

Combing Data Filter and Data Sampling for Cross-

Company Defect Prediction: An Empricial Study

Xiao Yu1,2,3, Man Wu2,3, Yan Zhang2,3*, Mandi Fu4
1State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
2School of Computer Science and Information Engineering, HuBei University, Wuhan, China

3Educational Informationalization Engineering Research Center of HuBei Province, Wuhan, China
4Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

*Corresponding author email: zhangyan@hubu.edu.cn

Abstract—Cross-company defect prediction (CCDP) is a

practical way that trains a prediction model by exploiting one or

multiple projects of a source company and then applies the model

to target company. Unfortunately, larger irrelevant cross-

company (CC) data usually makes it difficult to build a

prediction model with high performance. On the other hand, the

CC data has the highly imbalanced nature between the defective-

prone and non-defective classes, which will degrade the

performance of CCDP. To address such issues, this paper

proposes an approach, in which data sampling is combined with

data filter, to overcome these problems. Data sampling seeks a

more balanced dataset through the addition or removal of

instances, while data filter is a process of filtering out the

irrelevant CC data so that the performance of CCDP models can

be improved. We employ two data filtering methods called NN

filter and DBSCAN filter combined with SMOTE (Synthetic

Minority Oversampling Technique) and RUS (Random Under-

Sampling). Eight different approaches would be produced when

combing these four techniques: 1- NN filter performed prior to

RUS; 2- NN filter performed after RUS; 3- NN filter performed

prior to SMOTE; 4- NN filter performed after SMOTE; 5-

DBSCAN filter performed prior to RUS; 6- DBSCAN filter

performed after RUS; 7- DBSCAN filter performed prior to

SMOTE; 8- DBSCAN filter performed after SMOTE. The

empirical study was carried out on 15 publicly available project

datasets. The experimental results demonstrate that NN filter

performed prior to RUS (Approach 1) performs better than the

other seven approaches.

Keywords—software defect prediction;cross-company defect

prediction;data sampling; data filter

I. INTRODUCTION

Software defect prediction is one of the most important
software quality assurance techniques. It aims to detect the
defect proneness of new software modules via learning from
defect data. So far, many efficient software defect prediction
approaches [1-6] have been proposed, but they are usually
confined to within project defect prediction (WPDP). WPDP
works well if sufficient data is available to train a defect
prediction model. However, it is difficult for a new project to
perform WPDP if there is limited historical data. 1 Cross-
company defect prediction (CCDP) is a practical approach to
solve the problem. It trains a prediction model by exploiting
one or multiple projects of a source company and then applies
the model to target company [7]. In recent years, most existing

1 DOI reference number: 10.18293/SEKE2017-134

CCDP approaches have been proposed. The challenges of
building a CCDP model with high performance usually include:

(1) How to weaken the impact of irrelevant CC data to
improve the performance of CCDP.

The ability to transfer knowledge from a source company to
a target company depends on how they are related. The
stronger the relationship, the more usable will be CC data. The
performance of CCDP is generally poor because of larger
irrelevant CC data. Previous work [8] founds that using raw
CC data directly would increase false alarm rates due to
irrelevant instance in CC data, so several data filtering works
should be done before building the prediction model. For
example, Turhan et al. [8] and Peters et al. [9] proposed the NN
filter and the Peters filter to select the CC instances which are
mostly similar to WC data as the training dataset.

(2) How to cope with the class imbalance problem to
improve the performance of CCDP.

The CC data has the highly imbalanced nature, because the
number of non-defective instances is usually larger than the
number of non-defective ones. The class imbalance problem
may cause difficulties for learning, as most classification
algorithms only perform optimally when the number of
instances of each class is roughly the same. When these
algorithms are trained by a highly skewed dataset in which the
minority class is heavily outnumbered by the majority class,
these classifiers tend to favor the majority class and have less
ability to classify the minority class. Therefore, several data
sampling works should be done before building the CCDP
model. For example, Lin et al. [10] introduced a novel CCDP
approach named Double Transfer Boosting (DTB). DTB firstly
uses NN filter to filter out irrelevant CC data, and then uses
SMOTE algorithm [11] to re-sample the CC data before
building the CCDP model.

