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Abstract

Designing data-centers that provide an acceptable cost-
performance ratio is challenging. Generally, a wide spec-
trum of components must be previously analyzed, such as
the kind of applications to be executed in the data-center,
computing/storage requirements and the network topology,
among others. Since each one of these components has a
direct impact on the overall system performance, the design
process is complex and difficult, which usually requires the
intervention of an expert.

We propose a model-based approach to design data-
centers. For this purpose, we have created a meta-model
that describes the structure of data-center models. Then, a
set of expert rules can be used to detect sub-optimal con-
figurations, and (in some cases) correct the design. Data-
center models can be simulated, to assess their performance
and scalability, for which we use a code generator into the
SIMCAN tool. We have implemented our approach as an
Eclipse plugin, and illustrate the usefulness of some expert
rules by showing the efficiency and scalability gains of the
optimized model with respect to the original one.

1 Introduction

During the last decade, most efforts in scientific appli-
cations were focused in obtaining the best possible perfor-
mance, exploiting the system resource usage both in super-
computers and commodity clusters.

Due to the high number of inter-related parameters that
have a direct impact on the overall performance, building a
system that provides the maximum performance for a given
application is a very complex task. Designing and configur-
ing a data-center that properly exploits the system resource
usage may be a feasible task for an expert [1]. However,
when the data-center is designed by a non-expert, it may
provide an overall performance far from the expected one.
Generally, a misconfiguration of the system architecture or
a wrong choice of hardware resources, may lead to obtain-
ing a poor performance.

Usually, the first step before deploying the data-center in
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a production environment consists in modelling and simu-
lating its underlying architecture. Thus, the obtained results
from the simulation are used to polish and improve the ini-
tial design. Unfortunately, the number of possible configu-
rations is extremely large, making unpractical to model and
simulate all of them.

In this paper we propose MAGICIAN, an approach that
aids designers to optimize the configuration of data-centers.
The main objective of MAGICIAN is to identify possible
inconsistencies in the initial design of the data-center and
to suggest feasible corrections. Thus, a reduced number of
data-centers designs are generated, which can be simulated
to analyze which one provides the best results.

The approach is based on model-driven engineering
(MDE) [2]. We propose a meta-model for data-centers, so
that data-center configurations are expressed as instances of
such meta-model. We provide a library of expert knowl-
edge rules to detect misconfigurations and suggest improve-
ments on the design. Finally, we support the simulation of
the data-center configuration to assess properties like scal-
ability, and detect possible bottlenecks. The simulation is
performed by generating code for the SIMCAN tool [3].

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the proposed approach.
Section 3 describes in detail the principal components of
MAGICIAN. Next, Section 4 presents performance experi-
ments that show the usefulness of our approach. Section 5
presents related work, and Section 6 ends with the conclu-
sions and future work.

2 Overview

In this section, we describe the MAGICIAN approach for
optimizing the configuration of data-centers. The overall
scheme is shown in Figure 1.

Our architecture represents data-center designs as mod-
els conformant to a meta-model, and includes two optimiza-
tion loops. The first one is based on expert rules, which en-
code knowledge on typical good configurations. The second
is based on simulation, with which one can analyse aspects
like efficiency or scalability of the data-center models.

The structure of data-centers, and the integrity con-
straints that valid data-center models should obey, have
been captured through a meta-model. The designer will
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Figure 1. Working scheme of our approach

be able to create models that conform to such meta-model.
That is, these models use the types and relations defined in
the meta-model, and satisfy the integrity constraints. This
meta-model will be explained in Section 3.1.

We have created a library of expert rules, containing op-
timization patterns and idioms, typically followed by good
data-center designs. These rules detect parts of the model
that are amenable to optimization, signalling potential defi-
ciencies in the model. Moreover, some of these rules con-
tain quick fixes, which modify the design to improve some
suboptimal aspect of the model. Technically, these rules
have been implemented using the Epsilon Validation Lan-
guage (EVL) [4]. They will be detailed in Section 3.2.

