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Abstract—Cross-company defect prediction (CCDP) is a 

practical way that trains a prediction model by exploiting one or 

multiple projects of a source company and then applies the model 

to target company. Unfortunately, larger irrelevant cross-

company (CC) data usually makes it difficult to build a 

prediction model with high performance. On the other hand, the 

CC data has the highly imbalanced nature between the defective-

prone and non-defective classes, which will degrade the 

performance of CCDP. To address such issues, this paper 

proposes an approach, in which data sampling is combined with 

data filter, to overcome these problems. Data sampling seeks a 

more balanced dataset through the addition or removal of 

instances, while data filter is a process of filtering out the 

irrelevant CC data so that the performance of CCDP models can 

be improved. We employ two data filtering methods called NN 

filter and DBSCAN filter combined with SMOTE (Synthetic 

Minority Oversampling Technique) and RUS (Random Under-

Sampling). Eight different approaches would be produced when 

combing these four techniques: 1- NN filter performed prior to 

RUS; 2- NN filter performed after RUS; 3- NN filter performed 

prior to SMOTE; 4- NN filter performed after SMOTE; 5- 

DBSCAN filter performed prior to RUS; 6- DBSCAN filter 

performed after RUS; 7- DBSCAN filter performed prior to 

SMOTE; 8- DBSCAN filter performed after SMOTE. The 

empirical study was carried out on 15 publicly available project 

datasets. The experimental results demonstrate that NN filter 

performed prior to RUS (Approach 1) performs better than the 

other seven approaches. 
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I.  INTRODUCTION  

Software defect prediction is one of the most important 
software quality assurance techniques. It aims to detect the 
defect proneness of new software modules via learning from 
defect data. So far, many efficient software defect prediction 
approaches [1-6] have been proposed, but they are usually 
confined to within project defect prediction (WPDP). WPDP 
works well if sufficient data is available to train a defect 
prediction model.  However, it is difficult for a new project to 
perform WPDP if there is limited historical data. 1  Cross-
company defect prediction (CCDP) is a practical approach to 
solve the problem. It trains a prediction model by exploiting 
one or multiple projects of a source company and then applies 
the model to target company [7]. In recent years, most existing 
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CCDP approaches have been proposed. The challenges of 
building a CCDP model with high performance usually include: 

(1) How to weaken the impact of irrelevant CC data to 
improve the performance of CCDP. 

The ability to transfer knowledge from a source company to 
a target company depends on how they are related. The 
stronger the relationship, the more usable will be CC data. The 
performance of CCDP is generally poor because of larger 
irrelevant CC data. Previous work [8] founds that using raw 
CC data directly would increase false alarm rates due to 
irrelevant instance in CC data, so several data filtering works 
should be done before building the prediction model. For 
example, Turhan et al. [8] and Peters et al. [9] proposed the NN 
filter and the Peters filter to select the CC instances which are 
mostly similar to WC data as the training dataset. 

(2) How to cope with the class imbalance problem to 
improve the performance of CCDP. 

The CC data has the highly imbalanced nature, because the 
number of non-defective instances is usually larger than the 
number of non-defective ones. The class imbalance problem 
may cause difficulties for learning, as most classification 
algorithms only perform optimally when the number of 
instances of each class is roughly the same. When these 
algorithms are trained by a highly skewed dataset in which the 
minority class is heavily outnumbered by the majority class, 
these classifiers tend to favor the majority class and have less 
ability to classify the minority class. Therefore, several data 
sampling works should be done before building the CCDP 
model. For example, Lin et al. [10] introduced a novel CCDP 
approach named Double Transfer Boosting (DTB). DTB firstly 
uses NN filter to filter out irrelevant CC data, and then uses 
SMOTE algorithm [11] to re-sample the CC data before 
building the CCDP model. 

