Analyzing Variability in Product Families through Canonical Feature Diagrams

Jessie Carbonnel!, Marianne Huchard!, and Clémentine Nebut!

1LIRMM, CNRS & University of Montpellier, France,
{jcarbonnel, huchard, nebut} @lirmm.fr

Abstract

Product line engineering aims to reduce the cost and
effort to develop new related softwares, while increasing
the software quality and the software scope. Variability
analysis and modeling is a key issue in this approach.
Several representations were proposed, including feature
models (FMs) and product comparison matrices (PCMs).
While PCMs are useful for presenting products in a tabular
form, for their understanding and manipulation, it helps
to switch to a graphical view. FMs are graphical views,
but they are not canonical (i.e., several equivalent FMs
can represent a same PCM) and user intervention is
necessary to ensure the extraction of a meaningful FM
from PCMSs. In this paper, we investigate the benefits of
a new structure, which captures variability in a canonical
graphical representation. We outline its construction and
we give insights about its shape and use when it is used
as an alternative representation of wikipedia PCMs in the
domain of software.

Keywords: Product lines, Product Comparison Matrix,
Feature Model, Formal Concept Analysis

1. Introduction

Software product line engineering [8] is a software de-
velopment approach which aims to produce families of sim-
ilar software systems, while reducing the cost and effort,
and increasing the software quality and scope. Variability
analysis is a key issue in this approach that includes the or-
ganization of the main characteristics (called features) de-
pending on the software products composing the product
line. Several representations were proposed, the main one

DOI reference number: 10.18293/SEKE2017-087

being feature models (FMs) [7]. An FM models the vari-
ability as a tree of features: a feature may introduce sub-
features, and the feature is linked to a sub-feature with re-
lation mandatory or optional, or to groups of sub-features
with relation at least one or exactly one amongst the sub-
features. Constraints can also be added to an FM. Other
ways of modeling such as product comparison matrices
(PCMs), decision models or logic formulas were also pro-
posed, and all these representations have many variants and
address specific issues. For example, FMs are appropriate
representations to graphically show variability and derive
product selection tools, logic formulas are relevant for au-
tomated reasoning tools and PCMs are widely used for enu-
merating existing representative products. While PCMs are
relevant for presenting products in a tabular form, switch-
ing to a graphical point of view for their understanding
and manipulation may be useful. FMs can be used in this
task, but several equivalent FMs can represent a same PCM,
thus their construction includes interpretation and modeling
choices. Therefore, it is difficult to automate their genera-
tion from product description [1]].

In this paper, we present a new structure, the Equivalence
Class Feature Diagram (ECFD), which captures variability
in a canonical graphical representation, and thus does not
require any human interpretation to be built. The ECFD
represents and structures a configuration set, and any FM
depicting this configuration set conforms with the ECFD.
It can be considered an interim representation between the
catalog-like PCMs and the meaningful FMs. We outline
the ECFD construction and we give insights about its shape
and use when it is used as an alternative representation of
wikipedia PCMs in the domain of software.

Next section presents the ECFD. We outline the ECFD
construction in Section[3} Section[ddevelops the wikipedia
PCMs study. Related work is reported in Section [5] We
conclude the paper with a few perspectives in Section [6]

2. Equivalence Class Feature Diagram (ECFD)

We introduce in this section Equivalence Class Feature
Diagrams as an alternative way to represent variability, in a
graphical and canonical way. The objective of the ECFD
is to make explicit co-occurring features (features which
are always present or absent together), exclusion constraints
and other logical relations between features. In the follow-
ing, we illustrate the ECFD with an example of e-shops con-
figurations taken from an FM of SPLOTE[, shown in Figure
[Il The configuration set is shown in Table[I]and the corre-
sponding ECFD is given in Figure[2]

