Infrastructure Based on Template Engines for
Automatic Generation of Source Code for
Self-adaptive Software Domain

Gabriele Salgado Benato! and Frank José Affonso?

Dept. of Statistics, Applied Mathematics and Computation

Sao Paulo State University — UNESP
PO Box 178, 13506-900, Rio Claro, SP, Brazil
! gabibenato @ gmail.com, 2frank @rc.unesp.br

Abstract—Self-adaptive Software (SaS), a special class of
software system, constantly deals with some type of changes
(i.e., structural and/or behavioral) to meet the user’s new needs
or autonomously react to modifications in its execution environ-
ment. Software adaptation, when manually performed, becomes
an onerous and error-prone activity. Automated approaches
have been adopted as a feasible alternative to overcome such
adversities because they reduce the human involvement to a
minimum. Based on this scenario, a Reference Architecture
for SaS (RA4SaS) [1], [2] was designed in previous work.
This architecture enables the adaptation of SaS at runtime
by means of a controlled adaptation approach. In this sense,
an automated process and a complete infrastructure to allow
the phases of such process were also developed. This paper
presents the design and implementation of a new module for
automatic generation of source code for our architecture based
on template engines [3]. In short, the main benefits of this
module can be summarized in three items: (i) higher design
flexibility, maintenance and evolution of SaS; (ii) introduction
of new capabilities for automatic generation of source code; and
(iii) performance improvement. To present the operation of this
new module, a case study was conducted. As result, we have
observed that our architecture has good perspective to efficiently
contribute to the SaS area.

Keywords-Automated Process, Reference Architecture, Self-
adaptive Software, Template Engine.

I. INTRODUCTION

Over recent years, a significant increase in the complexity
of software systems and their computational environments
has been observed. In general, such systems share functional,
nonfunctional, physical, and virtual requirements. The human
ability to manage systems becomes insufficient as their com-
plexity increases. Moreover, involuntary injection of faults or
uncertainties has often configured as one of the major causes
of system failures, especially in the context of Self-adaptive
Software (SaS). Software systems that can autonomously react
to changes in their environment or modify its structure and/or
behavior to meet the user’s new needs are called SaS [4], [5].

Software adaptation, when manually performed, becomes
an onerous and error-prone activity. Adversities, such as time,
effort, money and the involuntary injection of uncertainties
by developers, may be pointed as the main negative factors
that have hampered the adaptation conducted by humans [6],
[7]. To overcome such adversities, automated approaches have
been adopted as a feasible alternative to maximize the speed

DOI reference number: 10.18293/SEKE2017-147

Elisa Yumi Nakagawa
Dept. of Computer Systems
University of Sao Paulo — USP
PO Box 668, 13560-970, Sdo Carlos, SP, Brazil
elisa@icmc.usp.br

of SaS implementation and, at the same time, minimize the
developers’ involvement [4], [8]. According to Salehie and
Tahvildari [4], SaS development may be based on an external
approach, which segments this type of software in two layers:
(i) adaptable software, which represents software entities that
will be adapted; and (ii) adaptation engine, which contains
the adaptation logic. Regarding the second layer, control
loops [9] have been used to ensure that the adaptation engine
dynamically adjusts the adaptable software.

Based on this context, a Reference Architecture for SaS
(RA4SaS) [1], [2] was designed in previous work. In short, this
architecture is based on computational reflection [10] and an
external adaptation approach [4], which enables the adaptation
of software entities at runtime by means of a controlled adap-
tation modality. The software engineers define the adaptation
levels of each software entity by means of annotations. Next,
the adaptation of each entity is conducted by an automated
process, since capabilities of human administration show de-
creasing relative effectiveness. For instance, some tasks have
been difficult to manage, introducing potential problems, such
as change management and simple human error.

