
Interactive Tool for Iterative Test Suite Construction
Matthew Patrick

Department of Plant Sciences
University of Cambridge

United Kingdom
Email: mtp33@cam.ac.uk

Abstract—We can only test software effectively if we under-
stand how it is intended to behave. For some categories of
programs, such as scientific models, it is not obvious what the
output of the software should be. New techniques are needed to
help domain experts, such as scientists, gather the knowledge they
need to construct suitable tests and oracles. This paper introduces
a new interactive tool for iterative test suite construction that
is based upon the scientific method paradigm that scientists
are familiar with. We apply our technique to a deterministic
mathematical model, used to predict the spread of disease, and
show how it helps scientists uncover situations they had not yet
considered. Of the 15 hypotheses originally created by modellers,
our technique found discrepancies in all but one, allowing us to
refine them into a more rigorous test suite.

I. INTRODUCTION

The Human Oracle Problem [1] can impose a significant
obstruction to the quality of software testing. It is relatively
easy to produce a large number of test cases using automated
techniques, but the effort required to determine whether each
of their outputs is correct can be prohibitively expensive. An
oracle is a mechanism by which it is determined for each
input what the output should be. Testing techniques typically
assume the availability of an automated oracle [1]. Yet, many
programs belong to a category of software which are said to
be ‘non-testable’ [2]. This means it is just as expensive to
develop an automated oracle (and just as hard to make sure
it is correct), as it is the software we are testing. The end
result is that human experts have to act as the oracle instead,
evaluating each output one at a time, to assess if it is correct.

In addition to problems with the throughput of test output
evaluations, there are also issues related to accuracy. One
research group had to retract five papers from top level
journals, such as Science, because its software contained a
fault that remained unnoticed [3]. It was later learnt the protein
crystal structures they were investigating were being inverted.
Similarly, nine packages for seismic data processing were
found to produce significantly different results due to problems
such as off-by-one errors [4]. The predictions made from
the packages would have led people using them to come to
different conclusions, potentially leading to $20 million oil
wells being drilled in the wrong place. We cannot just rely
on experts to look at each output and check it matches their
expectation. This approach is likely to miss important errors,
since the output may appear reasonable and still be incorrect.

DOI reference number: 10.18293/SEKE2016-202

Scientific software is particularly difficult to test, because
its correct behaviour is not normally known in advance. The
software is developed to investigate new research questions
and the perceptions of researchers change as their hypotheses
are explored [5]. If we already knew the answers to these
questions, there would be no need to create the software in the
first place. Intrinsic difficulties occur in evaluating the output
of scientific software, due to the stochasticity and uncertain-
ties in the underlying model. Scientific software frequently
incorporates complex models with nonlinear dynamics that
are difficult to test. Each numerical approximation has the
potential to introduce new errors [5], inaccuracies may arise
due to the way in which experimental data are collected, and
then when the model is implemented on a finite precision
computer, some further accuracy is inevitably lost.

In this paper, we address the Human Oracle Problem
by adapting the well-known strategy of Iterative Hypothesis
Testing to allow domain experts to produce stronger and more
reliable oracles for test suites. Iterative Hypothesis Testing is
a core component of the scientific research method. Scientists
start with initial hypotheses about how the system they are
studying is expected to behave. Then, as these hypotheses are
tested and explored, new information is gathered that can be
used to add to and refine them [6]. Similarly, scientists might
have some initial hypotheses as to what the outputs of the
software they are developing should be, but they do not at
first have sufficient information to create a rigorous set of test
cases. Instead, Iterative Hypothesis Testing can be used to find
cases in which these hypotheses do not hold, and identify ways
in which they can be improved through repeated refinements.

Since our technique operates in a form scientists are already
familiar with, it is highly suitable for testing scientific software
(it can also be used on a wide range of other software). We
apply our tool to an implementation of an epidemiological
model. Hypotheses are generated in consultation with epidemi-
ological modellers and then refined using our tool. The rest
of this paper is arranged as follows: Section II gives more
details about our testing technique and Section III describes
the model we are testing; Section IV presents our initial
hypotheses and Section V explores the results of applying
Iterative Hypothesis Testing to them; Section VI presents some
related work; Section VII provides our conclusions and Section
VIII describes some opportunities for further research.