The main construct of an ECFD are boxes that represent
a (maximal) set of features occurring always together. In
the example of Figure [2| all the boxes are of size 1 except
the one at the top, that is composed of four features. Indeed,
those four features always occur together in the configura-
tion set. There are several kinds of relations that can be
added in an ECFD:

e The implications between boxes, denoted by a simple
edge from a box b; to another box by, meaning that
when the features of b; are present, the features of b,
are also present in a configuration. In the example, we
have such an implication between PublicReport
and Search. Indeed in the configurations, when
PublicReport is present, Search is also present.

e Or-groups can be denoted by grouped edges from sev-
eral boxes b; to another box b, to indicate that when
features of b are present, there is at least the features
of one box b;. In the example, BankTranfer and
CreditCard form an Or-group below the top box.

e Xor-groups are denoted like Or-groups, but with a
cross on the grouped edges from several boxes b; to
another box b, to indicate that when features of b are
present, there are exactly the features of one box b;. In
the example, High and Standard form a Xor-group
below the top box.

e Mutex are denoted with a line linking boxes, with a
cross on it. Two boxes in mutex relationship indicate
that features of one box cannot appear at the same
time as features of the other box. E.g., High and
PublicReport are mutually exclusive.

A more detailed description of ECFD is presented in [3]].
The ECFD is a canonical structure: for a given set of con-
figurations, there is one and only one corresponding ECFD.
On the contrary, the feature model is not canonical, several
different feature models can represent the same set of con-
figurations: e.g., the two feature models of Figures [T]and [3]
represent the same set of configurations depicted in Table[I]

Uhttp://www.splot-research.org/

AN

Xor Webshop
—0
Optional / /

or Search Security

Catalog
—e
Mandatory / //\

PublicReport | [Standard | | High | | BankTransfer | | CreditCard

High — !PublicReport ; High — CreditCard

Figure 1. FM1 for Tang-Eshops

‘Catalogue Webshop Security Payment ‘

e Lo

| BankTransfer || Cr;ditCaﬂ | Standard || Search |

>~ Hign ‘\

Figure 2. ECFD for Tang-Eshops

3. ECFD construction

The ECFD is built in two main steps: (1) AC-poset con-
struction and (2) Xor-groups, Or-groups and Mutex com-
putation. The AC-poset produces the feature equivalence
classes (boxes/nodes of the ECFD) and the hierarchical
structure between the nodes (Section[3.1)). The Xor-groups,
Or-groups and Mutex are then added to the structure (Sec-
tion 3.2). This construction shares several steps with the
feature model extraction proposed in [9)]. However, our ob-
jectives partly diverge, since we want to preserve a canoni-
cal structure, while they aim to build one possible feature
model amongst those that our canonical structure repre-
sents.

Webshop
Search Security Payment | | Catalog

N

Standard | | CreditCard | | BankTransfer

|

PublicReport High

High — !PublicReport ; PublicReport — Search
Payment — BankTransfer | CreditCard ;

Figure 3. FM2 for Tang-Eshops

3.1. AC-poset construction

The AC-poset is a structure which is defined in For-
mal Concept Analysis (FCA) as a sub-order of the con-
cept lattice [S]. We briefly recall the needed definitions.
Data of FCA are encoded in a formal context which is a
triple K = (O, A, R) where O and A are sets (objects
and attributes, respectively) and R is a binary relation, i.e.,
R < O x A. In our case, the objects are the configurations,
and the attributes are the features (see Table[I). A formal
concept C'is a pair (E,I) composed of a maximal object
set () and of the maximal set of attributes shared by these
objects (I). E = Extent(C) = {0 € O|Va € I,(0,a) € R}
is the extent of the concept, I = Intent(C) = {a €
AlVo € E,(o0,a) € R} is the intent of the concept. The
concept lattice is the concept set provided with a specializa-
tion order <, defined as follows: given two formal concepts
C, = (El,Il) and Cy = (EQ,IQ) of K,Cy = (El,Il) <s
Cy = (Ey, Iy) if and only if E; < FE> (and equivalently
I, € I). (] is called a subconcept of C5. Cs is called a
super-concept of C'y.