However, it is still unclear what extent combining data
filter and data sampling can contribute to CCDP, and how to
make better use of them to improve CCDP. To address such
issues, this paper proposes an approach, in which data
sampling is combined with data filter, to cope with both class
imbalance problem and the influence of irrelevant CC data. A
question may arise when we combine the two techniques, that
is, which technique, data filter or data sampling, should be
performed first? To answer the question, we employ two data
filtering methods called NN filter [8] and DBSCAN filter [12]
combined with SMOTE [11] and RUS [13]. We investigate

eight different approaches: 1- NN filter performed prior to
RUS; 2- NN filter performed after RUS; 3- NN filter
performed prior to SMOTE; 4- NN filter performed after
SMOTE; 5- DBSCAN filter performed prior to RUS; 6-
DBSCAN filter performed after RUS; 7- DBSCAN filter
performed prior to SMOTE; 8- DBSCAN filter performed after
SMOTE. To our best knowledge, no study has been done for
combining data filter with data sampling and investigating the
eight approaches in the domain of CCDP.

The empirical study was carried out over 15 publicly
available projects, all of which exhibit a high degree of class
imbalance between the defective-prone and non-defective
classes. Three different learners were used to build CCDP
models. The experimental results demonstrate that NN filter
performed prior to RUS (Approach 1) has significantly better
performance than the other seven approaches.

The remainder of this paper is organized as follows. Section
II presents the related work. Section III describes two data
filtering methods, two data sampling methods, and eight
combination approaches. Section IV demonstrates the
experimental results. Section V discusses the potential threats
to validity. Finally, Section VI addresses the conclusion and
points out the future work.

II. RELATED WORK

In this section, we first review the existing cross-company
and cross-project defect prediction approaches. Then, we
briefly review the data sampling methods.

A. Defect prediction

In order to solve the problem that the new companies have
too limited historical data to perform WCDP well, the cross-
project and cross-company defect prediction appear.
Zimmermann et al. [55] studied CCDP models on 12 real-
world applications datasets. Their results indicated that CCDP
is still a serious challenge because of the different distribution
between the training project data and the target project data. In
order to narrow the distribution gap, there are three mainstream
ways.

The first one is to apply the data filtering method to find the
best suitable training data (e.g., [8, 9, 12, 14]). For example,
Turhan et al. [8] proposed a nearest neighbor (NN) filter to
select cross-company data. Peters et al. [9] introduced the
Peters filter to select training data.

The second mainstream way is to design effective defect
predictor based on transfer learning techniques (e.g., [7, 10,
15,16, 17, 18, 19]). For instance, Ma et al. [15] proposed
Transfer Naïve Bayes (TNB) model. Chen et al. [10] proposed
double transfer boosting (DTB) model. Another challenge in
CCDP is that the set of metrics between the source company
data and target company data is usually heterogeneous. Jing et
al. [7] and Chen et al. [19] proposed the effective solutions for
heterogeneous cross-company defect prediction.

The third mainstream way is to apply unsupervised
classifier that does not require any training data to perform
CCDP (e.g., [20-23]), therefore the distribution gap between
the training project data and the target project data is no longer
an issue. For instance, Zhang et.al [22] proposed to apply a

connectivity-based unsupervised classifier that is based on
spectral clustering to perform CPDP.

B. Data sampling

Besides the larger irrelevant instances in CC data, CCDP
models also suffer from the class imbalance problem. A
considerable amount of research has been done to investigate
this problem at data and algorithm levels. Data-level methods
include a variety of resampling techniques, manipulating
training data to rectify the skewed class distributions, such as
random oversampling and random under-sampling. They are
simple and efficient, but their effectiveness depends greatly on
the problem and training algorithms [24]. Algorithm-level
methods address class imbalance by modifying their training
mechanism directly with the goal of better accuracy on the
minority class, including one-class learning [25], and cost-
sensitive learning algorithms [26]. Algorithm-level methods
require specific treatments for different kinds of learning
algorithms, which hinders their use in many applications,
because we do not know in advance which algorithm would be
the best choice in most cases. In addition to the aforementioned
data-level and algorithm-level solutions, ensemble learning [27]
has become another major category of approaches to hand
imbalanced data by combining multiple classifiers, such as
SMOTEBoost [28], and AdaBoost.NC [29]. Ensemble learning
algorithms have been shown to be able to combine strength
from individual learners, and enhance the overall performance.
They also offer additional opportunities to handle class
imbalance at both the individual and ensemble levels. This
paper investigates SMOTE and RUS, because of their
simplicity, effectiveness, and popularity in the literature.