Although our architecture (RA4SaS) has already been in-
stantiated for a concrete architecture, the generation of source
code, a crucial activity for the execution of this automated
process, has shown some limitations. For instance, developer’s
interventions were required to meet different application do-
mains, i.e., the software engineers were responsible for making
adjustments to meet the requirements of an application do-
main, architectural models, among other requirements. In this
sense, this paper presents the design and implementation of
a new module for the RA4SaS based on Template Engine
(TE). According to Bergen [3], TEs can be used in software
development that needs automatically generation of source
code according to specific purposes. Regarding the design and
implementation of this new module, the main benefits are:
(1) higher flexibility of design, maintenance and evolution of
the software entities; (ii) introduction of new capabilities for
automatic generation of source code; and (iii) performance
improvement.

The paper is organized as follows: Section II presents the

background and related work; Section III provides a descrip-
tion of our architecture (RA4SaS); Section IV shows the
design and implementation of an infrastructure for automatic
generation of source code for the RA4SaS; Section V presents
a case study to show the applicability of this new module;
and Section VI summarizes the contributions and presents
perspectives for further research.

II. BACKGROUND AND RELATED WORK

This section presents the background (i.e., concepts and
definitions on self-x systems, reference architecture and TE)
and related work on our paper.

Self-x Systems. SaS has specific features in comparison
to traditional ones because this type of software constantly
deals with structural and/or behavioral changes at runtime.
Some of them deal with management of complexity, reliability
in handling unexpected conditions (e.g., failure), changing
priorities and policies governing the goals, and context condi-
tions (e.g., execution environment). The SaS development has
boosted self-x properties in general-purpose software systems,
such as self-managing, self-configuring, self-organizing, self-
protecting, self-healing, and so on. These properties allow
systems to automatically react to the users’ needs or to
respond as soon as these systems meet execution environment
changes [11], [12]. According to Silva and De Lemos [13],
there is a set of goals to be achieved so that structural and
behavioral modifications are performed in the SaS without
affecting its execution states. For these authors, an adaptation
plan is a feasible solution to define which procedures shall be
adopted so that such changes are implemented.

Reference Architecture. According to Nakagawa et
al. [14], Reference Architectures (RA) refer to a special type of
software architecture that have become an important element
to systematically reuse architectural knowledge. The main
purpose of such architectures is to facilitate and guide [14]:
(i) the design of concrete architectures for new systems; (ii) the
extensions of systems of neighbor domains of a RA; (iii) the
evolution of systems derived from a different RA; and (iv) the
improvement in the standardization and interoperability of
different systems. Considering their relevance for the soft-
ware development, different domains have proposed RAs.
For instance, service-oriented architectures such as IBM’s
foundation architecture [15] and architectures for software
engineering environments [16] are some of RAs found in
the literature. Other areas/domains have also proposed RAs,
including self-* software (e.g., RA4SaS [1]).

Template Engines. According to Bergen [3], “TEs are used
in software development scenarios where it is necessary to
automatically generate text and format it according to specific
processing rules”. This definition fits perfectly the purposes of
our RA and its automated process of adaptation, which aims to
manage the changes (i.e., user’s new needs or modifications in
the execution environment) without human intervention. The
main reason for this type of TE is that our RA is based
on reflection and, subsequently, it was instantiated in Java
programming language. Thus, after a detailed analysis, the

FreeMarker TE was chosen to be used in this work for the
following reasons [3], [17]: (i) it is an open source software;
(i) it is a general-purpose template; (iii) it is faster than
others; (iv) it provides facilities of use (e.g., JSON support,
shared variables, template loaders, among others); (v) it has
automated support in Java IDE (Integrated Development En-
vironment); and (vi) its templates are not compiled to classes,
i.e., a template can be loaded or reloaded during runtime
without redeploying the application.