Table 1. Formal Context for Tang-Eshops

Standard

PublicReport
X| x| X| X[x| x| x|x|x|x]|x|x|x| Webshop

Search

TangEshop
c0
cl
c2
c3
c4
c5
c6 X
c7
c8
c9 X
cl0
cll X
cl2 X

X | BankTransfer

x| High

X| X | CreditCard

X

X

X

X

X
X

X| X | X|X

X[X|X|[X|X]|X]|X

X
X

X| X[x| x| x| x]|x[x|x]|x]|x|x]|x| Catalogue
X| X[x| X[x| x| x| x|x]|x]|x|x]|x| Payment
x| X[x| x| x| x|x[x|x]|x]|x|x]|x|Security

X| X | X|X|X[X

Given a formal context K = (O, A, R), an attribute-
concept C is a concept such that some of the attributes
of its intent are not present in any intent of any super-
concept of C (these attributes are not inherited): Ja €
Intent(C),VCsyup, C <5 Csup, a ¢ Intent(Csyyp).

Let ACk be the set of all attribute-concepts of a for-
mal context K. This set of concepts provided with the spe-
cialization order (AC g, <;) is the AC-poset (for Attribute-
Object-Concept poset) associated with K.

Algorithm [1] is a simple algorithm to build the Hasse
diagram of the AC-poset. In this algorithm, we use com-
plementary standard FCA notations: for any object set
S, € O, the set of shared attributes is S = {a € A|Vo €
So, (0,a) € R}, and for any attribute set S, < A, the set

Concept_TangEshop_6

Catalogue
Payment

Security
Webshop

Concept_TangEshop_3
Concept_TangEshop_2| |Concept_TangEshop_4 BankTransfer Concept_TangEshop_5
Search Standard) CreditCard
c2 c2 cl
“ o3 c4 c3
c4 c5 c5
c5
c9 c5 c6 o7
c10 e 9 cti
ci1 ci1 cl12
cl12

Concept_TangEshop_1
High
c0
c8
c9
c10

Concept_TangEshop_0
PublicReport
cl

c6
cl12

Figure 4. AC-poset for Tang-Eshops

of owners is S, = {0 € O|Va € Sy, (0,a) € R}. Figure 4]
shows the AC-poset for the context of Table[I}

Algorithm 1: ComputeACposet(K)

Data: K: a formal context
Result: (ACk, <;): the AC-poset associated with K
/+ attribute concepts */
ACk — &
2 foreacha € Ado
3 ACk <« ACKk v ({a}’, {a}") //that are the objects that
share the attribute a, with all the attributes they share
4 end
/% specialization order */
5 Compute the transitive reduction of <; by comparing the
concept extents in AC i

—

While a concept lattice may have 27"(IOLI4D) concepts,
the number of concepts in an AC-poset is bounded by
|A|. Reference [9] details the complexity of construction of
the AC-poset (concept enumeration and transitive reduction
computation) which is in O(JA|* x |0} + |A]?).

The AC-poset (as the whole concept lattice) is a canoni-
cal structure per se, i.e., it is unique for a given formal con-
text (set of configurations). However, the knowledge con-
tained in the attribute-concept extents is not easy to capture,
e.g., the exclusion constraints are present, but are not em-
phasized. This is why we propose the ECFD, which only
keeps the intents of the attribute-concepts, and adds the ad-
ditional information as Xor-groups, Or-groups and Mutex
in a more intuitive way.