While a great deal of work has been done for data filter and
data sampling separately, limited research has been done and
reported on both together, especially in the context of CCDP.
Among the few studies, Lin et al. [17] proposed the
combination of NN filter and SMOTE to preprocess the CC
data before building the CCDP model. However, it is still
unclear what extent combining data filter and data sampling
can contribute to CCDP, and how to make better use of them to
improve CCDP. This is exactly what we will solve in this paper.

III. METHODOLOGY

A. Data filter

 Previous work [8] founds that using raw CC data directly
would increase false alarm rates due to irrelevant instances in
CC data, so several data filtering works should be done before
building the prediction model. The main goal of data filter is to
select the most valuable training data for the CCDP model by
filtering out irrelevant instances in CC data. In this study, we
employ two representative data filtering methods, NN filter and
DBSCAN filter.

The NN filter was proposed by Turhan et al. [8]. Based on
the widely used KNN algorithm, NN filter can find out the
most similar k×n instances from CC data while n is the number
of WC instances and k is the parameter of the KNN algorithm.
The procedure of NN filter is as follows:

1. Find k neighbors from the CC data for each WC instance
based on Euclidean distance, and

2. Collect the selected neighbors without duplication into a
new CC data.

The DBSCAN filter was proposed by Kawata et al. [12]. It
assumes that CC instances which are in the same cluster as WC
instances are the most valuable instances in CC data. The
procedure of DBSCAN filter is as follows:

1. Combine the CC data and WC data,

2. Find sub-clusters by using DBSCAN algorithm,

3. Select sub-clusters which consist at least one WC
instance, and

4. Collect the CC data in the selected sub-clusters into a
new CC data.

B. Data sampling

Besides larger irrelevant instances in CC data, CCDP
models also suffer from the class imbalance problem. A variety
of data sampling techniques have been studied in the literature.
The main goal of data sampling is to achieve a certain balance
between the defective-prone class and non-defective class. In
this study, we employ two representative data sampling
methods, SMOTE (Synthetic Minority Oversampling
Technique) and RUS (Random Under-Sampling).

SMOTE [11] was proposed by Chawla in 2002. It is an
over-sampling approach in which the minority class is over-
sampled by creating “synthetic” examples. The procedure of
SMOTE is as follows:

1. For each instance in the defective-prone class,
calculate the Euclidean distance between it and other instances
in the defective-prone class to find its k nearest neighbor.

2. According to the amount of over-sampling, determine
the sampling rate and select a certain number of instances from
k nearest neighbor randomly. The sampling rate (between
defective-prone and non-defective instances) was set to 50:50
throughout the experiments.

3. Take the difference of the feature vector between it
and its nearest neighbor.

4. Multiply this difference by a random number between
0 and 1, and add it to the feature vector under consideration.

5. Generate new instances for each instance in the
defective-prone class and add new samples into it.

RUS (Random Under-Sampling) [13] is a simple method to
select a subset of non-defective instances randomly and then
combine them with defective-prone instances as a training set.

The procedure of random under-sampling is as follows:

1. Calculate the ratio of the defective-prone class to the
non-defective class, and get the sampling frequency.

2. Sample the non-defective class by the sampling
frequency.

3. Select all defective-prone instances.

4. Combine selected instances and attributes for training.

C. Eight combination approaches

The primary goal of this study is to evaluate the data
preprocessing technique in which data filter is combined with
data sampling. Eight different scenarios (also called approaches)
would be produced depending on whether data filter is
performed before or after data sampling. The eight different
approaches are described as follows:

● Approach 1: NN filter performed prior to RUS;

● Approach 2: NN filter performed after RUS;

● Approach 3: NN filter performed prior to SMOTE;

● Approach 4: NN filter performed after SMOTE;

● Approach 5: DBSCAN filter performed prior to RUS;

● Approach 6: DBSCAN filter performed after RUS;

● Approach 7: DBSCAN filter performed prior to
SMOTE;

● Approach 8: DBSCAN filter performed after SMOTE.

IV. EXPERIMENTS

In this section, we evaluate the eight combination
approaches to perform CCDP empirically. We first introduce
the experiment dataset, the performance measures and the
experimental procedure. Then, in order to investigate the
performance of the eight combination approaches, we perform
some empirical experiments to find answers to the research
question mentioned above.