We also enabled the evaluation of the data-center model
through simulation. This way, we have built a code gen-
erator that produces code to be executed by the SIMCAN
simulation tool [3]. The results of the simulation can be
used by the designer to find problems in the design, such
as bottlenecks, to further improve it. The approach to code
generation, and details on how the simulation is performed
are given in Section 3.3.

3 Model-based simulation of data-centers

In this section we explain the three main building blocks
of our approach: the data-center meta-model (see Sec-
tion 3.1), the expert rules and quick fixes (see Section 3.2),
and the code generation and simulation (see Section 3.3).

3.1 The data-center meta-model

Figure 2 shows a simplified version of the data-center
meta-model. The DataCenter meta-class is the root class,
which contains the main elements of a real data-center, such
as those relating with both computational and networking
aspects.

The computing elements are divided in two types. The
first type corresponds to the Node meta-class, which repre-
sents a single computational node. The first 3 attributes de-
fine the CPU processor, where CPU Sockets, CPU Cores
and CPU Speed represent the number of CPUs, the num-
ber of cores of each CPU and the CPU speed (measured
in MIPS), respectively. The next 3 attributes are related
with memory features, where RAM slots, RAM Size and
RAM Frequency represent the number of memory mod-
ules, the total size of each module (measured in GBytes)
and the frequency of the memory (measured in Mhz),
respectively. The next 4 attributes refer to storage as-
pects, where Disk Slots, Disk Size Disk RBandwidth and
Disk WBandwidth are the number of disks, the size of each
disk (measured in GBytes) and the read and write band-
width of the storage system (measured in Gbps), respec-
tively. The last attribute, isComputingNode, denotes if a
given node is a computing node or a storage node. The sec-
ond type of computing elements corresponds to the Rack
meta-class. A rack represents a structure that contains mul-
tiple computing elements. In this case, the rack consists of a
set of Boards, where each board contains a number of nodes
that is determined by the attribute Nodes per board.

The network is defined by 2 elements. The Network
meta-class represents the communication network of the
data-center, where Bandwidth, Latency, and ErrorRatio de-
fine the data transfer rate (measured in Gbps), the latency
(measured in µs) and the error ratio of the network, respec-
tively. The Switch meta-class represents a resource used to
communicate the different computing elements of the data-
center through the communication network, where MTU
and NumPorts are the maximum transmission unit and the
number of ports of the switch, respectively.

Finally, the Repository meta-class represents the data-
center repository, which provides a wide collection of net-
working and computational components to model, with a
high level of detail, a complete data-center.

Figure 3 shows an example of a data-center model which
conforms the proposed meta-model. This model is inspired
by a real IBM data-center configuration, which consists of 1
IBM Flex rack and 1 IBM v7000 Storage rack. These racks
are interconnected using a 40/10 Gigabit Ethernet commu-
nication network and a SAN42B-R extension switch.

The IBM Flex rack consists of 6 Flex System Enterprise
Chassis boards, where each board contains 14 IBM Flex
System p460 computing nodes. These boards consist of
4 CPUs with 8 cores, reaching a speed of 317.900 MIPS.
The memory system consists of 32 slots, which contain 64
GB of RAM. Finally, the storage consists of two disks of 2
TBytes.

The IBM Storage rack consists of 6 Flex System Chassis
Storage boards, where each board contains 14 IBM v7000
storage nodes. Each node consists of 2 CPUs with 4 cores,



Figure 2. The data-center meta-model (excerpt)

reaching an speed of 200.000 MIPS, 16 GB of RAM and 16
hard disks with a total storage of 10 TBytes.

Figure 3. Example of a data-center model

3.2 Encoding expert rules and heuristic quick
fixes

In order to support the user during the data-center de-
sign process, we have included a library of optimization
rules based on data-center experts knowledge. These ex-
pert rules aid the user to solve possible design issues, which
in most cases, hamper the overall data-center performance.
However, expert rules must be designed and provided by
an expert user, who must decide whether these are suitable
to cover the requirements of the systems under study. The
library consists of several rules focused on analysing dif-
ferent features of the data-center components, such as CPU
processors, the memory system, storage and connectivity,
among others. The main goal of these rules is to find in-
consistencies in data-center models and to provide relevant
information to fix them. For the sake of simplicity, in this

paper we have described a sample of three rules from the
complete library.

