
Reranking-based Crash Report Deduplication

HAkira Moroo IAkiko Aizawa HTakayuki Hamamoto
H Tokyo University of Science I National Institute of Informatics

Abstract

Software projects collect and deduplicate vastly numer-
ous crash reports from users to fix bugs efficiently. However,
most existing automated methods have performance issues
during large-scale clustering. We propose a reranking-
based crash report clustering method. Our method is a
combination of two earlier methods. By computing simi-
larity used in ReBucket for the crash reports that are highly
similar to the query crash report, the method can process
reports with throughput equal to that of PartyCrasher. We
also introduce an automatically generated dataset for crash
report clustering tasks. The evaluation revealed that our
method performs at high processing speed while maintain-
ing high accuracy.

1 Introduction
Modern software products such as web browsers have

a large and complicated code base along with an increas-
ing number of bugs. To fix these bugs efficiently, develop-
ers prioritize high-frequency bugs using crash reports: sum-
maries of the status of the software execution upon its unex-
pected termination. Figure 1 portrays the structure. A crash
report includes a description, machine environment infor-
mation, and a stack trace. A stack trace presents multiple
stack frames with indexes. A lower index denotes a newer
frame in the stack trace. An actual crash is caused in the #0
frame: the top frame. Therefore, a bug causing a crash is
typically included in the frame near the top frame.

The information in stack traces is helpful for detecting
and fixing bugs. Therefore, software-development projects
collect such crash report from their users and cluster them
according to the detected bugs. However, because of the nu-
merous and diverse crash reports, clustering them manually
is infeasible. Many automated crash report deduplication
methods have been proposed to address this issue. How-
ever, most methods present performance issues because of
their high computational costs. As described herein, we
propose a reranking-based automated crash report cluster-
ing method. Reranking is a well-known technique for infor-
mation retrieval where the ranking of initial search results
is re-ordered using another computationally more expensive
ranking function.

The contribution of this paper is that we introduce
reranking-based crash report deduplication for reduced
computational costs. This report is the first of the relevant

Crash report

Description, Environment Info, etc.

Stack trace

#0 Frame

Address, Function，Module, etc.

…

#1 Frame

Address, Function，Module, etc.

Figure 1: Crash Report Structure.

literature to describe a study by which a reranking scheme
is shown to be effective in crash report deduplication.

2 Related Work
Existing methods for automatic crash report deduplica-

tion can be categorized into the following two types: One
is based on the similarity of feedback from users written in
natural language[1, 2]. The other is based on the similarity
of stack traces. As described in this paper, we specifically
examine the latter type because stack-trace-based methods
achieve higher accuracy than NLP-based methods.

Socorro1 is a crash report management system developed
by Mozilla. In this system, a string called signature is gen-
erated for each crash report by applying several heuristic
rules to the stack trace. Then, the system classifies all re-
ports with the same signature into the same group. This
system requires human elaboration for editing and updating
signature-generation rules.

Lerch and Mezini [3] introduced a method using a TF-
IDF-based full-text search engine. Campbell et al. [4]
also used a full-text search engine and compared several
tokenization methods used for indexing. These methods
can achieve reasonable runtime performance for large-scale
clustering. However, the accuracy is often worse than that
achieved with other methods because the features used in
the search engines ignore the order of the frames.

Dhaliwal et al. [5] proposed a method using the Leven-
shtein distance as similarity between two stack traces. The
Levenshtein distance is used to measure the similarity of
two strings. This approach regards one frame as a charac-
ter. Dang et al. [6] defined similarity between two stack

1https://wiki.mozilla.org/Socorro

DOI reference number: 10.18293/SEKE2017-135

Searching Clustering

𝑹𝑹= 𝑅#$ 𝑅#% 𝑅#&⋯{ }

𝑹𝑹= 𝑅#$ 𝑅#% 𝑅#&⋯{ }

𝑹𝑹′= 𝑅#$′ 𝑅#%′ 𝑅#&′⋯{ }

𝑅#$′

𝑅#$′ ≥ 𝑇-&

𝑅#$. < 𝑇-&

𝑅0

𝑅0

Existing Cluster

New Cluster

Result from search engine: 𝑹𝑹

Sim of ReBucket: 𝑠𝑖𝑚#4
𝑅0

Crash report
to be clustered: 𝑅0

𝑠𝑖𝑚#4 𝑅0 𝑅#5(),
higher 𝑠𝑖𝑚-&

Reranking

Computing sim Reordering

Harmonic Mean of
𝑠𝑖𝑚#4 and 𝑠𝑖𝑚9:: 𝑠𝑖𝑚-&

higher 𝑠𝑖𝑚9:

Figure 2: Overview of Proposed Method.

traces based on Position Dependent Model. Because these
distance-based methods can capture the features of stack
traces, they are useful for high-accuracy clustering but with
high computational complexity.