A. Data set

In this experiment, we employ 15 available and commonly
used datasets which can be obtained from PROMISE. The 15
datasets have the same 20 attributes, so we can apply all
attribute information directly. Table 1 tabulates the details
about the datasets.

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Examples %Defective Description

ant 125 16 Open-source

arc 234 11.5 Academic

camel 339 3.8 Open-source

elearn 64 7.8 Academic

jedit 272 33.1 Open-source

log4j 135 25.2 Open-source

lucene 195 46.7 Open-source

poi 237 59.5 Open-source

prop 660 10 Proprietary

redaktor 176 15.3 Academic

synapse 157 10.2 Open-source

systemdata 65 13.8 Open-source

tomcat 858 9 Open-source

xalan 723 15.2 Open-source

xerces 162 47.5 Open-source

B. Performance measures

In the experiment, we employ three commonly used
performance measures including pd, pf and g-measure. They
are defined in Table 2 and summarized as follows.

TABLE II. PERFORMANCE MEASURES

 Actual

yes no

Predicted yes TP FP

no FN TN

pd 𝑻𝑷

𝑻𝑷+ 𝑭𝑵

pf 𝑭𝑷

𝑭𝑷+ 𝑻𝑵

G-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)

● Probability of detection or pd is the measure of defective
modules that are correctly predicted within the defective class.
The higher the pd, the fewer the false negative results.

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the
results.

● G-measure is a trade-off measure that balances the
performance between pd and pf. A good prediction model
should have high pd and low pf, and thus leading to a high g-
measure.

C. Experimental Procedure

 In every experiment, one dataset is selected as WC data and
the rest are regarded as CC data to conduct the experiment. The
CC data is considered as basic training data which will be
adjusted in every experiment. All processing steps (data filter
and data sampling) are done on CC data. Then processed CC
data are used to build the CCDP model. Finally, the resulting
model is evaluated on the WC data. The procedure will be
repeated 30 times in every experiment to avoid sample bias.
Then, the mean values of performance are calculated.

 In this experiment, we choose three representative
classifiers as the basic prediction model, Naive Bayes (NB)
[33], Random Forest (RF) [34], and Logistic Regression (LR)
[35].The reason we choose these classifiers is that these
classifiers fall into three different families of learning methods.
NB is a probabilistic classifier; RF is a decision-tree classifier;
and LR is a linear model for classification.

D. Experimental results

Fig. 1 presents the scatter plots of (PD, PF) points from the
eight approaches on the fifteen projects. Note that a CCDP
approach has more points distributed at bottom right if it has
higher PD value and lower PF value. We can gain the
following results from Fig. 1.

(1) In terms of the defect detection rate (PD), Approach 1
outperforms other approaches for NB model, which shows its
effectiveness in finding defects. However, Approach 1 has a
little high PF value. In terms of the false alarm rate (PF),
although Approach 3 is the best, it performs not well in PD,
which makes it hardly useful in practice.

(2)Although Approach 8 appears to be better at PD than
other approaches for RF model, it performs the worst in PF.
Approach 1 presents generally higher PD and lower PF than
other approaches for RF model.

(3) Approach 8 shows better PD than other approaches for
LR model, but its advantage is rather limited. Approach 1
presents generally higher PD and lower PF than other
approaches for RF model.

(a)NB

(b)RF

(c)LR

Fig. 1. Performances with Scatter plots of (PD, PF) points of the eight

approaches on the fifteen projects

Tables 3-5 show the G-measure values for each project on
all approaches with three CCDP models.

