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Abstract

Context: It is important to maintain software quality
as a software system evolves. Managing code smells in
source code contributes towards quality software. While
metrics have been used to pinpoint code smells in source
code, we present an empirical study on the correlation of
code smells with class-level (micro pattern) and method-
level (nano-pattern) traceable patterns of code. Objective:
This study explores the relationship between code smells
and class-level and method-level structural code constructs.
Method: We extracted micro patterns at the class level and
nano-patterns at the method level from three versions of
Apache Tomcat and PersonalBlog and Roller from Stand-
ford SecuriBench and compared their distributions in code
smell versus non-code smell classes and methods.Result:
We found that DataManager, Record and Outline mi-
cro patterns are more frequent in classes having code smell
compared to non-code smell classes in the applications
we analyzed. localReader, localWriter, Switcher, and
ArrReader nano-patterns are more frequent in code smell
methods compared to the non-code smell methods. Conclu-
sion: We conclude that code smells are correlated with both
micro and nano-patterns.

1. Introduction

Software quality is crucial. Detecting and managing
code smells improves the quality and maintainability of
software systems [10, 12]. A code smell is a surface in-
dication that usually corresponds to a deeper problem in the
system [7]. This surface indication may be related to a code
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or design problem that increases the difficulty of mainte-
nance. [6]. Various raw measures have been derived to as-
sess system characteristics such as lines of code, method
length, number of methods etc [11]. These types of mea-
sures have been evaluated to establish relative threshold val-
ues that are used with other metrics to define code smells.
Code smell detection tools are based on the evaluated met-
rics and established thresholds. A small change in thresh-
old values impacts code smell detection accuracy [5]. Code
smells can also be transitively related to each other [6].
Fontana et al. [4] also identified other relations among code
smells useful for detecting architectural degradation.

Research has been conducted on code smell detection
mechanisms, correlations among code smells, and code
smell fault proneness [9, 10, 12, 17, 18]. Fontana et al.
analyzed the dependencies between code smells and micro
patterns [5]. Micro patterns are class-level traceable pat-
terns that are defined using some formal conditions of the
structure of a Java class [8]. Gil et al. [8] developed the
concept of traceable patterns and defined 27 micro patterns
organized into 8 categories based on the structure of Java
classes. These studies were focused on improving software
quality by reducing the use of bug-prone micro patterns.
Fontana found that dependencies between code smells and
micro patterns can be used to improve code quality by de-
tecting code smells using micro pattern data [5]. Method-
level traceable patterns are called nano-patterns. Singer
et al. [16] listed 17 fundamental nano-patterns organized
into 4 groups. They applied their work to clustering and
categorizing Java methods based on the associated nano-
patterns. Deo et al. [2] found that some nano-patterns such
as localReader are highly present in defective methods.

Previous studies focused on finding correlations between
code smells and micro patterns. There are certain code
smells that are defined based on the methods in a class (e.g.,
feature envy, long parameter list). In this study, our goal is
to determine if correlations exist between code smells with

DOI reference number: 10.18293/SEKE2017-121



both micro and nano-patterns. These patterns are defined
on class or method behavior and code smell occurs due to
the violation of fundamental design principles. Therefore,
correlating class and method-level structural and behavioral
information with code smell will strengthen code smell de-
tection and augment existing smells with pattern-based in-
formation. The motivation of this study is to pinpoint code
smells in Java classes and methods using their structural in-
formation. The patterns having high correlation with code
smells can later be used for code smell detection. Moreover,
developers will be guided about the use of patterns in code
for ensuring better code quality. Detecting code smells in
code provides a good indicator of the system’s design qual-
ity.

The contributions of this study are as follows:

• The results serve to create awareness among develop-
ers that using certain patterns can result in particular
code smells.

• This study present alternative approaches to identify-
ing code smells and other problematic areas in soft-
ware.

The paper is organized as follows: Section 2 discusses
the related work. Section 3 presents the methodology of our
work. Sections 4 presents the results from the experimen-
tal analysis and Section 5 discusses the results. Section 6
concludes the paper.