II. OUR INTERACTIVE TEST SUITE CONSTRUCTION TOOL

We introduce a new tool that helps domain experts it-
eratively refine their test suites. An interface is provided
in which hypotheses can be entered as predicate relations
about the output values produced for particular sets of inputs.
The interface can also be used to define relations which
describe how the output should change if the input is modified.
These ‘metamorphic relations’ are an established way to test
software for which an oracle is not available [7]. However,
our tool differs from previous research by enabling the iterative
refinement of these relations through a search-based approach.

Our tool uses random testing to identify discrepancies in
the output between the values expected by the hypotheses
and the values actually produced. It then performs a directed
search to identify conditions under which the discrepancies
occur. Our tool then proposes a slightly modified form of
the hypotheses to address these discrepancies. For example,
suppose we incorrectly assumed that one of the outputs of
our software was always less than 10. Our technique uses
random testing to identify cases in which this does not hold,
then explores the search space to conclude it is never greater
than 11. Of course, there is no guarantee the new hypotheses
will not fail, and they may need to be refined further.

Rather than simply trusting the new hypotheses proposed by
our tool, it is often more effective to use it interactively. If our
tool cannot find any discrepancies at first, we can increase the
number of random test cases it generates and instruct the tool
to consider boundary conditions (such as setting values to 0).
When the tool indicates particular hypotheses and input/output
values that fail, we can look back at the software and consider
why this is happening. The information provided by the tool
allows a domain expert to determine whether the discrepancy
indicates a fault in the software, or if it is caused by a
misunderstanding of how it should behave. This helps the
expert decide if the software or hypotheses should be changed.

Our tool is built on top of QuickCheck for R [8]. We
provide a wrapper interface that transforms hypotheses into
parametrised unit tests. These are then tested using auto-
matically generated random test cases. Random testing is a
straightforward and inexpensive software testing technique [9].
It can generate a large number of input values in a short
amount of time, then verify the results using automatic tests of
our hypotheses. Despite its simplicity, random testing is often
more effective than advanced testing techniques [10].

Fig. 1. SEIR Model schematic

III. CASE STUDY: THE SEIR MODEL

We evaluate our technique by applying it to an epidemiolog-
ical SEIR model [11]. The SEIR model (see Figure 1) tracks
the hosts of a pathogen through the following compartments:
Susceptible (not infected), Exposed (infected but neither infec-
tious nor showing symptoms), Infectious (infectious and show-
ing symptoms) and Removed (no longer infectious, because
they are dead or recovered). Hosts may start off susceptible
(S), but when they are exposed (E) to infectious hosts, they
enter into a latent period before being infectious (I); later the
infectious hosts are removed (R) from the population.

We run tests with a fixed total amount of host (N = 2000);
the amount of infectious host (I) is selected uniformly at
random between 0 and N/2, and the remaining host is placed
into the susceptible (S) compartment. These settings were
designed to reflect the conditions under which new infectious
material enters the population from outside the model. γ and µ
are selected uniformly at random between 0 and 1, β between
0 and 1/N . Each simulation is run using 100 test cases over
50 time units, with a discrete time step of 0.01 units.

IV. INITIAL HYPOTHESES

1) Sanity Checks:
H1: None of the compartments should ever contain a nega-

tive amount of host (it is biologically impossible)
H2: The total amount of host should not differ at each time

step (our model assumes a closed population)
H3: The amount of susceptible host (S) should never in-

crease (infected hosts do not become susceptible again)
H4: The amount of removed host (R) should never decrease

(The R curve should be monotonically increasing)
H5: The exposed host (E) peak should not occur after the

infectious host (I) peak (E acts as a buffer for S to I)
2) Metamorphic Relations:

H6: Increasing the infection rate (β) should increase the peak
of E (by creating a build-up of host)

H7: Increasing the latent rate (γ) should reduce the time until
the peak of I (by allowing host to move faster from E)

H8: Increasing µ should increase the final amount of host in
S (by allowing host to move faster from I)

H9: Increasing β should decrease the final amount of host
in S (by allowing host to move faster from S)

H10: Increasing the number of susceptible host (S0) should
increase the peak of I (more host to be infected)

3) Mathematical Derivations:
H11: I should be increasing when γE > µI , otherwise it

should be decreasing (from rate equation for I)
H12: If I = E = 0, the state of the model should not change

(every term in the equations contains the value I or E)
H13: Exact analytical solutions are available when γ = 0

(It = I0e
(−µt) and St = S0e

βI0(e−µt−1)
µ)

H14: Exact analytical solutions are available when β = 0

(It =
e−γt(E0γ(e

t(γ−µ)−1)+I0(γ−µ)et(γ−µ))
γ−µ)

H15: A final size equation can determine the value of S when
t =∞ (ln(S0

S∞
) = β

µ (N − S∞))

V. EXPLORING AND REFINING THE HYPOTHESES

We applied our interactive tool to explore and refine the
initial hypotheses presented in Section IV. Our tool found
discrepancies in all but one of the hypotheses (H4). In
many cases, the hypotheses tests can be refined automatically,
through simple changes (e.g. the introduction of an edge case
or the selection of suitable tolerance thresholds). However, it is
sometimes necessary for a domain expert to pick the most ap-
propriate change. In this section, we consider some examples
of how our tool was able to help refine the hypotheses.