As related work, Cheng et al. [5] presented a study that
aims to summarize the state-of-the-art on software engineering
for SaS, identifying the main gaps and challenges. Accord-
ing to these authors, the Model-Driven Development (MDD)
was pointed as a challenge for software adaptation, since a
key issue of this approach is to keep the runtime models
synchronized with system modifications. In this sense, the
authors emphasized the importance of the code generators
to maintain the integrity between source code and models.
Silva and De Lemos [13] developed a framework for auto-
matic generation of processes for SaS based on workflow,
model-based approaches and artificial intelligence planning
techniques. A specific contribution of this work is the usage
of model-based technology for the generation of adaptation
plans, since different planning techniques, according to the
needs of the application domain, may be used. Daniele et
al. [18] developed a Service Oriented Architecture (SOA)-
based, platform-specific framework for context-aware mobile
applications. This framework is composed of a methodol-
ogy based on Model-Driven Architecture (MDA) principles
that relies on SOA for context-aware mobile applications.
Hallsteinsen et al. [19] developed a framework for the devel-
opment of self-adapting applications in ubiquitous computing
environments. This framework is based on MDD and it aims
to facilitate the design and implementation of context-aware
adaptive applications by the reuse of modeling artifacts and
adaptive components. According to these initiatives, model-
driven approaches and source code generators have been used
in the development of self-adaptive applications in different
domains. As our RA is based on metamodel for adapting
software entities, only a source code generator based on TE
was designed and it shall be presented in this paper.

III. REFERENCE ARCHITECTURE FOR SAS

Figure 1 shows the general representation of our RA, which
is composed of four external modules and a core of adapta-
tion [1]. This RA works with a controlled adaptation modality,
i.e., the software engineer must insert annotations in each
software entity so that the automatic mechanisms can identify
their adaptability levels. In short, such levels contain param-
eters that determine where the new changes can be applied.
Thus, when an entity is developed, an automatic mechanism
performs a scan process to inspect if such annotations were
correctly inserted. After a validation process, these entities can
be stored in the entities repositories (execution environment)
so that they may be invoked in future adaptations. Next, a brief
description of this architecture is presented.

Action Plan Module

[
o Search Module Annotation State S
3 Module Module 3
s} =
= | | | 2
- 9
c > S
[Adaptation Module [~
£ c
S 2
o] 2
& Source code Reflection Module -3
o Module (Dis)Assembly. 3

Infrastructure Module
Figure 1. Reference architecture for SaS [1]

The “Development Module” provides a set of guidelines for
requirement analysis, design, implementation, and adaptation
of the software entities at runtime. The “Action Plan Module”
aims to assist in the adaptation activity of such entities,
providing controls for: (i) dynamic behavior, (ii) individual
reasons, and (iii) execution state in relation to the environment.
Thus, a framework [2] based on learning techniques [20]
and the MAPE-K control loop [9], [21] and a tool called
DmS-Modeler [22] were developed to assist the development
of Decision-making Systems (DmS) for SaS, providing facil-
ities for modeling, calibration of such system, and automatic
generation of execution infrastructure. The “Adaptation Rules
Module” provides a set of rules (i.e., metrics) for adapting
software entities. The “Infrastructure Module” provides sup-
port for software entities adaptation at runtime, i.e., a set of
mechanisms for the dynamic compiling and dynamic loading
of software entities. The “Core of Adaptation” represents an
automated process composed of a logic sequence of nine well-
defined steps so that the adaptation of the software entities
is conducted with no human intervention [1]. To do so, this
core was organized in six modules: (i) search, (ii) annotation,
(ii) state, (iv) source code, (v) reflection, and (vi) adaptation. In
order to detail the adaptation modality of our RA, the reflection
and source code module will be detailed in this paper.

The reflection module is organized into two submodules.
The first assists in the “disassembly” and “assembly” of the
software entities by using the annotation module for obtaining
adaptation levels supported by each entity. Next, structural and
behavioral information is recovered via reflection and inserted
into a metamodel, which is inside the second submodule. New
information can be either added or removed from this meta-
model, according to adaptation interests. This new metamodel
is then transferred to the source code module so that the
new software entities are generated. Figure 2 shows the UML
model of this metamodel, which enables the adaptation of
object-oriented software systems or make use of the structure
of classes as units of software systems, as it can notice the
presence of classes (Class), attributes (FieldClass), methods
(MethodClass), among other. In this metamodel, classes which
have “Annotation” prefix are used to manage the annotations
responsible for the adaptation levels of each entity. Similarly,

classes with the “Persistence” prefix are used to manager
the annotations responsible for the persistence of software
entities. To delimit the scope of this metamodel in relation
to the persistence of entities, an Object/Relational Mapping
(ORM) framework was used. This framework enables us to
develop persistent classes following natural object-oriented
idioms as our metamodel. Thus, developers do not have to
worry about the generation of storage structures, since such
they are automatically generated by the framework. This
strategy can be considered relevant for developers, since they
can develop self-adaptive software entities in a notation to their
expertise area.