However, it is still unclear what extent combining data 
filter and data sampling can contribute to CCDP, and how to 
make better use of them to improve CCDP. To address such 
issues, this paper proposes an approach, in which data 
sampling is combined with data filter, to cope with both class 
imbalance problem and the influence of irrelevant CC data. A 
question may arise when we combine the two techniques, that 
is, which technique, data filter or data sampling, should be 
performed first? To answer the question, we employ two data 
filtering methods called NN filter [8] and DBSCAN filter [12] 
combined with SMOTE [11] and RUS [13]. We investigate 



 

 

eight different approaches: 1- NN filter performed prior to 
RUS; 2- NN filter performed after RUS; 3- NN filter 
performed prior to SMOTE; 4- NN filter performed after 
SMOTE; 5- DBSCAN filter performed prior to RUS; 6- 
DBSCAN filter performed after RUS; 7- DBSCAN filter 
performed prior to SMOTE; 8- DBSCAN filter performed after 
SMOTE. To our best knowledge, no study has been done for 
combining data filter with data sampling and investigating the 
eight approaches in the domain of CCDP. 

The empirical study was carried out over 15 publicly 
available projects, all of which exhibit a high degree of class 
imbalance between the defective-prone and non-defective 
classes. Three different learners were used to build CCDP 
models. The experimental results demonstrate that NN filter 
performed prior to RUS (Approach 1) has significantly better 
performance than the other seven approaches.  

The remainder of this paper is organized as follows. Section 
II presents the related work. Section III describes two data 
filtering methods, two data sampling methods, and eight 
combination approaches. Section IV demonstrates the 
experimental results. Section V discusses the potential threats 
to validity. Finally, Section VI addresses the conclusion and 
points out the future work. 

II. RELATED WORK 

In this section, we first review the existing cross-company 
and cross-project defect prediction approaches. Then, we 
briefly review the data sampling methods. 

A. Defect prediction 

In order to solve the problem that the new companies have 
too limited historical data to perform WCDP well, the cross-
project and cross-company defect prediction appear.  
Zimmermann et al. [55] studied CCDP models on 12 real-
world applications datasets. Their results indicated that CCDP 
is still a serious challenge because of the different distribution 
between the training project data and the target project data. In 
order to narrow the distribution gap, there are three mainstream 
ways.  

The first one is to apply the data filtering method to find the 
best suitable training data (e.g., [8, 9, 12, 14]). For example, 
Turhan et al. [8] proposed a nearest neighbor (NN) filter to 
select cross-company data. Peters et al. [9] introduced the 
Peters filter to select training data. 

The second mainstream way is to design effective defect 
predictor based on transfer learning techniques (e.g., [7, 10, 
15,16, 17, 18, 19]). For instance, Ma et al. [15] proposed 
Transfer Naïve Bayes (TNB) model. Chen et al. [10] proposed 
double transfer boosting (DTB) model.  Another challenge in 
CCDP is that the set of metrics between the source company 
data and target company data is usually heterogeneous.  Jing et 
al. [7] and Chen et al. [19] proposed the effective solutions for 
heterogeneous cross-company defect prediction.  

The third mainstream way is to apply unsupervised 
classifier that does not require any training data to perform 
CCDP (e.g., [20-23]), therefore the distribution gap between 
the training project data and the target project data is no longer 
an issue. For instance, Zhang et.al [22] proposed to apply a 

connectivity-based unsupervised classifier that is based on 
spectral clustering to perform CPDP. 

B.  Data sampling 

Besides the larger irrelevant instances in CC data, CCDP 
models also suffer from the class imbalance problem.  A 
considerable amount of research has been done to investigate 
this problem at data and algorithm levels. Data-level methods 
include a variety of resampling techniques, manipulating 
training data to rectify the skewed class distributions, such as 
random oversampling and random under-sampling. They are 
simple and efficient, but their effectiveness depends greatly on 
the problem and training algorithms [24]. Algorithm-level 
methods address class imbalance by modifying their training 
mechanism directly with the goal of better accuracy on the 
minority class, including one-class learning [25], and cost-
sensitive learning algorithms [26]. Algorithm-level methods 
require specific treatments for different kinds of learning 
algorithms, which hinders their use in many applications, 
because we do not know in advance which algorithm would be 
the best choice in most cases. In addition to the aforementioned 
data-level and algorithm-level solutions, ensemble learning [27] 
has become another major category of approaches to hand 
imbalanced data by combining multiple classifiers, such as 
SMOTEBoost [28], and AdaBoost.NC [29]. Ensemble learning 
algorithms have been shown to be able to combine strength 
from individual learners, and enhance the overall performance. 
They also offer additional opportunities to handle class 
imbalance at both the individual and ensemble levels. This 
paper investigates SMOTE and RUS, because of their 
simplicity, effectiveness, and popularity in the literature. 