3.2. Groups and Mutex computation

Algorithm [2| is a schematic algorithm which specifies
the computation of the Xor- (alternative) and the Or-groups
with some similarities with the algorithm proposed by [9].
Let us define by construction the Xor- and Or-groups which

we consider in Algorithm 2] We consider all the AC-
poset antichains (sets of pairwise non comparable attribute-
concepts) of growing size from 2 to |AC k|, which is the
number of attribute-concepts (lines 2-3). For each candi-
date antichain A, we compute the set Parents(A) contain-
ing the lowest attribute-concepts that are greater than all el-
ements of A. Then for each p € Parents(A), we check
if the configurations that have some a € A cover exactly
the configurations that have p (line 5). If the configuration
sets associated with each a form a partition (pairwise dis-
joint), A is a Xor-group with parent p of size |A| (lines 7-
8). If they do not form a partition, and A does not include
a smaller Xor- or Or-group (lines 11-12), A is an Or-group
with parent p of size | A| (lines 13-14).

Algorithm 2: ComputeXorOrGroups(K)

Data: Formal context K, AC-poset (AC i, <s)
Result: XorGroups, OrGroups

1 XorGroups = &; OrGroups = (&,
2 foreach i € {2..|ACk|} do

3 foreach Antichain A of size i in (ACk, <s) do
4 foreach p € Parents(A) do

5 if p’ = J, 4 @ then
6

7

8

9

ifVal,a2 € A,al’ n a2’ = ¢ then
‘ XorGroups+ = (A, p);
end
else
10 if Yzor € XorGroups, zor & A,
11 and Yor € OrGroups, or ¢ A then
12 | OrGroups+ = (A, p):
13 end

14 end

15 end
16 end
17 end

18 end

In contrast with the proposal of [9], we do not apply
heuristics to extract a tree structure and implication rules
to conform with the FM formalism. This part of their work
(which suits their objective) creates structures that are no
more canonical. We keep the whole directed acyclic graph.

The last part of our approach takes another track and
consists in building the Mutex (Algorithm [3), that will en-
code the missing knowledge about the exclusions between
features. A Mutex is a set of mutually exclusive features,
whose associated configurations do not cover the configura-
tions of a specific feature (i.e. they have no parent). Mutex
are extracted by growing size (line 2-3). A feature set is a
Mutex if the features have no configuration in common, the
set does not contain a Xor-group, is not included in a Xor-
group (line 4) and, either its size is 2, or it does not contain
any smaller Mutex (line 5).

Algorithm [2] is exponential, as explained in [9], but the

Algorithm 3: ComputeMutex(K)

Data: Formal context K, AC-poset (ACk, <s)
Result: Mutex

1 Mutex = ;
2 foreach i € {2..|ACKk]|} do
3 foreach Antichain A of size i € (ACk, <s) s.t.
Nuea @ = & do
4 if Vzor € XorGroups, (A ¢ zor and zor ¢ A)
5 and (|A| = 2 or Vm € Mutex, m ¢ A) then
6 ‘ Mutex+ = A;
7 end
8 end
9 end

authors also mention that input size is |O| x |A|, and they
argue that the computation can be reasonable in most cases.
The same complexity arguments apply to Algorithm[3] Be-
sides, they can be implemented efficiently (although still
with exponential complexity) by avoiding generating use-
less antichains, namely, those that contain previously recog-
nized groups of some categories (lines 11-12 in Algorithm
[lines 4-5 in Algorithm [3). In Algorithm [2] this corre-
sponds to the min-set-cover problem solving as mentioned
in [9].

4. Study of PCMs variability structure

In this section, we show the application of our approach
to a set of real PCMs and a few examples of the roles the
ECFD can play for data summary, for FM extraction or for
product selection.

Dataset description We selected 21 PCMs from
wikipedia, that illustrate typical cases. These PCMs de-
scribe software products such as: wikis, data-base editors,
media players, licenses or web browsers. They have been
cleaned as described in [2] and transformed into Formal
Contextsﬂ with scaling operations [5]. Pages of wikipedia
product descriptions are sometimes split in several PCMs.
Some products even do not appear in all PCMs. In these
cases, we kept this splitting, rather than concatenating the
PCMs, because we think that it represents some domain
knowledge.