A. Complexities of the Model

Some discrepancies occurred due to edge cases in the model
behaviour, not taken into account by the initial hypotheses.
It is likely these edge cases would be identified by domain
experts, if allowed a sufficient amount of time. However, it is
much easier to find these cases automatically using our tool.
For example, in H5 we reasoned that since host pass through
the E compartment on their way to the I compartment, the
peak of E would be before that of I in time. Our tool found
a case in which this did not hold, using the following input
parameters: I0 = 477, β = 4.95× 10−4, γ = 0.285, µ =
0.986. The discrepancy can be seen in Figure 2: the peak of E
does not come before the peak of I because I is monotonically
decreasing (i.e. it has no peak). A similar problem occurs with
H7: increasing γ cannot make the peak of I come earlier if
it is already monotonically decreasing. These hypotheses tests
were refined by adding exceptions for the edge cases.

In some cases, it is only possible to identify discrepancies
in the hypotheses by using specific boundary values. Random
testing is inefficient at finding these cases because it explores
the input domain evenly, so our tool also selects values from
the edge of the input domain. We found boundary tests to
be particularly useful for the situations in which parameters
or compartment values are zero. For example, when S = 0,

Fig. 2. Peak in E but not in I (H5)

changing the value of β has no effect on the peak of E,
because there is no host to move into E from S. We therefore
added an exception for this situation in H6. Similarly in H8,
increasing µ has no effect on the final amount of host in S
when β = 0 because host can never leave the S compartment.
By finding and addressing these edge cases, our tool helps to
refine the hypotheses tests and make them usable in practice.

B. Complexities of the Implementation

In addition to edge cases in the model, our tool can also
be used to explore the differences between mathematical
behaviour and the behaviour of the model when implemented
on a finite precision computer. Disparities are addressed by
introducing a tolerance threshold into each hypothesis test.
The optimum value of the threshold depends on the hypothesis
being tested. For example we found the optimum threshold
for H1 to be around 1× 10−6, whereas for H2 it was
around 2× 10−8. Our tool identifies the optimum threshold
by incrementally increasing its value and counting the number
of times the hypotheses fail. Hypotheses tests fail on every
run if the threshold is set too low, but if it is set too high,
the hypotheses will never fail (even if there is a fault in the
software). Our tool therefore sets the threshold to the smallest
value at which there are no failures during 100 runs.

Finite precision computation also has an effect due to the
discrete time steps that are used. For example, our tool found
that H11 does not hold because it incorrectly identifies the
points at which I transitions from increasing to decreasing
(see Figure 3). Just before the transition point, γE < µI , so I
should decrease. However, our tool found the next value can
be higher, because the mathematical minimum occurs between
the time steps and then the value of I increases. The same
problem occurs when calculating the transition point at the
maximum of I . Using our tool, we were able to address this
by only checking up until the point before the transition.

VI. RELATED WORK

There have been other attempts to help make the con-
struction of test oracles easier. For example, Staats et al.
[12] use mutation testing and Loyola et al. [13] use network
centrality analysis as a predictive measure to rank variables for
their ability to detect faults. These approaches are useful for
guiding testers towards parts of the code that deserve greater
consideration, but they are not designed to help scientists in
the iterative process of refining their test suite.

Salari and Knupp [14] suggest a number of tests that
are useful for scientific software. For example, the Method
of Manufactured Solutions creates tests by solving a partial
differential equation backwards, i.e. inverting the equation to
determine the inputs needed to create the correct solution.
They also proposed trend tests (varying the input parameters
and checking the overall pattern), symmetry tests (e.g. chang-
ing the order of inputs and checking that the results are the
same) and comparison tests (using pseudo-oracles) [14]. Our
work differs from this in that in addition to proposing a set of
tests, we provide a tool for automatically refining them.