While a great deal of work has been done for data filter and 
data sampling separately, limited research has been done and 
reported on both together, especially in the context of CCDP. 
Among the few studies, Lin et al. [17] proposed the 
combination of NN filter and SMOTE to preprocess the CC 
data before building the CCDP model. However, it is still 
unclear what extent combining data filter and data sampling 
can contribute to CCDP, and how to make better use of them to 
improve CCDP. This is exactly what we will solve in this paper. 

III. METHODOLOGY 

A. Data filter 

 Previous work [8] founds that using raw CC data directly 
would increase false alarm rates due to irrelevant instances in 
CC data, so several data filtering works should be done before 
building the prediction model. The main goal of data filter is to 
select the most valuable training data for the CCDP model by 
filtering out irrelevant instances in CC data. In this study, we 
employ two representative data filtering methods, NN filter and 
DBSCAN filter. 

The NN filter was proposed by Turhan et al. [8]. Based on 
the widely used KNN algorithm, NN filter can find out the 
most similar k×n instances from CC data while n is the number 
of WC instances and k is the parameter of the KNN algorithm. 
The procedure of NN filter is as follows: 

1. Find k neighbors from the CC data for each WC instance 
based on Euclidean distance, and 



 

 

2. Collect the selected neighbors without duplication into a 
new CC data. 

The DBSCAN filter was proposed by Kawata et al. [12]. It 
assumes that CC instances which are in the same cluster as WC 
instances are the most valuable instances in CC data. The 
procedure of DBSCAN filter is as follows: 

1. Combine the CC data and WC data, 

2. Find sub-clusters by using DBSCAN algorithm, 

3. Select sub-clusters which consist at least one WC 
instance, and 

4. Collect the CC data in the selected sub-clusters into a 
new CC data. 

B. Data sampling 

Besides larger irrelevant instances in CC data, CCDP 
models also suffer from the class imbalance problem. A variety 
of data sampling techniques have been studied in the literature. 
The main goal of data sampling is to achieve a certain balance 
between the defective-prone class and non-defective class. In 
this study, we employ two representative data sampling 
methods, SMOTE (Synthetic Minority Oversampling 
Technique) and RUS (Random Under-Sampling). 

SMOTE [11] was proposed by Chawla in 2002. It is an 
over-sampling approach in which the minority class is over-
sampled by creating “synthetic” examples. The procedure of 
SMOTE is as follows: 

1. For each instance in the defective-prone class, 
calculate the Euclidean distance between it and other instances 
in the defective-prone class to find its k nearest neighbor. 

2. According to the amount of over-sampling, determine 
the sampling rate and select a certain number of instances from 
k nearest neighbor randomly. The sampling rate (between 
defective-prone and non-defective instances) was set to 50:50 
throughout the experiments. 

3. Take the difference of the feature vector between it 
and its nearest neighbor. 

4. Multiply this difference by a random number between 
0 and 1, and add it to the feature vector under consideration. 

5. Generate new instances for each instance in the 
defective-prone class and add new samples into it. 

RUS (Random Under-Sampling) [13] is a simple method to 
select a subset of non-defective instances randomly and then 
combine them with defective-prone instances as a training set. 

The procedure of random under-sampling is as follows:  

1. Calculate the ratio of the defective-prone class to the 
non-defective class, and get the sampling frequency. 

2. Sample the non-defective class by the sampling 
frequency. 

3. Select all defective-prone instances. 

4. Combine selected instances and attributes for training. 

C. Eight combination approaches 

The primary goal of this study is to evaluate the data 
preprocessing technique in which data filter is combined with 
data sampling. Eight different scenarios (also called approaches) 
would be produced depending on whether data filter is 
performed before or after data sampling. The eight different 
approaches are described as follows: 

● Approach 1: NN filter performed prior to RUS; 

● Approach 2: NN filter performed after RUS;  

● Approach 3: NN filter performed prior to SMOTE;  

● Approach 4: NN filter performed after SMOTE; 

● Approach 5: DBSCAN filter performed prior to RUS; 

● Approach 6: DBSCAN filter performed after RUS; 

● Approach 7: DBSCAN filter performed prior to 
SMOTE; 

● Approach 8: DBSCAN filter performed after SMOTE. 