ECFD computation and description The AC-posets
are built with RCAexploreE], and the groups with a spe-
cific Java program. Table 2| presents figures about the se-
lected PCMs. Due to the scaling operations, a feature is
a pair (property, value). The number of described prod-
ucts (#conf) varies between 9 and 90. The number of
(property, value) pairs (#feat) varies between 5 and 67.

2 Available with the corresponding AC-posets at: www.lirmm.fr/
recherche/equipes/marel/datasets/fca-and-pcm
Shttp://dolques.free.fr/rcaexplore/

www.lirmm.fr/recherche/equipes/marel/datasets/fca-and-pcm
www.lirmm.fr/recherche/equipes/marel/datasets/fca-and-pcm

Table 2. Figures for TangEshop FM and for the selected 21 PCMs from our dataset. The PCMs are
organized by size and topic. The number placed against the PCM name is its identifier in the dataset.

. ECFD Groups ECFD structure
PCM name (id) |[#conf.| x |4 feat.| #xor #or . #mutex #mutex | #nodes | #multi-parents
(nb,size)* (nb,size)* (nb,size)* of size 2 (nb,size)*
TangEshop 13 x 10 1(1:2) 2(2:2) 1(1:2) 1 7 1(1:2)
MathSoft (19) 9x8 0 1(1:2) 0 0 5 1(1:2)
Dbedition (5) 22 x5 0 0 0 0 4 0
PublicLicense (27) 12 x 16 1(1:3) 1(1:3) 7 (6:2)(1:3) 6 10 2 (2:2)
Wiki (2) 40 x 7 0 1(1:2) 0 0 7 1(1:4)
Wiki (3) 38 x 6 0 4 (3:2)(1:3) 0 0 5 0
3Dsoft (7) 36 x 14 0 0 18 (18:2) 18 I1 4 (3:2)(1:3)
Player (11) 33 x9 0 0 13 (13:2) 13 9 0
Music (12) 25 x 8 0 0 0 0 8 2 (2:2)
Mail (39) 16 x 16 1(1:2) 24 (13:2)(11:3) 7(7:2) 7 14 [5(3:3)(1:4)(1:5)
PublicLicense (26) 51 x6 0 0 0 0 6 0
Texteditor (17) 66 x 5 0 0 0 0 5 0
‘Web browser (21) 43 x 9 0 0 0 0 9 4 (1:4)
Download (15) 34 x 27 1@2:1) 0 180 (171:2)(9:3) 171 24 9 (2:2)(7:3)
LinuxAdr (20) 34 x 16 0 0 5(5:2) 5 13 6(2:3)(4:2)
‘Webbrowser (23) 36 x 12 0 0 2 (2:3) 0 12 2 (1:4)(1:5)
Webbrowser (22) 41 x 13 1(1:2) 0 3(3:2) 3 12 4(1:4)
Prog. Languages (31) 56 x 25 0 0 212 (93:2) 93 25 10 (4:2)(3:3)
(88:3)(27:4)(4:5) (2:4)(1:5)
Prog. Languages (32) 40 x 10 0 0 26 (8:2)(18:3) 8 10 1(1:3)
Prog. Languages (33) 90 x 10 0 0 17 (15:2)(2:3) 15 10 1(1:4)
SocialNetJour (29) 11 x 67 70 (11:2)(1:3)(2:4)(6:5) | 95 (1:4)(4:5)(43:6) | 104 (96:2)(8:3) 96 25 11 (6:2)(5:3)
(20:6)(21:7)(8:8)(1:9) (40:7)(7:8)
HtmlIRendering (24) 15 x 61 15 (4:2)(1:3)(3:4) 3 (1:4)(2:5) 135 (135:2) 135 22 8(8:2)
(4:5)(1:6)(1:7)(1:8)

