plot with a clear elbow,
and K is chosen as the number of clusters at the elbow. The
clustering solution produced with the empirically chosen T
and K parameters is used as the final clustering solution for
the clones. While this procedure does not guarantee the best
K and T values, and the silhouette metric does not understand
the semantic concept of clone varieties, we find that it results
in a good clustering solution for our use-case. It is not possible
to manually inspect every clustering solution to pick the best
K and T, and this procedure leads to a more natural clustering
than choosing K and T arbitrarily.

VIII. EXPERIMENT

We test our approach by clustering the clones NiCad [21]
detects in the top-level ‘java’ package of the Java 8§ class
library. We use the Java class library as it is a common target
in clone studies [3], [8], and because it contains a wide variety
of functionalities and therefore a wide variety of clones. We
use the NiCad clone detector as it is a popular state of the art
clone detector with strong recall for all three of the primary
clone types [3], [22]. This ensures we are detecting a wide
variety of clones for evaluating our approach.

We executed NiCad for the detection of function-granularity
clones of 6 lines or greater with no more than 30% dissimilar-
ity after blind identifier normalization and literal abstraction.

This is a generous configuration which ensures we detect
a wide variety clones. In total, 14,076 clones pairs were
detected. We vectorized the clones using a 3-statement (3-
gram) representation. This is a compromise between capturing
high-level code patterns, and being mindful that Type-3 clones
contain statement-level gaps that may split sequences of shared
code statements. The vectors are over 2711 term dimensions.
This is a reduction from 7719 term dimensions after removing
the singleton terms.

We use MatLab to perform principal component analysis
on the clone data. This returns the vectors rotated onto a
linearly uncorrelated basis of their principal components in
decreasing order of the data variance explained by the principal
components. Essentially 100% of the variance is explained by
the first 1000 of the 2711 principal components, while 90%
of the variance is explained by just the first 250 principal
components.

We used the procedure described in Section VII to exper-
imentally choose values of T" and K. We explored values of
T for preserving 50-90% of the total variance in the data.
This corresponds to convenient T values of 15 (56%), 25
(63%), 50 (71%), 100 (80%) and 250 (90%). For each of
these Top-1' dimension reductions of the PCA clone vectors,
we performed K-means clustering for a range of K from 20
to 1300. We executed K-means using MatLab with the cosine
distance metric and initialized by the K-means++ algorithm,
as previously described. We plot cluster silhouette versus K
for each Top-T' reduction in Figure 3.

The reduction to the first 7=100 principal components (80%
of total variance explained) appears to be the ideal reduction.
It has a single well-defined elbow (natural clustering point),
while the other reductions either have unclear or multiple el-
bows, or are otherwise unstable. It achieves a higher silhouette
than keeping more dimensions (250), while having comparable
silhouette to the further reductions (15-50).

We plot silhouette and percentage of singleton clusters
versus K for K-means solutions with 7=100 in Figure 4. The
elbow method on the silhouette indicates that K=100 clusters
is the natural number of clusters for this data. This is supported
by the percentage of singleton clusters. Silhouette improves
sharply up to 100 clusters, after which the gain in silhouette by
adding additional clusters suddenly declines. As the silhouette
slowly increases to 1.0 after 100 clusters, we see the per-
centage of singleton clusters increases linearly at a significant
slope. The (weak) increase in silhouette after 100 clusters is
most dominantly due to the increase of singleton clusters,
which are not desirable. In contrast, before 100 clusters, the
percentage of singleton clusters oscillates without any definite
trend. The increase in silhouette as the number of clusters is
increased to 100 is most dependent upon approaching a natural
clustering point, not the number of singleton clusters.

Therefore our best K-means solution is achieved at 7=100
principal components and K=100 clusters. To get our final
clustering solution, we re-execute the K-means algorithm with
10 repetitions, meaning K-means is executed 10 times with
different K-means++ initializations, and the best clustering,
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with the lowest total within-cluster sum of squares, is returned.
This clustering solution has a silhouette of 0.86 with 16%
singleton clusters.

IX. MANUAL INSPECTION OF THE CLUSTERS

We now manually inspect the clustering solution to see
how well it isolates distinct clone varieties. We define a
clone variety as a group of clones that are similar by the
code patterns, syntax and/or semantics that determine their
validation as true or false clones (Section IV). The goal was
to produce a clustering of clones pairs where clones of the
same clone variety are placed in the same cluster, and clones
of different clone varieties are placed in different clusters.
Although a perfect clustering was not expected, nor realistic
to obtain. During this inspection we judged the clusters as
strong or weak. A “strong” cluster is one that contains only
a single variety of clones, while a “weak” cluster contains
multiple varieties of clones. We also investigated if clone
varieties were contained within a single strong cluster, or split
across multiple. This manual inspection was done to judge the
quality of the clustering, and is not a required component of
the procedure for measuring precision (Section V).