IV. EXPERIMENTS 

In this section, we evaluate the eight combination 
approaches to perform CCDP empirically. We first introduce 
the experiment dataset, the performance measures and the 
experimental procedure. Then, in order to investigate the 
performance of the eight combination approaches, we perform 
some empirical experiments to find answers to the research 
question mentioned above. 

A. Data set 

In this experiment, we employ 15 available and commonly 
used datasets which can be obtained from PROMISE. The 15 
datasets have the same 20 attributes, so we can apply all 
attribute information directly. Table 1 tabulates the details 
about the datasets. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Examples %Defective Description 

ant 125 16 Open-source 

arc 234 11.5 Academic 

camel 339 3.8 Open-source 

elearn 64 7.8 Academic 

jedit 272 33.1 Open-source 

log4j 135 25.2 Open-source 

lucene 195 46.7 Open-source 

poi 237 59.5 Open-source 

prop 660 10 Proprietary 

redaktor 176 15.3 Academic 

synapse 157 10.2 Open-source 

systemdata 65 13.8 Open-source 

tomcat 858 9 Open-source 

xalan 723 15.2 Open-source 

xerces 162 47.5 Open-source 

 

B. Performance measures 

In the experiment, we employ three commonly used 
performance measures including pd, pf and g-measure. They 
are defined in Table 2 and summarized as follows. 



 

 

TABLE II.  PERFORMANCE MEASURES 

 Actual 

yes no 

Predicted yes TP FP 

no FN TN 

pd 𝑻𝑷

𝑻𝑷+ 𝑭𝑵
 

pf 𝑭𝑷

𝑭𝑷+ 𝑻𝑵
 

G-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)
 

 

● Probability of detection or pd is the measure of defective 
modules that are correctly predicted within the defective class. 
The higher the pd, the fewer the false negative results. 

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the 
results. 

● G-measure is a trade-off measure that balances the 
performance between pd and pf. A good prediction model 
should have high pd and low pf, and thus leading to a high g-
measure. 

C. Experimental Procedure 

 In every experiment, one dataset is selected as WC data and 
the rest are regarded as CC data to conduct the experiment. The 
CC data is considered as basic training data which will be 
adjusted in every experiment. All processing steps (data filter 
and data sampling) are done on CC data. Then processed CC 
data are used to build the CCDP model. Finally, the resulting 
model is evaluated on the WC data. The procedure will be 
repeated 30 times in every experiment to avoid sample bias. 
Then, the mean values of performance are calculated. 

 In this experiment, we choose three representative 
classifiers as the basic prediction model, Naive Bayes (NB) 
[33], Random Forest (RF) [34], and Logistic Regression (LR) 
[35].The reason we choose these classifiers is that these 
classifiers fall into three different families of learning methods. 
NB is a probabilistic classifier; RF is a decision-tree classifier; 
and LR is a linear model for classification. 

D. Experimental results 

Fig. 1 presents the scatter plots of (PD, PF) points from the 
eight approaches on the fifteen projects. Note that a CCDP 
approach has more points distributed at bottom right if it has 
higher PD value and lower PF value. We can gain the 
following results from Fig. 1.  

(1) In terms of the defect detection rate (PD), Approach 1 
outperforms other approaches for NB model, which shows its 
effectiveness in finding defects. However, Approach 1 has a 
little high PF value. In terms of the false alarm rate (PF), 
although Approach 3 is the best, it performs not well in PD, 
which makes it hardly useful in practice.  

(2)Although Approach 8 appears to be better at PD than 
other approaches for RF model, it performs the worst in PF. 
Approach 1 presents generally higher PD and lower PF than 
other approaches for RF model. 

(3) Approach 8 shows better PD than other approaches for 
LR model, but its advantage is rather limited. Approach 1 
presents generally higher PD and lower PF than other 
approaches for RF model. 