TABLE III. G-MEASURE PERFORMANCES WITH NAÏVE BAYES

Project 1 2 3 4 5 6 7 8

ant 0.64 0.56 0.53 0.56 0.50 0.57 0.60 0.54

arc 0.66 0.62 0.56 0.56 0.63 0.65 0.52 0.63

camel 0.67 0.68 0.54 0.60 0.72 0.72 0.54 0.71

elearn 0.71 0.72 0.55 0.72 0.62 0.75 0.31 0.72

jedit 0.57 0.52 0.46 0.55 0.59 0.65 0.55 0.59

log4j 0.62 0.59 0.60 0.60 0.65 0.80 0.58 0.63

lucene 0.64 0.51 0.50 0.54 0.54 0.67 0.57 0.67

poi 0.49 0.37 0.42 0.47 0.55 0.62 0.45 0.57

prop 0.49 0.61 0.55 0.60 0.58 0.66 0.50 0.59

redaktor 0.61 0.66 0.66 0.63 0.35 0.45 0.29 0.34

synapse 0.77 0.71 0.74 0.63 0.37 0.54 0.65 0.43

system 0.66 0.68 0.57 0.35 0.67 0.65 0.51 0.71

tomcat 0.69 0.73 0.65 0.69 0.58 0.62 0.45 0.60

xalan 0.67 0.66 0.63 0.66 0.47 0.52 0.52 0.51

xerces 0.51 0.39 0.35 0.34 0.34 0.48 0.37 0.36

AVG 0.63 0.60 0.55 0.57 0.54 0.62 0.50 0.57

TABLE IV. G-MEASURE PERFORMANCES WITH RANDOM FOREST

Project 1 2 3 4 5 6 7 8

ant 0.73 0.65 0.66 0.72 0.57 0.60 0.60 0.59

arc 0.51 0.65 0.41 0.40 0.58 0.67 0.51 0.31

camel 0.64 0.51 0.37 0.26 0.66 0.52 0.54 0.37

elearn 0.66 0.33 0.00 0.75 0.31 0.71 0.31 0.50

jedit 0.69 0.66 0.47 0.57 0.48 0.53 0.55 0.27

log4j 0.73 0.60 0.34 0.38 0.49 0.76 0.58 0.45

lucene 0.51 0.65 0.28 0.36 0.51 0.44 0.57 0.34

poi 0.62 0.65 0.38 0.35 0.39 0.67 0.45 0.57

prop 0.67 0.64 0.38 0.26 0.52 0.65 0.50 0.40

redaktor 0.50 0.37 0.30 0.38 0.30 0.41 0.29 0.30

synapse 0.78 0.71 0.65 0.64 0.21 0.75 0.55 0.52

system 0.60 0.64 0.34 0.47 0.56 0.59 0.51 0.50

tomcat 0.66 0.65 0.42 0.42 0.43 0.63 0.55 0.66

xalan 0.66 0.62 0.64 0.62 0.51 0.63 0.52 0.59

xerces 0.50 0.49 0.42 0.32 0.38 0.47 0.37 0.53

AVG 0.63 0.59 0.40 0.46 0.46 0.60 0.49 0.46

TABLE V. G-MEASURE PERFORMANCES WITH LOGISTIC REGRESSION

Project 1 2 3 4 5 6 7 8

ant 0.74 0.71 0.71 0.73 0.57 0.70 0.46 0.66

arc 0.61 0.52 0.49 0.36 0.58 0.57 0.54 0.60

camel 0.72 0.57 0.52 0.45 0.66 0.77 0.63 0.78

elearn 0.73 0.50 0.56 0.33 0.31 0.82 0.32 0.71

jedit 0.66 0.72 0.63 0.67 0.48 0.48 0.58 0.65

log4j 0.77 0.62 0.61 0.64 0.49 0.67 0.70 0.73

lucene 0.59 0.63 0.56 0.54 0.51 0.63 0.59 0.64

poi 0.53 0.65 0.63 0.60 0.39 0.63 0.50 0.65

prop 0.66 0.63 0.57 0.61 0.52 0.66 0.49 0.65

redaktor 0.69 0.63 0.71 0.65 0.30 0.52 0.28 0.43

synapse 0.72 0.67 0.73 0.39 0.21 0.75 0.47 0.71

system 0.59 0.66 0.64 0.67 0.56 0.54 0.59 0.62

tomcat 0.59 0.32 0.50 0.63 0.43 0.62 0.42 0.65

xalan 0.63 0.63 0.64 0.62 0.51 0.63 0.53 0.59

xerces 0.60 0.44 0.36 0.34 0.38 0.47 0.42 0.41

AVG 0.66 0.56 0.59 0.55 0.46 0.63 0.50 0.63

We can gain the following results from Tables 3-5.

(1) On more than half projects, Approach 6 performs better
than the other seven approaches for NB model. However,
Approach 1 achieves the best average G-measure value for NB
model (see Table 4).

(2) On nine projects, Approach 1 achieves higher G-
measure than the other seven approaches for RF model. In

addition, Approach 1 achieves the best average G-measure
value for RF model (see Table 5).

(3) On six projects, Approach 1 achieves higher G-measure
than the other seven approaches for LR model, while Approach
8 displayed similar or slightly worse performance than
Approach 1. In addition, Approach 1 achieves the best average
G-measure value for LR model (see Table 5).