#xor, #or and #mutex are respectively the number of
Xor-groups, Or-groups and Mutex. The number of Mu-
tex of size 2 is isolated in one column to show the mu-
tex that are commonly used in FM formalisms. #nodes
is the number of ECFD nodes, and also the number of
AC-poset nodes (and the number of feature equivalence
classes). #multi-parents is the number of ECFD
nodes that have more than one direct parent. #xor, #or,
#mutex and #multi-parents are followed by a list of
(group—-size:group—number) pairs. For example,
24 (13:2) (11:3),in PCM Mail-39 #or groups means
that in the corresponding ECFD, there are 24 Or-groups, in-
cluding 13 groups of size 2, and 11 groups of size 3.

ECFD as a data summary The ECFD helps to iden-
tify the situations where many products have the same de-
scription and are grouped together (PCMs 2, 3, 23, 33); or
inversely where product groups are smaller (PCM 15). The
AC-poset shows feature sets that few products have (such as
in PCM 7), revealing possibilities for increasing the prod-
uct range, or balancing the product offer (if the products are
developed together or belong to a same brand). A complex
ECFD (PCMs 24, 29) should alert a designer to simplify, or
refine the product offer. She/he also should check the cases
where the ECFD is not complex, except for the number of
Mutex (PCM 15, 31). We observe that beyond 20 (prop-

erty, value) pairs, the number of Mutex becomes large (up
to 212) which is specific to ECFD coming from PCMs (it
does not appear for ECFD built upon the configuration set
of an existing FM, as we studied in [3] in the context of FM
composition).

ECFD for FM extraction We believe that the ECFD is
a good candidate for FM extraction. When the multi-parent
number is null or low (such as in PCMs 26, 17, 32, 33), the
FM tree should be easy to extract. Furthermore, if there are
no Mutex (such as in PCMs 26, 17), the FM will not include
additional constraints and will be more intuitive. PCM 29,
in the opposite case, has many multi-parents and many Mu-
tex and will be difficult to transform into an FM. When the
AC-poset has several roots (as this is the case for PCMs
24 or 29), they can be used to structurally decompose the
description into several FMs, using also information about
the semantics of the features, as recommended by method-
ologies like OVM [8]. Besides, the ECFD, which contains
all the possible FMs, is a relevant structure to support a
methodology which guides a designer through the FM ex-
traction process. Mutex of size 2 can easily be used in a
translation from the ECFD to an FM. In the studied PCMs,
they cover the largest part of the Mutex set. During the
FM extraction process, the FM should cover the products
present in the PCM, but should not be too strict, thus it may

accept products designed in (or suggested for) the future,
and e.g., may not take into account the numerous Mutex.

ECFD for product selection Conceptual structures are
good candidates for free datasets navigation, as shown in
[L1L l6]. In [L1} 6], the conceptual structures contain both
objects and properties, while the ECFD only contains the
properties (here features). However, the ECFD still is a
navigation structure, constrained by the groups, which al-
lows to select products and, while doing this selection, be
able to switch to close products, more easily than in a tree
structure, by using the AC-poset relationships, especially in
complex cases like PCMs 24, 29.

5. Related Work

To our knowledge, besides FM, there are two other
graphical representations which can depict the variability
of a set of product descriptions. A Feature Graph [10] is
a diagram-like representation of several FMs describing the
same configurations. It is composed of a directed acyclic
graph representing implications between features, and a set
of textual lists of feature-groups (Or, Xor and Mutex). The
feature graph transitive closure/reduction is canonical, but
it may describe more configurations than in the initial set
of products. Another possible graphical representation is
the Binary Implication Graph [4], representing all feature
implications that can be extracted from a set of product
descriptions. The potential feature-groups are not docu-
mented. As for the feature graph, only the transitive clo-
sure/reduction is unique, and some sets of products cannot
be strictly represented with this formalism. By comparison,
the ECFD is a canonical and full graphical representation of
the scope of a PCM. We made a recapitulative table of the
different graphical representationﬂ