 

(a)NB 

 

(b)RF 

 

(c)LR 

Fig. 1. Performances with Scatter plots of (PD, PF) points of the eight 

approaches on the fifteen projects 

Tables 3-5 show the G-measure values for each project on 
all approaches with three CCDP models.  

 



 

 

TABLE III.  G-MEASURE PERFORMANCES WITH NAÏVE BAYES 

Project 1 2 3 4 5 6 7 8 

ant 0.64  0.56 0.53 0.56 0.50  0.57  0.60  0.54  

arc 0.66  0.62 0.56 0.56 0.63  0.65  0.52  0.63  

camel 0.67  0.68 0.54 0.60 0.72  0.72  0.54  0.71  

elearn 0.71  0.72 0.55 0.72 0.62  0.75  0.31  0.72  

jedit 0.57  0.52 0.46 0.55 0.59  0.65  0.55  0.59  

log4j 0.62  0.59 0.60 0.60 0.65  0.80  0.58  0.63  

lucene 0.64  0.51 0.50 0.54 0.54  0.67  0.57  0.67  

poi 0.49  0.37 0.42 0.47 0.55  0.62  0.45  0.57  

prop 0.49  0.61 0.55 0.60 0.58  0.66  0.50  0.59  

redaktor 0.61  0.66 0.66 0.63 0.35  0.45  0.29  0.34  

synapse 0.77  0.71 0.74 0.63 0.37  0.54  0.65  0.43  

system 0.66  0.68 0.57 0.35 0.67  0.65  0.51  0.71  

tomcat 0.69  0.73 0.65 0.69 0.58  0.62  0.45  0.60  

xalan 0.67 0.66 0.63 0.66 0.47  0.52  0.52  0.51  

xerces 0.51  0.39 0.35 0.34 0.34  0.48  0.37  0.36  

AVG 0.63  0.60 0.55 0.57 0.54  0.62  0.50  0.57  

TABLE IV.  G-MEASURE PERFORMANCES WITH RANDOM FOREST 

Project 1 2 3 4 5 6 7 8 

ant 0.73  0.65  0.66  0.72  0.57  0.60 0.60  0.59  

arc 0.51  0.65  0.41  0.40  0.58  0.67 0.51  0.31  

camel 0.64  0.51  0.37  0.26  0.66  0.52 0.54  0.37  

elearn 0.66  0.33  0.00  0.75  0.31  0.71 0.31  0.50  

jedit 0.69  0.66  0.47  0.57  0.48  0.53 0.55  0.27  

log4j 0.73  0.60  0.34  0.38  0.49  0.76 0.58  0.45  

lucene 0.51  0.65  0.28  0.36  0.51  0.44 0.57  0.34  

poi 0.62  0.65  0.38  0.35  0.39  0.67 0.45  0.57  

prop 0.67  0.64  0.38  0.26  0.52  0.65 0.50  0.40  

redaktor 0.50  0.37  0.30  0.38  0.30  0.41 0.29  0.30  

synapse 0.78  0.71  0.65  0.64  0.21  0.75 0.55  0.52  

system 0.60  0.64  0.34  0.47  0.56  0.59 0.51  0.50  

tomcat 0.66  0.65  0.42  0.42  0.43  0.63 0.55  0.66  

xalan 0.66  0.62  0.64  0.62  0.51  0.63 0.52  0.59  

xerces 0.50  0.49  0.42  0.32  0.38  0.47 0.37  0.53  

AVG 0.63  0.59  0.40  0.46  0.46  0.60 0.49  0.46  

TABLE V.  G-MEASURE PERFORMANCES WITH LOGISTIC REGRESSION 

Project 1 2 3 4 5 6 7 8 

ant 0.74  0.71  0.71  0.73  0.57  0.70 0.46  0.66  

arc 0.61 0.52  0.49  0.36  0.58  0.57 0.54  0.60  

camel 0.72  0.57  0.52  0.45  0.66  0.77 0.63  0.78  

elearn 0.73  0.50  0.56  0.33  0.31  0.82 0.32  0.71  

jedit 0.66  0.72  0.63  0.67  0.48  0.48 0.58  0.65  

log4j 0.77  0.62  0.61  0.64  0.49  0.67 0.70  0.73  

lucene 0.59  0.63  0.56  0.54  0.51  0.63 0.59  0.64  

poi 0.53  0.65  0.63  0.60  0.39  0.63 0.50  0.65  

prop 0.66  0.63  0.57  0.61  0.52  0.66 0.49  0.65  

redaktor 0.69  0.63  0.71  0.65  0.30  0.52 0.28  0.43  

synapse 0.72  0.67  0.73  0.39  0.21  0.75 0.47  0.71  

system 0.59  0.66  0.64  0.67  0.56  0.54 0.59  0.62  

tomcat 0.59  0.32  0.50  0.63  0.43  0.62 0.42  0.65  

xalan 0.63  0.63  0.64  0.62  0.51  0.63 0.53  0.59  

xerces 0.60  0.44  0.36  0.34  0.38  0.47 0.42  0.41  

AVG 0.66  0.56  0.59  0.55  0.46  0.63 0.50  0.63  

 

We can gain the following results from Tables 3-5. 

(1) On more than half projects, Approach 6 performs better 
than the other seven approaches for NB model. However, 