When judging the clusters as strong or weak, we considered
the syntax, semantics and code patterns of the clone pairs. In
particular, how these elements affect the decision to validate
the clones as true or false positives from the perspective of a
variety of clones. A particular clone variety may span multiple
clone types, and clones of the same variety may not be clones
of each other. A few examples of the strong clusters we
found include: clones of constructors that take a number of
parameters and initialize fields with these values, clones of
functions implementing buffer slicing on arrays of different
primitive data types, and clones of short file-system operations
wrapped in a common Java security manager code-pattern.
In a few cases a large cluster of a single variety of clones
contained a single or a small number of outliers. We judged
these as strong clusters if the number of outliers was very
small compared to the cluster size.

We judged 76 of the clusters as strong, meaning they contain
only a single variety of clone. However, we noticed that some

of the strong clusters should ideally be merged. Specifically,
multiple clusters contained clones of the same clone variety.
This means that some of the exemplar clones chosen from the
strong clusters will be of the same clone variety. The 76 strong
clusters yield 56 distinct clone varieties when an exemplar
clone is chosen from each of the strong clusters. While the
splitting of a clone variety into multiple strong clusters is
not a problem in terms of missing a variety of clones when
measuring precision in this way, it does needlessly increase the
number of exemplars to be examined, and adds a small bias in
the overall precision measurement to these clone varieties. In
this case it is minor, affecting only 11 of the 56 (20%) clone
varieties found in the strong clusters.

We judged 24 of the clusters as weak, meaning they contain
multiple varieties of clones. This does not mean the clones
within the cluster do not share features, nor that they are all
completely disparate. They contain clones that are sufficiently
different to be considered different varieties of clones from
the perspective of clone validation. When we investigated the
weak clusters, we found that they could be converted into
strong clusters if appropriately split. In most cases, a weak
cluster was the merging of only 2-5 varieties of clones, while
others had a more significant number of these hidden strong
clusters. Some of these hidden strong clusters are of varieties
of clones not previously seen, while some of them would
ideally be merged with one of the existing strong clusters.
Since some of the weak clusters contain clones not seen in the
strong clusters, exemplars chosen from them still contribute to
the variety of clones examined for measuring precision.

We randomly selected an exemplar from each of the weak
clusters and found that 20 of these 24 clones were distinct from
each other and not seen in the strong clusters. This suggests
that some clone variety is missed when we only select a single
exemplar from the weak clusters. This could be alleviated by
selecting multiple exemplars from these clusters, although this
is not necessary to measure a high-quality precision. A better
use of additional efforts would be to extend the measure of
precision to additional subject systems.

Overall, we judged 76 of the 100 clusters as strong and
24 as weak. In absolute number of clone pairs, 10,505 of the
14,069 clones pairs (75%) are in the strong clusters. The strong
clusters perfectly capture the clone variety in the majority of
the clone detection report, while the weak clusters still capture
partial clone variety for the remaining 25%. Selecting one
exemplar per cluster, a total sample size of 100 clones, yields
76 distinct varieties of clones: 56 from the strong clusters and
20 from the weak clusters. This is an efficiency of 76% in



terms of clone variety within the inspected clone pairs.

X. EVALUATION

We now compare our technique against the traditional pure
random sampling in terms of clone variety and the biases that
affect the accuracy and generality of the precision measure.
As we found in the previous section, a sample of clones by
choosing a single exemplar from each cluster in our clustering
solution yields 76 distinct varieties of clones within a 100
clone sample (76% efficiency). For comparison, we selected
100 random clone pairs from the entire clone dataset (without
clustering) and manually grouped them by clone varieties. A
sample of 100 clone pairs by pure-random sampling yields
only 37 distinct clone varieties (37% efficiency). This is the
best-case we saw over several trials of selecting 100 clones
at random. Our cluster-based approach achieves over twice
the clone variety for the same clone validation efforts. We
continued to randomly sample clone pairs until we reached
parity. The random sampling approach required a sample size
of 272 clone pairs to reach 76 distinct clone varieties at
28% efficiency. The efficiency in selecting a variety of clones
by random sampling becomes less efficient as the sample
size grows as it becomes more likely to choose varieties
already seen. The random sampling approach requires almost
three times the manual efforts to capture the same variety of
clones. For this same effort, we could execute our cluster-based
approach for additional subject systems and further increase
the variety of clones considered.

While, with significant additional efforts, the traditional
approach can match our approach in terms of total variety
of clones considered, it cannot guarantee an accurate and
generalized precision due to biases in the clone sample. We
compare the distribution of the 76 clone varieties found by
our cluster-based approach (100 exemplar clone pairs) and
the traditional random sampling (272 randomly sampled clone
pairs) in Figure 5. This plot shows the number of times each
variety of clones appears in the clone samples produced by the
two approaches. The clone varieties are ordered by increasing
frequency, but the clone varieties do not necessary correspond
between the two techniques. For each approach, we highlight
the first variety with a frequency greater than one.