As already mentioned in the paper, Ryssel et al. [9] have
also worked on extracting variability information (e.g., FM
hierarchy, feature groups) from a set of product descriptions
using FCA. However, while they focus on building one FM,
we keep all variability information extracted from concep-
tual structures to represent, in the ECFD, all possible FMs
depicting the initial products. Finally, Acher et al. pro-
pose an approach to extract FMs from PCMs based on FM
merged operations [1]. Here again, they focus on build-
ing one consistent FM that best depicts the PCM, and not
a unique structure preserving all knowledge about the PCM
variability. However, if building an FM is the last step of a
design, the ECFD can be considered as an interim step.

4http://www.lirmm.fr/recherche/equipes/marel/
datasets/variability-representation

6. Conclusion

In this paper, we proposed the ECFD structure which
gives a graphical and canonical view on variability. We ap-
plied it to software PCMs taken from wikipedia and showed
its use for data analysis, product selection or as a guide
for building FMs. The experimentation results are hetero-
geneous and show the necessity to deepen the analysis of
PCMs.

As future work, we would like to evaluate our approach
against other existing ones. We plan to apply our ECFD
construction to PCMs of other domains and to define a
methodology for guiding the designer from an ECFD to its
alternative FM representation. This should include a de-
composition step, where the ECFD will be relevant. We
also want to study the situations where several PCMs are
connected, like a PCM of multimedia softwares connected
to a PCM of databases.

References

[1] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbene-
den, P. Collet, and P. Lahire. On extracting feature models
from product descriptions. In 6¢h Int. VaMoS, pages 45-54,
2012.

[2] J. Carbonnel, M. Huchard, and A. Gutierrez. Variability rep-
resentation in product lines using concept lattices: Feasibil-
ity study with descriptions from wikipedia’s product com-
parison matrices. In Int. Works. FCA&A @ ICFCA, pages
93-108, 2015.

[3] J. Carbonnel, M. Huchard, A. Miralles, and C. Nebut. Fea-
ture Model composition assisted by Formal Concept Analy-
sis. In 12th Int. Conf. ENASE, pages 27-37, 2017.

[4] K. Czarnecki and A. Wasowski. Feature Diagrams and Log-
ics: There and Back Again. In /1th Int. Conf. on Soft. Prod-

uct Lines (SPLC), pages 23-34, 2007.
[5] B. Ganter and R. Wille. Formal concept analysis - mathe-

matical foundations. Springer, 1999.

[6] G.J. Greene and B. Fischer. Single-focus broadening navi-
gation in concept lattices. In Proceedings of the 3rd Works.
CDUD @ (CLA 2016), pages 32-43, 2016.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis (FODA):
Feasibility Study. Technical Report CMU/SEI-90-TR-21 -
ESD-90-TR-222, 1990.

[8] K. Pohl, G.Bockle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles, and Tech-
niques. Springer Science & Business Media, 2005.

[9] U.Ryssel, J. Ploennigs, and K. Kabitzsch. Extraction of fea-
ture models from formal contexts. In /5th (SPLC) Workshop
Proceedings (Vol. 2), page 4, 2011.

[10] S. She, U. Ryssel, N. Andersen, A. Wasowski, and K. Czar-
necki. Efficient synthesis of feature models. Information &
Software Technology, 56(9):1122-1143, 2014.

[11] T. Wray and P. W. Eklund. Exploring the information space
of cultural collections using formal concept analysis. In 9th
Int. Conf. ICFCA, pages 251-266, 2011.

http://www.lirmm.fr/recherche/equipes/marel/datasets/variability-representation
http://www.lirmm.fr/recherche/equipes/marel/datasets/variability-representation

	. Introduction
	. Equivalence Class Feature Diagram (ECFD)
	. ECFD construction
	. AC-poset construction
	. Groups and Mutex computation

	. Study of PCMs variability structure
	. Related Work
	. Conclusion