Approach 1 achieves the best average G-measure value for NB 
model (see Table 4).  

(2) On nine projects, Approach 1 achieves higher G-
measure than the other seven approaches for RF model. In 

addition, Approach 1 achieves the best average G-measure 
value for RF model (see Table 5). 

(3) On six projects, Approach 1 achieves higher G-measure 
than the other seven approaches for LR model, while Approach 
8 displayed similar or slightly worse performance than 
Approach 1.  In addition, Approach 1 achieves the best average 
G-measure value for LR model (see Table 5). 

Therefore, we can conclude that NN filter performed prior 
to RUS (Approach 1) has significantly better performance than 
the other seven approaches.  

V. THREATS TO VALIDITY 

In this section, we discuss several validity threats that may 
have an impact on the results of our studies. 

External validity. Threats to external validity occur when 
the results of our experiments cannot be generalized. As a 
preliminary result, we performed our experiments on the 15 
datasets to answer the research questions. Although these 
datasets have been widely used in many software defect 
prediction studies, we still cannot claim that our conclusions 
can be generalized to other software projects. Nevertheless, this 
work provides a detail experimental description, including 
parameter settings (default parameter settings specified by 
sklearn), thus other researchers can easily replicate this 
empirical study on new datasets. 

Internal validity.  Threats to internal validity refer to the 
bias of the choice of CCDP classifiers, data filtering methods 
and data sampling methods. In this work, we only use three 
classifiers, Naive Bayes (NB), Random Forest (RF), and 
Logistic Regression (LR) due to its popularity in defect 
prediction. In addition, we choose two representative data 
filtering methods, i.e., NN filter and DBSCAN filter, two 
representative data sampling methods, i.e., RUS and SOMTE. 

Construct validity. Threats to construct validity focus on 
the bias of the measures used to evaluate the performance of 
CCDP. In our experiments, we mainly use pd, pf, G-measure to 
measure the effectiveness of the eight approaches. Nonetheless, 
other evaluation measures such as AUC measure can also be 
considered. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose data filter combined with data 
sampling to overcome the influence of larger irrelevant CC 
data and class imbalance problems that often affect CCDP 
models. Eight combination approaches are investigated: 1- NN 
filter performed prior to RUS; 2- NN filter performed after 
RUS; 3- NN filter performed prior to SMOTE; 4- NN filter 
performed after SMOTE; 5- DBSCAN filter performed prior to 
RUS; 6- DBSCAN filter performed after RUS; 7- DBSCAN 
filter performed prior to SMOTE; 8- DBSCAN filter performed 
after SMOTE. 

We conduct experiments on the 15 datasets to evaluate the 
performance of the proposed eight approach. The experimental 
results indicate that NN filter performed prior to RUS 
(Approach 1) has significantly better performance than the 
other seven approaches.  



 

 

 In the future, we would like to employ more datasets to 
validate the generalization of the derived conclusions [36-37]. 
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