As described in this paper, we use PartyCrasher [4] and
ReBucket [6] as baselines. PartyCrasher is implemented
as an open-source project2. It is easily extensible. Among
these methods, ReBucket achieved the highest reported ac-
curacy: 0.88 F1-measure on average.

3 Methodology
The proposed method is a consolidation of two state-

of-the-art deduplication methods: ReBucket [6] and Party-
Crasher [4]. Figure 2 presents an overview of the method.
It comprises three modules: searching, reranking, and clus-
tering. Given a pool of crash reports (already clustered) and
a target crash report to be clustered, the search module uses
the target report as a search query. Thereby, it obtains an
initial ranking list of possibly similar crash reports. We fol-
low the technique proposed in PartyCrasher [4] here, and
use a general-purpose search engine. Next, the reranking
module re-orders the initial results with the similarity func-
tion defined in ReBucket [6]. Finally, the clustering module
either selects a cluster from existing ones or generates a new
cluster for the target crash report.

3.1 Searching

Let RQ be a crash report to be processed. Using a full-
text search engine, the system obtains the top M search
result RR = {RR1, RR2, . . . , RRM}. In [4], multiple to-
kenization methods for indexing are compared. Our sys-
tem uses Camel, which achieved the highest accuracy. In
Camel, all frames in a stack trace are tokenized by space
separation and for each camel case. Symbols are deleted.
Hereinafter, we designate the stack trace of the crash report

2https://github.com/naturalness/partycrasher

RX as CX .
Most full-text search engines use TF-IDF weight to rank

results. Term Frequency (TF) represents how many times a
certain term appears in a document. Inverse Document Fre-
quency (IDF) is the reciprocal of the number of occurrences
of a certain word in all documents. In our method, we use
the same normalization as the one used in Elasticsearch3.
Letting W (Cq) be a set of words in a stack trace Cq , tft,Cd

and idft,Cd
be a value of DF and IDF of a word t in a stack

trace Cd, respectively, and denoting the word count in Cd

as ntCd
, the similarity score used in PartyCrasher between

Cq and Cd is defined as

simPC(Cq, Cd) =
∑

t∈W (Cq)

(√
tft,Cd

× idft ×
1√
ntCd

)
.

(1)

3.2 Reranking

In ReBucket [6], similarity is computed by emphasis on
the common frame position between two stack traces. Two
metrics are defined: distance to the top frame and alignment
offset. The distance to the top frame represents the distance
from an arbitrary frame to the top frame in the same stack
trace. The alignment offset represents the difference of the
distance to the top frame between the frames that match in
two stack traces.

These metrics are based on the following insights: First,
an important frame has a smaller distance to the top frame.
Second, the alignment offset between matching frames is
smaller for stack traces with higher similarity. Let fi and fj
respectively denote the i-th and the j-th frames of Cq and
Cd. Denoting distance to the top frame as min(i, j) and
alignment offset as abs(i − j), the cost function cost(i, j)

3https://www.elastic.co/products/elasticsearch

of fi and fj is defined as follows in ReBucket.

cost(i, j) =

{
e−c∗min(i,j)e−o∗abs(i−j) if fi = f ′

j

0 otherwise
(2)

Therein, c and o are weighting parameters. With ReBucket,
similarity between stack traces Cq and Cd is defined as

simRB(Cq, Cd) =
Mm,n∑l
j=0 e

−cj
, (3)

where m and n are at respective depths of Cq and Cd, and
l = max(m,n). In addition, Mi,j is the optimal cost at
depth i, j calculated recursively using dynamic program-
ming.

The computational cost is O(mn) in the above calcula-
tion. According to [7], about 90 % of crash reports can be
fixed by referring only to the top 10 frames. Therefore, we
use only the top 10 frames in our calculation.