Fig. 3. Incorrectly Identified Increases and Decreases in I (H11)

VII. CONCLUSIONS

We presented a new interactive tool for iterative test suite
construction that is easy for scientists to use because it
is based on a methodology they are already familiar with
(Iterative Hypothesis Testing). We have shown our tool can
find discrepancies resulting from unforeseen complexities of
the model and implementation. Although these issues might
have been identified manually, if given enough time, it is faster
and easier for scientists to create some initial hypotheses and
then use our tool to identify the unexpected cases for which
they need refining. The information gathered by our tool can
be used to improve the tests through a mixture of automatic
and interactive refinement. As a result, scientists can easily
use our tool to create rigorous test suites for their software.

VIII. FURTHER WORK

We applied our tool to a simple model, so we could
explain it more clearly. When discrepancies were found, it
was relatively straightforward to identify the source of the
error and update our hypotheses appropriately. However, this
might not be so easy with complex models or other forms of
scientific software. We need to make sure our tool can be used
to identify the cause of each discrepancy, so we can respond
efficiently. It would therefore be useful to evaluate our tool on
other, more complex, software. We might also like to consider
alternative strategies for exploring hypotheses, such as those
based on advanced search-based software testing techniques
or symbolic analysis of the differential equations.

Another issue arises over how we can know whether our
approach is sufficiently rigorous. We will evaluate the effec-
tiveness of metrics for coverage assessment, such as those
based on control and data-flow criteria. It might be also
be worthwhile to create new metrics specifically designed
for scientific software, measuring coverage at the level of
the experiments and hypotheses. Since scientific software
recreates events that happen in the real world, we can also
use techniques such as lab and field experiments to verify our
results. We will investigate how best to use these in parallel
with software development, to iteratively improve the tests.

IX. ACKNOWLEDGMENTS

This work was supported by the University of Cambridge/
Wellcome Trust Junior Interdisciplinary Fellowship “Making
scientific software easier to understand, test and communicate
through modern advances in software engineering”. We thank
Richard Stutt and James Elderfield for useful discussions.

REFERENCES

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Trans. Software
Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[2] E. J. Weyuker, “On Testing Non-testable Programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[3] Z. Merali, “Computational science: Error, why scientific programming
does not compute,” Nature, vol. 467, no. 7317, 2010.

[4] L. Hatton and A. Roberts, “How accurate is scientific software?”
Software Engineering, IEEE Transactions on, vol. 20, no. 10, pp. 785–
797, 1994.

[5] J. C. Carver, M. S. Starkville, R. P. Kendall, S. E. Squires, and D. E. Post,
“Software Development Environments for Scientific and Engineering
Software: A Series of Case Studies,” in Proc. 29th Int. Conf. Software
Engineering, 2007, pp. 550–559.

[6] J. Hannay, C. MacLeod, J. Singer, H. Langtangen, D. Pfahl, and
G. Wilson, “How Do Scientists Develop and Use Scientific Software?”
in Soft. Eng. for Computational Science and Eng., ICSE, 2009.
[Online]. Available: http://dx.doi.org/10.1109/SECSE.2009.5069155

[7] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y.
Chen, “Metamorphic Testing and its Applications,” in Proc. 8th Int.
Symp. Future Software Technology, 2004.

[8] A. Piccolboni, “quickcheck,” 2015. [Online]. Available: https://github.
com/RevolutionAnalytics/quickcheck

[9] J. W. Duran, “An Evaluation of Random Testing,” IEEE Trans. Software
Engineering, vol. 10, no. 4, pp. 438–444, 1984.

[10] S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn, “Random or
Genetic Algorithm Search for Object-Oriented Test Suite Generation?”
in Proc. GECCO, 2015, pp. 1367–1374.

[11] M. Y. Li, J. R. Graef, L. Wang, and J. Karsai, “Global dynamics
of a SEIR model with varying total population size,” Mathematical
Biosciences, vol. 160, no. 2, pp. 191–213, 1999.

[12] M. Staats, G. Gay, and M. P. E. Heimdahl, “Automated Oracle Creation
Support, or: How I Learned to Stop Worrying about Fault Propagation
and Love Mutation Testing,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 870–880.

[13] P. Loyola, M. Staats, I.-Y. Ko, and G. Rothermel, “Dodona: Automated
Oracle Data Set Selection,” in Proc. Int. Symp. Softw. Testing Anal.,
2014, pp. 193–203.

[14] K. Salari and P. Knupp, “Code Verification by the Method of Manufac-
tured Solutions,” Sandia National Laboratories, Tech. Rep. SAND2000-
1444, June 2000.