Listing 1 shows the expert rule CoresVsStorageN-
odesRatio encoded in EVL. This rule analyses the ratio be-
tween the number of storage nodes and the number of CPUs
of a data-center. The main objective of this rule is to avoid
system bottlenecks caused by a reduced number of stor-
age nodes. In this case, if the available storage nodes are
not able to provide the required performance, a message to
modify the current design is shown. As can be seen, the rule
is applied on the context of DataCenter objects (line 1 of the
listing). It is made of a check section (lines 5–11), which
evaluates a certain condition on the model, and a message
part, which is presented to the designer if the check part re-
turns true.
1 context DataCenter
2 {
3 critique CoresVsStorageNodesRatio
4 {
5 check{
6 var storageNodes: Integer;
7 var totalCores: Integer;
8 storageNodes = self.calculateStorageNodes();
9 totalCores = self.calculateTotalCores();

10 return storageNodes∗40 >= totalCores;
11 }
12 message: ’The number of storage nodes must be increased, there

exist a high number of cores in comparison with the number of
storage node which can act as bottleneck’

13 }
14 }

Listing 1. Data-center topology optimization
rule encoded in EVL

Listing 2 shows two expert rules based on the analysis of
two network features, bandwidth and latency. In this case,



these rules check that these features range in a determined
interval. If some of these features is out of the range, the
system provides a quick-fix method to alleviate the issue.
Quick fixes are specified in the fix section of the rules (lines
7–9 and 16–19). Figure 4 shows how such quick-fix is pre-
sented to the user.

1 context Network
2 {
3 critique NetBandwidth
4 {
5 check: self.Bandwidth>=10 and self.Bandwidth <=100
6 message: ’Network ’+ self.Name + ’: Bandwidth is usually ranged in

[10−100]. Some of the most used configuration is 40’
7 fix {
8 title : ”Set Bandwidth” + self.Name + ” Bandwidth to 40”
9 do { self.Bandwidth = 40; }

10 }
11 }
12 critique NetLatency
13 {
14 check: self.Latency>=20 and self.Latency <=2000
15 message: ’Network ’+ self.Name + ’: Latency is usually ranged in

[20−2000]. Some of the most used configuration is 200’
16 fix {
17 title : ”Set Latency” + self.Name + ” Latency to 40”
18 do { self.Latency = 200;}
19 }
20 }
21 }

Listing 2. Network optimization rules
encoded in EVL

Figure 4. Example of network quick-fix

3.3 Code generation and Simulation

Once the data-center has been modelled, it can be sim-
ulated, to analyse its efficiency, in terms of scalability and
performance. In this paper, we use the SIMCAN simulation
platform to represent and simulate the behaviour of data-
centers [3]. We have created a code generator that trans-
forms the designed model into the required configuration
files to perform the simulation.

Listing 3 shows an extract of the generated data-center
topology, written in the NED language. The first line repre-
sents the name of the data-center, the next 3 lines refers to
the different resources that compose the environment, such
as switch, storage and computing nodes, respectively. Fi-
nally, the lines 6-8 show how the storage and computing el-
ements are connected through the communication network,
using the switch component.

1 network IBM{
2 switch 0:EtherSwitch;
3 rCmp1 IBM Flex Rack:Rack;
4 rSto0 StorageRack:Rack;
5

6 for i=0..5 {
7 rCmp1 IBM Flex Rack.ethg++ <−> Eth10M channel <−>

switch 0.ethg++;
8 rSto0 StorageRack.ethg++ <−> Eth10M channel <−> switch 0.

ethg++;
9 }

10 }

Listing 3. Example of data-center topology in
SIMCAN written in NED language (excerpt)