The final similarity score between Cq and Cd we use for
reranking is given as

simHM =
simRB · simPC

α · simRB + (1− α) · simPC
. (4)

3.3 Clustering

In the same way as PartyCrasher, we compare the simi-
larity of crash report R′

R1, which has the highest similarity
in R′

R, with the threshold THM . If it is greater than THM ,
then RQ is clustered into the same cluster as RR1. Other-
wise, it is clustered into a new cluster because it is regarded
as a crash by the new type bug.

The computational overhead of the search engine in our
method is O(NlogN), which is negligible compared with
the computational cost of stack trace similarity. Therefore,
we compare the size of the distance matrix that requires
stack trace similarity calculation. ReBucket uses hierar-
chical agglomerative clustering (HAC) algorithm for crash
report clustering. This method requires O(N2) because it
computes an N×N distance matrix where N is the number
of total crash reports. In contrast, the clustering algorithm
used in the proposed method requires O(MN), where M
is the number of search results. As with M ≪ N , the pro-
posed method can reduce the computational cost compared
with HAC.

4 Evaluation Experiment
In this section, we present evaluations of PartyCrasher,

ReBucket, and our proposed method from the perspectives
of accuracy and runtime performance.

4.1 Dataset

We use two datasets: Launchpad 4, an existing dataset
from Ubuntu Launchpad, and Firefox48, a new dataset

4https://archive.org/details/bugkets-2016-01-30

Table 1: Dataset Information.

Project
Crash
reports Clusters Version Packages

Launchpad
Ubuntu

Launchpad 15,293 3,824 N/A 816

Firefox48
Mozilla
Firefox 36,752 727

from 48.0a1
to 48.0b99 1

we collected from Mozilla Firefox. Table 1 presents a sum-
mary of the datasets.

Launchpad is more reliable than Firefox48 be-
cause Launchpad contains clusters produced by hand,
whereas the clusters of Firefox48 are automatically
constructed as shown below. Firefox48 differs from
Launchpad in that the dataset includes a single soft-
ware package whereas Launchpad includes many dif-
ferent packages provided by Ubuntu’s package manager.
Many projects deal with a single product in their report sys-
tems. Therefore, we presume that our evaluation can be
more solid by introducing the Firefox48 dataset.

We followed [5] to create the dataset, which comprises
crash reports and corresponding bugs. A set of crash re-
ports that link to the same bug form a cluster. We gathered
100 crash reports at most from each of the top 300 high-
frequency clusters between ver. 48.0a1 and 48.0b99. When
the same bug is found to cause two crash clusters, these
clusters are grouped into a single cluster. Furthermore, we
extract stack traces and metadata from the crash reports.

4.2 Evaluation Metrics

Let BCubed precision be denoted as Bp and BCubed re-
call as Br. Bp represents how many reports in an estimated
cluster belong to the same cluster in ground truth. Br de-
notes how many reports in a cluster of grand truth belong
to the same estimated cluster. The quality of the generated
clusters is better when the values of Bp and Br are closer
to 1.0. Based on the Bp and Br, the BCubed F1-meature
(BCF) is calculated as BCF = (2 ·Bp ·Br)/(Bp+Br). A
tradeoff exists between Bp and Br. Higher BCF indicates
higher accuracy[8].

The number of crash reports processed per unit of time
is taken as the performance criterion. ReBucket uses multi-
processing to calculate distance matrixes. Therefore, we
multiply the actual processing time by the number of pro-
cesses.

4.3 Determining Parameters

We determined optimal parameters using a subset from
the first 20 % of the dataset. The rest are used for test-
ing. The time cost of determining optimal parameters is not
included in the performance results. Table 2 presents the
final values used in the evaluation. Both ReBucket and our
method require c and o in (2). TRB is a distance threshold
for HAC in ReBucket. Moreover, α in (3), M , the size of
initial ranking list, and THM , the clustering parameter, are

Table 2: Parameters used in the evaluation.

c o TRB α M THM

Launchpad 0.3 0.1 0.07 0.3 50 11.0
Firefox48 0.4 0.4 0.26 0.0 50 2.0

Table 3: Evaluation Results of Accuracy.