2. Related Work

Prior research focused on finding code smells using var-
ious threshold values for related metrics. The problems as-
sociated with interpreting these thresholds and setting val-
ues applicable to the system under evaluation greatly impact
code smell detection accuracy [1, 14]. In order to avoid
these problems, researchers examined ways to detect code
smells more accurately by correlating smells with other
constructs (including other code smells). Fontana [4] ex-
tracted relationships among code smells such as determin-
ing whether a code smell contains another code smell or if
a smelly method calls another smelly method. The authors
exploited these relations to tease out architectural anomalies
in a system. Other studies described different relationships
among code smells [6, 15]. Plain Support and Transitive
Support are two other types of code smell relationships [6].
Plain Support denotes the likelihood of the existence of one
code smell with the presence of another code smell. On the
other hand, Transitive Support is concerned with transitive
dependencies among three code smells [6].

There has also been research conducted on the relation-
ships between micro patterns and defects. Destefanis et al.
identified certain micro patterns that were more error-prone

than others and observed correlations between the patterns
and defects [3]. They also showed that the classes that do
not contain any micro pattern are more fault prone than
classes with micro patterns. In a study by [5], the authors
correlated code smells with micro patterns. They explored
how structural information can be exploited to detect code
smells and bad programming practices. They identified as-
sociations among code smells as well as between code smell
and micro patterns. Their study is helpful to expedite the
code smell detection mechanism as well as to remove dis-
crepancies or contradictions among different code smell de-
tection tools [5].

Although prior studies concentrated on the associations
among code smells and micro patterns, in this study we also
identify how code smells are correlated to method-level pat-
terns known as nano-patterns. This study results in a new
approach for code smell detection using nano-patterns. We
also examine correlations between class-level patterns and
code smells and compare our results with the previous work.

3. Methodology

This Section elaborates the goal of the study, the research
questions, the research approach, and study design.

3.1. Research Goal
The goal of the study is to determine if there exists a cor-

relation between code smells with micro patterns and nano-
patterns. This goal is addressed by the research questions
presented in the Section 3.2.

3.2. Research Questions
Research Question 1 (RQ1): How are code smells re-

lated to micro patterns?
The rationale behind this question is to understand if

micro patterns are distributed differently in classes having
code smells versus classes without code smells. Moreover,
we aim to find if there is a correlation between micro pat-
terns with different types of code smells. More specifically:

RQ1.1: How are micro patterns distributed in classes
containing code smells?

RQ1.2: Are micro patterns distributed differently in
classes with different types of code smells?

Research Question 2 (RQ2): How are code smells re-
lated to nano-patterns?

This question is similar to RQ1 except that this analy-
sis is at the method-level as nano-patterns are method-level
traceable patterns. More specifically:

RQ2.1: How are nano-patterns distributed in methods
having code smells?

RQ2.2: Are the nano-patterns distributed differently in
methods with different types of code smells?



3.3. Study Design
The study was conducted using 3 versions of Apache

Tomcat along with PersonalBlog and Roller from Stanford
SecuriBench1. Apache Tomcat is a web application server
developed by the Apache Software Foundation2. The soft-
ware has about a half million lines of code with more than
3000 classes and 12,000 methods in each version. For our
study, we considered versions 6.0.45, 7.0.69 and 8.0.33
from the Apache Tomcat Archives3 (the last released ver-
sion for each major release during this study). Stanford Se-
curiBench is a set of Java open source real-life programs.
PersonalBlog is a personal blogging application. The soft-
ware has 38 classes and 275 methods. Roller is a blog server
consisting of 226 classes and 2136 methods. In this study,
we use the term “code smell classes” to describe the classes
where code smells are found and “non-code smell classes”
for the classes where no code smell is found.

3.4. Data Extraction
Step 1: Extract code smells: Next, we used Intooitus

inCode 4 to extract the code smells from the source code.
inCode follows Marinescu’s detection strategies to quantify
design problems [11] [13]. inCode tests for code smells that
are most commonly encountered in software projects. in-
Code extracts the following specific class-level code smells:
god class, data class and schizophrenic class and method-
level code smells: Data Clump, Duplication, Feature Envy.
We ran inCode on three versions of Apache Tomcat and the
two SecuriBench software.