Listing 4 shows an excerpt of a generated data-center
configuration file. This portion of the configuration file con-
figures the computing rack illustrated in Figure 3. It is im-
portant to remark that the symbol ∗ refers to a wildcard that
represents all the elements in the referenced structure. For
example, the lines 3 and 11 refer to the configuration of the
network for all the boards in the rack.
1 IBM.rCmp1 IBM Flex Rack.numBoards = 6
2 IBM.rCmp1 IBM Flex Rack.nodesPerBoard = 14
3 IBM.rCmp1 IBM Flex Rack.nodeBoard[∗].channelType = ”Eth10M”
4 IBM.rCmp1 IBM Flex Rack.nodeBoard[∗].node[∗].cpuModule.CPUcore

[∗].speed = 79475
5 IBM.rCmp1 IBM Flex Rack.nodeBoard[∗].node[∗].bsModule[∗].disk.

readBandwidth = 650.0Mbps
6 IBM.rCmp1 IBM Flex Rack.nodeBoard[∗].node[∗].bsModule[∗].disk.

writeBandwidth = 420.0Mbps
7 IBM.rCmp1 IBM Flex Rack.nodeBoard[∗].node[∗].osModule.memory.

size = 2.0GiB
8

9 IBM.rSto0 StorageRack.numBoards = 1
10 IBM.rSto0 StorageRack.nodesPerBoard = 1
11 IBM.rSto0 StorageRack.nodeBoard[∗].channelType = ”Eth10M”
12 IBM.rSto0 StorageRack.nodeBoard[∗].node[∗].bsModule[∗].disk.

readBandwidth = 650.0Mbps
13 IBM.rSto0 StorageRack.nodeBoard[∗].node[∗].bsModule[∗].disk.

writeBandwidth = 420.0Mbps
14 IBM ScenarioA 1server.rSto0 StorageRack.nodeBoard[∗].node[∗].

osModule.memory.size = 2.0GiB

Listing 4. Data-center configuration in
SIMCAN

4 Evaluation

This section presents a experimental study that shows
the applicability of our our proposed approach. In order to
carry out these experiments, a data-center inspired by IBM
Flex system has been modelled (see Figure 2). In this case,
the target system contains two racks and one main switch,
that is, one computing rack for processing purposes and one
storage rack for managing data. The computing rack con-
sists of 6 board nodes, where each board contains 14 p460
blades with 4 CPUs, 64 GB of RAM memory and a local
disk drive of 1TB. Hence, the modelled system provides a



total of 336 CPUs. The storage rack has been modelled with
one blade consisting of 2 CPUs, 32GB of RAM memory
and a high performance disk drive of 2TB. Each rack uses
an Ethernet 10/100 network to interconnect the blades. The
main switch is connected to each rack through an Ethernet
10-Gigabit network.

This data-center has been modelled using MAGICIAN,
and the alternative designs have been simulated using
SIMCAN[3], using the code generator explained in Sec-
tion 3.3. In order to analyze the overall system performance,
a Map-Reduce application has been used [5]. This applica-
tion processes a 2.5GB data-set. This data-set is divided
into small data portions, called domains, which are deliv-
ered among the different processes. In these experiments,
336 processes are executed in the available CPUs of the sys-
tem. It is important to remark that each process has a dedi-
cated CPU. The size of each domain is 4MB and the size of
generated data, after processing each domain, is 2MB. Each
process requires 1,875,000 MIs to process a single domain.

Once the data-center has been modelled, MAGICIAN de-
tects 2 possible inconsistencies in the data-center configu-
ration. The first inconsistency targets the infrastructure of
the data-center (the rule detecting this issue is the one in
Listing 1), while the second is related to a possible miscon-
figuration of a single parameter (see Listing 2).

In the first case, the storage rack has been configured to
use 1 blade only, that is, 1 storage server. Generally, when
the proportion between the number of processes and the
storage resources is not properly balanced, the storage sys-
tem acts as a system bottleneck, slowing down the overall
system performance. Consequently, MAGICIAN suggests
to increase the number of storage servers by modelling each
board in the rack with different storage blades. In order to
show the usefulness of this rule, different alternative config-
urations, using the expert rule described in Listing 1, have
been generated. In this case, these simulations have been
executed using 1, 2, 4, 8, 16 and 32 storage servers. Figure 5
shows the results obtained from these simulations, where
the x-axis represents the number of storage servers and the
y-axis represents the speed-up with respect to the initial
configuration using 1 storage server. This chart shows that
the overall system performance slightly increases when the
number of storage servers increases as well. However, this
chart also shows that there should be another bottleneck in
the system, because the increase is not high.