Launchpad Firefox48
Bp Br BCF Bp Br BCF

PartyCrasher 0.723 0.671 0.696 0.778 0.424 0.549
ReBucket 0.775 0.515 0.618 0.662 0.717 0.688
Proposed 0.807 0.626 0.705 0.728 0.651 0.687

Table 4: Performance Evaluation Results.

Performance
[Reports/s]

Launchpad Firefox48
PartyCrasher 2.500 4.663

ReBucket 0.004 0.021
Proposed 2.922 4.022

used only for the proposed method. The number of used
processes of ReBucket is 60 because of limitation of the
available computation resources. The parameters c, o, and
TRB are robust and about 20 % of the searched combina-
tions achieve over 90 % of the highest BCF. By contrast,
α, M and THM are sensitive. Especially, we observe that
when M is too large, both accuracy and performance de-
crease.

4.4 Results

Table 3 presents accuracy evaluation results. The
proposed method achieved the highest BCF value for
Launchpad. Bp of our method is also the highest. In
addition, results show that ReBucket showed high accuracy
in terms of BCF because the Br of PartyCrasher drops to
0.424. Moreover, the BCF value of the proposed method is
the same as that of ReBucket.

The difference in accuracy between Launchpad and
Firefox48 can be attributed to the differences of the
numbers of packages: 816 for Launchpad and 1 for
Launchpad. It is likely that the same cluster includes re-
ports from the same package in most cases. Results show
that ReBucket has a difficulty recognizing the difference
when the dataset includes multiple packages because it re-
lies completely on frames in the stack traces.

To validate this point, we created a subset of
Launchpad using reports from only one package, ”nau-
tilus.” Then, the BCF values of PartyCrasher, ReBucket,
and our method become 0.616, 0.662, and 0.666, corre-
spondingly. With the subset, ReBucket achieves better per-
formance than PartyCrasher, which is the opposite of the
result with the original Launchpad. Based on this result,
we conclude that ReBucket does not perform well if mul-

tiple packages are included in the dataset. The proposed
reranking scheme compensates the issue by filtering out un-
related candidates before applying ReBucket.

Table 4 presents performance evaluation results. Table
4 shows that the processing speed of the proposed method
is higher than that of ReBucket. In addition, our method
achieved almost equal performance to that of PartyCrasher.
Our method is almost 730 times faster.

To summarize, our results demonstrate that the pro-
posed method has better runtime performance than Re-
Bucket while maintaining accuracy.

5 Conclusion
As described in this paper, we propose an auto-

mated crash report deduplication method applying rerank-
ing against reports of the results obtained from the full-text
search engine. We also constructed a new dataset for crash
report clustering tasks from Mozilla Firefox. The evalua-
tion results demonstrate that our method is equal to that of
ReBucket in terms of accuracy, but with faster performance.

Our current method uses statically tuned parameters with
a subset. Manual merging or division of crash clusters is
assumed in real operations. In future studies, we expect to
investigate a dynamic parameter tuning method using user
feedback for more stable accuracy.

References
[1] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of dupli-

cate defect reports using natural language processing,” in Proceedings
of the 29th International Conference on Software Engineering, 2007,
pp. 499–510.

[2] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach to-
wards more accurate duplicate bug report detection,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, 2013,
pp. 183–192.

[3] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten
bug report,” in Proceedings of the 2013 17th European Conference on
Software Maintenance and Reengineering, 2013, pp. 69–78.

[4] J. C. Campbell, E. A. Santos, and A. Hindle, “The Unreasonable
Effectiveness of Traditional Information Retrieval in Crash Report
Deduplication,” in Proceedings of the 13th International Conference
on Mining Software Repositories, 2016, pp. 269–280.

[5] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying Field Crash Reports
for Fixing Bugs: A Case Study of Mozilla Firefox,” in Proceedings
of the 2011 27th IEEE International Conference on Software Mainte-
nance, 2011, pp. 333–342.

[6] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket: A
Method for Clustering Duplicate Crash Reports Based on Call Stack
Similarity,” in Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 1084–1093.

[7] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help de-
velopers fix bugs?” in 2010 7th IEEE Working Conference on Mining
Software Repositories, 2010, pp. 118–121.

[8] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A Comparison
of Extrinsic Clustering Evaluation Metrics Based on Formal Con-
straints,” Inf. Retr., vol. 12, no. 4, pp. 461–486, 2009.