Therefore, we can conclude that NN filter performed prior
to RUS (Approach 1) has significantly better performance than
the other seven approaches.

V. THREATS TO VALIDITY

In this section, we discuss several validity threats that may
have an impact on the results of our studies.

External validity. Threats to external validity occur when
the results of our experiments cannot be generalized. As a
preliminary result, we performed our experiments on the 15
datasets to answer the research questions. Although these
datasets have been widely used in many software defect
prediction studies, we still cannot claim that our conclusions
can be generalized to other software projects. Nevertheless, this
work provides a detail experimental description, including
parameter settings (default parameter settings specified by
sklearn), thus other researchers can easily replicate this
empirical study on new datasets.

Internal validity. Threats to internal validity refer to the
bias of the choice of CCDP classifiers, data filtering methods
and data sampling methods. In this work, we only use three
classifiers, Naive Bayes (NB), Random Forest (RF), and
Logistic Regression (LR) due to its popularity in defect
prediction. In addition, we choose two representative data
filtering methods, i.e., NN filter and DBSCAN filter, two
representative data sampling methods, i.e., RUS and SOMTE.

Construct validity. Threats to construct validity focus on
the bias of the measures used to evaluate the performance of
CCDP. In our experiments, we mainly use pd, pf, G-measure to
measure the effectiveness of the eight approaches. Nonetheless,
other evaluation measures such as AUC measure can also be
considered.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose data filter combined with data
sampling to overcome the influence of larger irrelevant CC
data and class imbalance problems that often affect CCDP
models. Eight combination approaches are investigated: 1- NN
filter performed prior to RUS; 2- NN filter performed after
RUS; 3- NN filter performed prior to SMOTE; 4- NN filter
performed after SMOTE; 5- DBSCAN filter performed prior to
RUS; 6- DBSCAN filter performed after RUS; 7- DBSCAN
filter performed prior to SMOTE; 8- DBSCAN filter performed
after SMOTE.

We conduct experiments on the 15 datasets to evaluate the
performance of the proposed eight approach. The experimental
results indicate that NN filter performed prior to RUS
(Approach 1) has significantly better performance than the
other seven approaches.

 In the future, we would like to employ more datasets to
validate the generalization of the derived conclusions [36-37].

ACKNOWLEDGMENT

This work is partly supported by Educational
Informationalization Engineering Research Center of HuBei
Province.

REFERENCES

[1] Elish K O, Elish M O. Predicting defect-prone software modules using
support vector machines[J]. Journal of Systems and Software, 2008,
81(5): 649-660.

[2] Zheng J. Cost-sensitive boosting neural networks for software defect
prediction[J]. Expert Systems with Applications, 2010, 37(6): 4537-
4543.

[3] Sun Z, Song Q, Zhu X. Using coding-based ensemble learning to
improve software defect prediction[J]. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(6):
1806-1817.

[4] Wang S, Yao X. Using class imbalance learning for software defect
prediction[J]. IEEE Transactions on Reliability, 2013, 62(2): 434-443.

[5] Liu M, Miao L, Zhang D. Two-stage cost-sensitive learning for software
defect prediction[J]. IEEE Transactions on Reliability, 2014, 63(2): 676-
686.

[6] Jing X Y, Ying S, Zhang Z W, et al. Dictionary learning based software
defect prediction[C]//Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014: 414-423.

[7] Jing X, Wu F, Dong X, et al. Heterogeneous cross-company defect
prediction by unified metric representation and CCA-based transfer
learning[C]//Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015: 496-507.

[8] Turhan B, Menzies T, Bener A B, et al. On the relative value of cross-
company and within-company data for defect prediction[J]. Empirical
Software Engineering, 2009, 14(5): 540-578.

[9] Peters F, Menzies T, Marcus A. Better cross company defect
prediction[C]//Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on. IEEE, 2013: 409-418.

[10] Chen L, Fang B, Shang Z, et al. Negative samples reduction in cross-
company software defects prediction[J]. Information and Software
Technology, 2015, 62: 67-77.

[11] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority
over-sampling technique[J]. Journal of artificial intelligence research,
2002, 16: 321-357.

[12] Kawata K, Amasaki S, Yokogawa T. Improving relevancy filter
methods for cross-project defect prediction[M]//Applied Computing &
Information Technology. Springer International Publishing, 2016: 1-12.