In the second case, MAGICIAN suggests to change the
configuration of the network. Since the original model uses
a 10/100 Ethernet network in each rack, it may lead to slow-
ing down the system significantly. Similarly, in this case
we have simulated the data-center using a different number
of storage servers and a 10-Gigabit Ethernet for communi-
cating the blades in the racks. Figure 6 shows the results
obtained from the simulation of the alternative data-center
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Figure 5. Proposed data-center designs by
the expert-rule shown in Listing 1
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Figure 6. Proposed data-center designs by
the expert-rule shown in Listing 2

designs. This chart shows a significant increment of perfor-
mance when the number of storage servers are increased.

As a conclusion, the initial configuration of the data-
center had two drawbacks. First, using only 1 storage server
limits the parallelism for accessing data in the system. In
this case, MAGICIAN detects an inconsistency in the ratio
between the number of CPUs and the number of storage
servers. The expert rule suggests to increase the number of
storage servers. In particular, this rule recommends to use
8 storage servers for this data-center configuration. Second,
the network used in the racks acts as a system bottleneck. In
this case, the issue is easily fixed by using the corresponding
quick-fix.



5 Related work

The correct design of distributed systems is a process
that requires years of expertise. In order to alleviate the in-
conveniences of this complex and costly task the scientific
community has performed a constant effort [6]. Alshahrani
and Peyravi presented a theoretical model to design and
evaluate communication networks in data-centers [7]. This
proposal includes an experimental analysis where the three
major DCN architectures have been deployed by using sim-
ulation techniques.

In the field of modelling and simulation several contribu-
tions can be found. Son et. al presented CloudSimSDN [8],
a simulation framework for software-defined cloud infras-
tructures. This framework incorporates a graphical inter-
face to design the data-center topology. Meisner et. al pre-
sented [9], a simulation infrastructure for data-center sys-
tems. This approach is based on a higher level of abstrac-
tion, and uses a combination of queuing theory and stochas-
tic modeling. Although these works allow to model several
infrastructures in a fast and easy way, some of their main
weakness are related with the low level of detail of the re-
sultant infrastructures models. In order to alleviate these in-
conveniences, Nuñez et. al presented SIMCAN [3], a sim-
ulation platform designed to analyse and test parallel and
distributed architectures and applications.

More recently, Palyart et al. presented MDE4HPC [10],
an model-based approach to describe and generate scientific
knowledge for diverse architectures. This work presents a
methodology to generate HPC applications independently
from the platform by using Archi-MDE. Hence, to the best
of our knowledge, there is no proposal to design data-center
infrastructures that combines expert rules and simulations.
Although there exist several simulation platforms, none of
them includes users assistance during the modelling pro-
cess. For this, our approach complements some of the exist-
ing simulation platform with expert-rules. In this case, we
have selected SIMCAN due to its high level of detail and
flexibility. In addition, this SIMCAN simulation platform
is based on the OMNeT++, one of the most extended and
adopted simulation platforms in the scientific community.
Moreover, expert rules are expressed in EVL, which in its
turn is based on OCL, a widely used standard for expressing
model queries and constraints.

6 Conclusions and Future work

In this work we have presented MAGICIAN, a model-
based approach for the design and analysis of data-center
configurations. The metodology relies on expert rules to
detect and fix suboptimal decisions, and on simulation to
analyse performance and scalability of the configurations.

We have performed several experiments by modelling
a real data-center using MAGICIAN. The proposed data-
center designs, after applying the suggestion made by
MAGICIAN, show that the existent inconsistencies in the
initial design are fixed. Also, the new designs provide an
overall system performance higher than the initial model.

In the future, we would like to support semi-automatic
tuning configuration to reach a specific performance goal.
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