Step 2: Extract micro patterns: The micro pattern tool
as described in [8] is interfaced via the command line and
accepts a class name or .jar file as input and extracts all
micro patterns identified in that class or classes in the jar
file. If a particular micro pattern exists in that class, the
respective entry is ‘1’ otherwise, it is ‘0’. We evaluated the
unique classes across three versions of Tomcat. For Tomcat,
we collected the micro pattern data for a total of 117 “code
smell classes” and 7848 “non-code smell classes”. For Per-
sonalBlog, we collected data for 9 “code smell classes”
and 28 “non-code smell classes”. For Roller, we collected
data for 33 “code smell classes” and 238 “non-code smell
classes”.

Step 3: Extract nano-patterns: The nano-pattern de-
tector detects nano-patterns in Java bytecode [16]. We mod-
ified the original version of the tool to provide input via
a ‘.properties’ file instead of command line arguments and
stored the results in a database [2]. For Tomcat, we col-
lected the nano-pattern data for a total 473 “code smell
methods” and 37226 “non-code smell methods”. For Roller,

1https://suif.stanford.edu/ livshits/securibench/intro.html
2http://tomcat.apache.org/
3http://archive.apache.org/dist/tomcat/
4https://www.intooitus.com,its evolution at http://www.aireviewer.com

we collected the nano-pattern data for a total 36 “code smell
methods” and 76218 “non-code smell methods”.

3.5. Data Analysis

Research Question 1 (RQ1): How are code smells re-
lated to micro patterns?

For RQ1.1, we calculated the percentage of each micro
pattern in code smell classes and non-code smell classes.
For example, in Tomcat there are 10 classes with the
Record micro pattern of the 117 total code smell classes.
This micro pattern exists in 8.55% of code smell classes.
For RQ1.2, we separated the classes affected by each type
of code smell: data class, schizophrenic class and god class.
We then computed the percentage of each micro pattern in
those classes. For example, in Tomcat we have 18 classes
with the Sink micro pattern out of total 35 classes reported
to contain the data class type of code smell. Therefore, we
can say the percentage of Sink micro pattern in data class
code smell classes is 51.4%.

Research Question 2 (RQ2): How are code smells re-
lated to nano-patterns?

For RQ2.1, we calculated the percentage of each nano-
pattern extracted from code smell methods as well as non-
code smell methods. For example, in Tomcat there were 192
methods havingObjCreator nano-pattern out of 473 meth-
ods having code smells. So 40.6% of the code smell meth-
ods have the ObjCreator nano-pattern. Regarding RQ2.2,
we separated the methods affected by the following types of
code smell: data clumps, duplication and feature envy. The
message chain code smell was not a very prominent smell
in the system methods and we did not perform any further
analysis on it. We then computed the percentage of each
nano-pattern in those methods. For example, in Tomcat we
have 242 methods having V oid nano-patterns out of 300
methods reported to have data clump code smell. Therefore,
we can deduce that the percentage of V oid nano-pattern in
data clump code smell is 80.7%.

For RQ1.1 and RQ2.1, we also performed a Chi-Square
Test of Independence to compare the difference in distri-
bution of micro patterns and nano-patterns across the code
smell classes and methods and non-code smell classes and
methods respectively. We formulated the following null hy-
potheses with the significance level α = 0.05.
H0 The distribution of micro patterns is independent of

code smell and non-code smell classes.
H0 The distribution of nano-patterns is independent of

code smell and non-code smell methods.
We performed separate Chi Square Tests for Indepen-

dence for the different types of micro patterns and nano-
patterns.