For an accurate and generalized precision, each clone
variety ideally has equal weighting in the measurement of
precision. The clones considered by both techniques exhibit
some bias due to some clone varieties appearing multiple times
in the sample, causing these clone varieties to have a stronger
weighting in the precision measurement. Our cluster-based
technique has 13 clone varieties appearing multiple times in
the sample, with most occurring twice, and a worst case of
5 exemplar clone pairs being of the same clone variety. The
random sampling technique has 25 clone varieties appearing
multiple times in its sample, with a range of re-occurrence
of 2 to 64. With random sampling, five of the clone varieties
have an order of magnitude higher impact on the precision
measurement than the others, with a range of 12x to 64x
in the worst case. These clone varieties significantly bias the

precision measurement. In contrast, our cluster-based approach
reduces these biases by up to an order of magnitude. Overall,
our approach exhibits very little bias.

While random sampling can estimate the precision of a
clone detector for a specific subject system, it is not effec-
tive in measuring a generalized precision. Our cluster-based
technique excels in measuring an accurate and generalized pre-
cision. Our technique requires a smaller sample size, therefore
less efforts, than random sampling.

XI. MEASURING NICAD’S PRECISION

To complete the case study, we also measure the precision
of NiCad using our cluster-based procedure (Section V). We
randomly selected one exemplar clone pair per cluster (100
clones) for manual validation. Since there is no clear and
universally accepted definition of what constitutes a true clone,
precision must be measured with respect to some context or
use-case. In this case, we measured precision from a software
maintenance perspective. We judged a clone pair as a true
positive if its code fragments were not only syntactically
and/or semantically similar, but if it would also be useful from
a software maintenance perspective. Specifically, if one of the
code fragments needed to be modified to fix a bug or to evolve
the code, should the other code fragment also be considered
for the same bug fix or code evolution. Otherwise we judged
a clone to be a false positive. This is a rather strict criteria for
a true positive clone.

Overall, we measured a precision of 74% for NiCad. The
identified false positives were code fragments with similar syn-
tax, but were not specifically relevant to software maintenance.
In particular, clones of common Java programming and API
idioms, as well as clones of auto-generated code. While these
clones do share syntax, they are not useful for the identified
clone-related software maintenance tasks. NiCad’s precision
is lower in this case as we purposefully used a generous
configuration to ensure we detected a wide variety of both true
and false clones to fully evaluate our cluster-based technique.
Previous work [23], [24] has measured a precision of 80-90%+
when more conservative or recommended settings are used.

XII. THREATS TO VALIDITY

A different clustering algorithm might produce a better
clustering. We use the K-means algorithm as it is simple and an
implementation is available in most data analysis frameworks.
This is important as our intention is for this technique to be
adopted by the cloning community for measuring precision.
We have found that K-means performed well in this case.

We limited our study to one clone detection tool and one
subject system as the manual evaluation of the clustering solu-
tion and the clone validation efforts are very time intensive. We
choose the subject system and tool very carefully to ensure we
get representative results to the general case. The Java system
library has a wide variety of functionalities from different
domains and is therefore an ideal target to test clustering
of a wide variety of clones. Of the available modern clone
detection tools, NiCad has the best recall for the primary three
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clone types [22]. We configured it to be generous in detecting
all types of clones to get the most wide variety of clones.
The results should then represent any clone detection tool that
targets the first three clone types.

As with any clone study involving manual clone inspec-
tion, the analysis, classification and validation of clones can
be subjective. We took measures to reduce subjectivity and
ensure fairness in the results. When comparing our cluster-
based approach against traditional random clone sampling for
measuring precision, we needed to classify the varieties of
the clones, and measure the total variety of clones seen. We
tracked our judgments on the clone varieties and the reasons
for these decisions to ensure that the judgments were applied
uniformly for the evaluation of both methodologies. Although
there is always some subjectivity in manual clone analysis and
classification, the comparison of the two approaches was kept
fair by ensuring the classifications were applied uniformly.

XIII. RELATED WORK

Various benchmarks [2], [4], [8] have been created and
experiments [3], [7], [8], [22] performed for measuring clone
detection recall. Precision has been measured by manually
validating all clones detected in a very small software sys-
tem [25] or for a random sample of clones detected in one or
more software systems [5]-[8]. Roy and Cordy [23] measured
precision in a semi-automatic way specifically for synthetic
clones injected into a software system. Yang et al. [26] used
supervised learning to classify clones as per a manually labeled
dataset. Ours is the first work to use unsupervised clustering
to improve the efficiency and accuracy of measuring clone-
detection precision.

XIV. CONCLUSION

We presented a novel approach approach for efficiently mea-
suring an accurate and generalized clone detection precision.
This involves clustering the detected clone pairs and validating
an exemplar clone pair selected from each cluster. This ensures
a wide variety of clones are considered when measuring preci-
sion with minimal bias due to the particular distribution of the
varieties of clones within the subject system. We compared our
approach against traditional random sampling. Our approach
samples twice the variety of clones as the traditional approach
for the same sample size, while reducing biases that harm
the generality of the measured precision by up to an order of
magnitude. The clones and clustering solution from this paper
are available for interested readers'.

'www.jeff.svajlenko.com/seke 16.html
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