[13] Tahir M A, Kittler J, Yan F. Inverse random under sampling for class
imbalance problem and its application to multi-label classification[J].
Pattern Recognition, 2012, 45(10): 3738-3750.

[14] Herbold S. Training data selection for cross-project defect
prediction[C]//Proceedings of the 9th International Conference on
Predictive Models in Software Engineering. ACM, 2013: 6.

[15] Ma Y, Luo G, Zeng X, et al. Transfer learning for cross-company
software defect prediction[J]. Information and Software Technology,
2012, 54(3): 248-256.

[16] Nam J, Pan S J, Kim S. Transfer defect learning[C]//Proceedings of the
2013 International Conference on Software Engineering. IEEE Press,
2013: 382-391.

[17] Chen L, Fang B, Shang Z, et al. Negative samples reduction in cross-
company software defects prediction[J]. Information and Software
Technology, 2015, 62: 67-77.

[18] Ryu D, Choi O, Baik J. Value-cognitive boosting with a support vector
machine for cross-project defect prediction[J]. Empirical Software
Engineering, 2016, 21(1): 43-71.

[19] Cheng M, Wu G, Jiang M, et al. Heterogeneous Defect Prediction via
Exploiting Correlation Subspace[J].

[20] Bishnu P S, Bhattacherjee V. Software fault prediction using quad tree-
based k-means clustering algorithm[J]. IEEE Transactions on knowledge
and data engineering, 2012, 24(6): 1146-1150.

[21] Catal C, Sevim U, Diri B. Metrics-driven software quality prediction
without prior fault data[M]//Electronic Engineering and Computing
Technology. Springer Netherlands, 2010: 189-199.

[22] Zhang F, Zheng Q, Zou Y, et al. Cross-project defect prediction using a
connectivity-based unsupervised classifier[C]//Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016: 309-
320.

[23] Zhong S, Khoshgoftaar T M, Seliya N. Unsupervised Learning for
Expert-Based Software Quality Estimation[C]//HASE. 2004: 149-155.

[24] Estabrooks A, Jo T, Japkowicz N. A multiple resampling method for
learning from imbalanced data sets[J]. Computational intelligence, 2004,
20(1): 18-36.

[25] Japkowicz N, Myers C, Gluck M. A novelty detection approach to
classification[C]//IJCAI. 1995, 1: 518-523.

[26] Zhou Z H, Liu X Y. Training cost-sensitive neural networks with
methods addressing the class imbalance problem[J]. IEEE Transactions
on Knowledge and Data Engineering, 2006, 18(1): 63-77.

[27] Rokach L. Ensemble-based classifiers[J]. Artificial Intelligence Review,
2010, 33(1-2): 1-39.

[28] Chawla N V, Lazarevic A, Hall L O, et al. SMOTEBoost: Improving
prediction of the minority class in boosting[C]//European Conference on
Principles of Data Mining and Knowledge Discovery. Springer Berlin
Heidelberg, 2003: 107-119.

[29] Wang S, Yao X. Negative Correlation Learning for Class Imbalance
Problems School of Computer Science, University of Birmingham[J].
2012.

[30] Lewis D D. Naive (Bayes) at forty: The independence assumption in
information retrieval[C]//European conference on machine learning.
Springer Berlin Heidelberg, 1998: 4-15.

[31] Hall T, Beecham S, Bowes D, et al. A systematic literature review on
fault prediction performance in software engineering[J]. IEEE
Transactions on Software Engineering, 2012, 38(6): 1276-1304.

[32] Boetticher G, Menzies T, Ostrand T. PROMISE Repository of empirical
software engineering data[J]. West Virginia University, Department of
Computer Science, 2007.<http://promisedata.org/repository>.

[33] Lewis D D. Naive (Bayes) at forty: The independence assumption in
information retrieval[C]//European conference on machine learning.
Springer Berlin Heidelberg, 1998: 4-15.

[34] Breiman L. Random forests[J]. Machine learning, 2001, 45(1): 5-32.

[35] Hosmer Jr D W, Lemeshow S, Sturdivant R X. Introduction to the
Logistic Regression Model[J]. Applied Logistic Regression, 2000.

[36] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs, International
Conference on Wireless Algorithms, Systems, and Applications.
Springer Berlin Heidelberg, 2013: 175-185.

[37] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs, International
Conference on Wireless Algorithms, Systems, and Applications.
Springer Berlin Heidelberg, 2013: 175-185.