4. Results

4.1. Research Question 1 (RQ1)
The test statistic for the chi-Square test of independence

involves comparing observed (sample data) and expected
frequencies. If the null hypothesis is confirmed, the ob-
served and expected frequencies will be close in value and
the chi-Square statistic will be close to zero. If the null hy-
pothesis is false, then the chi-Square statistic will be large.
For degrees of freedom of 1 and at 5% levels of signifi-
cance, the appropriate critical value is 3.84 and the decision
rule is as follows: Reject H0 if χ̃2 ≥ 3.84. We computed
the chi-square test statistic for each micro pattern and nano-
pattern. We reject the null hypothesis when the test statistics
for the micro patterns are greater than 3.84. We have statis-
tically significant evidence at α = 0.05 to show the distribu-
tion of these following micro patterns is not independent of
the code smell and non-code smell classes. We have sum-
marized our finding as follows:

• For Apache Tomcat, the micro patterns that are fre-
quent in code smell classes compared to the non-
code smell classes are DataManager, Record and
Outline.

• For PersonalBlog, the micro patterns that are frequent
in code smell classes compared to the non-code smell
classes are Immutable and Sink.

Our results on the relations between the different micro pat-
terns and the types of code smells as addressed by RQ1.2
are summarized as follows:
For Apache Tomcat,

• The micro patterns that are more frequent in the classes
having data class code smell are CompoundBox,
RestrictedCreation, CommonState, Sink,
Record, FunctionObject, Immutable, Extender,
DataManager, LimitedSelf .

• The micro patterns more frequent in the classes having
schizophrenic class code smell are CompoundBox,
Outline, PureType, StateMachine.

• The micro patterns more frequent in the classes having
god class code smell are Implementor, Overrider,
Stateless, Recursive, LimitedSelf .

For PersonalBlog,

• The micro patterns that are more frequent in the
classes having data class code smell are Sink and
Immutable.

The Roller application did not contain a significant number
of nano-patterns and was excluded from these results.

4.2. Research Question 2 (RQ2)
To address RQ2.1, we separated all the methods contain-

ing code smells and then found the nano-pattern distribu-
tion in those methods. We calculated the chi-square test
statistics for nano-patterns. We reject the null hypothesis
when the test statistics for the nano-patterns were greater
than 3.84. We have statistically significant evidence at α =
0.05 to show the distribution of the nano-patterns is not in-
dependent of the code smell and non-code smell methods.
We have summarized our findings as follows:

• For Apache Tomcat, the nano-patterns that are more
frequent in code smell methods compared to the non-
code smell methods are localWriter, Switcher and
ArrReader.

• For Roller, the nano-patterns that are more frequent in
code smell methods compared to the non-code smell
methods are localReader and localWriter.

Our results on the relation between different nano-patterns
and the three code smells as addressed by RQ2.2 are sum-
marized as follows:
For Apache Tomcat,

• The nano-patterns more frequent in the methods hav-
ing data clump code smell are V oid, LocalReader,
JdkClient and TailCaller.

• The nano-patterns more frequent in the methods hav-
ing duplication code smell are LocalReader,
LocalWriter, JdkClient and TailCaller.

• The nano-patterns more frequent in the meth-
ods having feature envy code smell are
objCreator, LocalReader, LocalWriter and
thisInstanceF ieldReader.

For Roller,

• The nano-patterns more frequent in the methods hav-
ing data clump code smell are LocalReader and
exceptions.

• The nano-patterns more frequent in the methods
having feature envy code smell are objCreator
andLocalWriter.

The PersonalBlog application did not contain a significant
number of nano-patterns and was excluded from these re-
sults.

5. Discussion
5.1. Code Smell and Micro Patterns

From Section 4.1, the micro patterns that are fre-
quent in code smell classes compared to the non-code



smell classes are DataManager, Record and Outline.
Fontana [5] found that the Outline micro pattern often
results in SignificantDuplication code smell (Confi-
dence level=76%). We also found association of the set of
DataManager, Immutable and Extender with different
code smells at more than 60% confidence.

Data classes are classes which only contain fields, get-
ters / setters, or only public fields. DataManager is a
class where all methods are either setters or getters [8].
Record is a class in which all fields are public, no declared
methods. Sink is a class whose methods do not propa-
gate calls to any other class. An Immutable class is class
whose instance fields are only changed by its constructors.
According to 4.1, DataManager, Record, Sink, and
Immutable are among the micro patterns that are more
frequent in the classes having data class code smell. The
definition of these micro patterns support our finding re-
lating to their association with the data class code smell.
For example, Record classes contain public fields as data
classes do in some cases. As data classes contain only get-
ter or setter methods for finding or setting values to their
fields, they do not call other methods to serve any other
purpose. Similarly, Sink classes also do not allow its meth-
ods to call methods from other classes. Schizophrenic class
describes a class with a large and non-cohesive interface.
The lack of cohesion is revealed by several disjoint sets
of public methods that are used by disjoint sets of client
classes. The class with PureType pattern has nothing more
than four abstract methods which concrete subclasses must
override [8]. StateMachine pattern is an interface to de-
fine only parameter-less methods. Such an interface allows
client code to either query the state of the object or request
the object to change its state in some predefined manner [8].
Therefore, all these types of micro patterns can result in
non-cohesive interfaces. Implementor and Overrider
micro patterns are among the most frequent micro patterns
in the classes containing the god class code smell. God class
is an excessively complex class with non-cohesive func-
tionality and heavily manipulates data members from other
classes. Implementor is a concrete class, where all the
methods override inherited abstract methods. Overrider is
a class where all methods override inherited, non-abstract
methods [8]. The use of these patterns increases the possi-
bility of having non-cohesive environment.

5.2. Code Smells and nano-patterns
From Section 4.2, the nano-patterns that are more

frequent in code smell methods compared to the non-
code smell methods are localWriter, Switcher and
ArrReader. localWriter writes values of local variables
on the stack frame. ArrReader reads values from an ar-
ray and Switcher patterns are methods that contain switch
statements [16]. We found ArrReader to be a problematic

nano-pattern, and this result is in line with the findings of
Deo [2] which reported that methods with the ArrReader
nano-pattern are highly defect prone.

Data Clumps are large groups of parameters that ap-
pear together in the signature of many operations. The
nano-patterns that are more frequent in the methods con-
taining the data clump code smell are V oid, LocalReader,
JdkClient and TailCaller. V oid patterns are methods
that do not return a value. LocalReader reads values of
local variables on stack frame. JdkClient calls meth-
ods from the JDK standard library (java.*). TailCaller
contains method call followed immediately by return state-
ment [16]. Based on these observations, we can deduce that
methods with data clump code smells may not return any
value or return control to the calling function after execu-
tion. These methods interact and store local variables on
the stack. Code Duplication refers to groups of operations
which contain identical or slightly adapted code fragments.
By breaking the Don’t Repeat Yourself (DRY) rule, dupli-
cated code multiplies the maintenance effort, including the
management of changes and bug-fixes. Moreover, the code
base gets bloated. LocalReader, and LocalWriter nano-
patterns are among the more frequent patterns in the meth-
ods having the duplicated code smell. LocalWriter writes
values of local variables on stack frame [16]. LocalWriter
has been associated with high defect density [2] and an un-
desirable effect of code duplication is the introduction of
defects. JdkClient may call the same method multiple
times and this contributes to code duplication. Feature Envy
refers to an operation that is manipulating a lot of data ex-
ternal to its definition scope. In object-oriented code this
is a method that uses many data members from a few other
classes instead of using the data members of its definition
class. objCreator nano-pattern has been found as more
frequent in the methods having feature envy code smell.
objCreator creates new objects in a method and therefore,
its association with a method makes the method more asso-
ciated with other classes. objCreator has been associated
with high defect density as well [2].

6. Conclusion

This study represents preliminary data collection and
analysis to determine the relationship of code smells with
micro and nano-patterns. We analyzed how the micro pat-
terns and nano-patterns are distributed in code smell and
non-code smell classes. Our results can be used for identi-
fying micro patterns and nano-patterns causing code smells.
It can also help developers in avoiding the use of particular
micro and nano-patterns that often result in code smells. We
provided an indication of the most pertinent patterns to code
smells by doing a comparative analysis between code smell
and non-code smell classes and methods. This study pro-



vides a basis for future work to determine the underlying
reason behind the significantly different distribution of pat-
terns in code smell vs non-code smell code. We also plan
to extend the study to other systems as well as use these
findings to create a prediction model for code smells using
traceable patterns.
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