Annotation

- name : String
- semanticinformation : String

+ Annotation()

L‘% MethodClass

- modifierQualifier : String
1 1| -retumType : String

1 h
- name : String 4
- parameters : List<Parameter> o0

- adaptationLevel : Artifact | | - primaryKey : String | | - parametersName : String | 2

- type : ArtifactType 3)| |- 2daptable : Adaptable T crs L
i - sourceCode : String
+ AnnotationClass() X R +) ootece s p———
! N + MethodClass() - name : String
1 as - type : String
1.4 P
FieldClass has P> has P> farsmeter()
~modifierQualifer: String - SuperClass -listariacts 5 0."
~type : String 0.1 1 1 ° has A
- has 1 h
name : String Class Lo | as
- initialValue : String .
- annotation : AnnotationField 1 T -name : sting P e
- pas : List<PersistenceAnnotation> - modifier : String o
- qualifier : String —ey 5| - moditer :String
+ FieldClass() - package : Package as - name : String
1 dhas | -project : Project - parameters : List<Parameter>
- constructor : List<Constructor> - sourceCode : String
has . - interface : List<Interface>
100,V 1 ~fields : List<FieldClass> Constructor()
P—— - metthods : List<MethodClass>
) ersistoncenngtaion - externalPackage : Set<String> 1 implement P>
07| -name : Strin - superClass : Class
- values : List<PersistenceAnnotationValue> - entityList : List<Class> i o | tnterface
- annotation : AnnotationClass .
— - name : String
* PersistenceAnaotatony - pfs List<PersistenceAltribute> C
P - pas : List<PersistenceAnnotation> | 1 +Interface()
has +Class()
A 0l ¥
has 1 e
PersistenceAnnotationValue A Package
. has
-name : String 0. 1 1| - name : string
T :?zp\je fg‘;]gm PersistenceAttribute Project isContained B | + Package()
- valueType : int - modifierQualifier : String -name : String
- type : String - date : Date
+ PersistenceAnnotationValue() - name : String - objects : List<Object>
- initialValue : String - classes : List<Class>
+ PersistenceAtlribute() + Project()
dhas gProject) : vold
Figure 2. RA4SaS Metamodel for software entities

IV. INFRASTRUCTURE FOR AUTOMATIC GENERATION OF
SOURCE CODE

The new generator module of source code is responsible to
create the new software entities so that they can be compiled
and inserted in the execution environment. Thus, the main
purpose of this section is to present details on design and
operation of such module in Section IV-A and a comparative
analysis emphasizing the advantages of this module compared
to the previous one in Section IV-B.

A. Design of the Generator Module of Source Code

Figure 3 provides an overview of the information flow
contained in the generator module of source code, which
is organized in three levels: (i) Metamodel, (ii) Template
Engine, and (iii) Source Code. The first level represents the
new metamodel with the adaptation changes (Figure 2). The
second level contains all logic of this module, which must be
able to generate the software entities according to the target
domain and architectural models used in their development.
Thus, software engineers and domain specialists must specify

New software entities

2 -
i Design
= S () Patterns -~ _ _

A
1

g Software engineer .
’ ¥ 4 g o =) ~— Source Code
i Architectural .- .
L y Decisions " '
""""""""" AN A !
. ! |
B N T A
' Template! :
)i ' - :r:gpine ! Template
¥ LW L ! — .
] -~ Template Repository 0 Engl;ne
‘Domain specialistst i N i
i i
i i
i : ~———{Metamodel
i i
1 1

Figure 3. Source code module

design patterns, establish architectural decisions for the SaS
development, and provide domain information to create a set
of templates that will insert in the template repository so that
the source code of each software entity can be generated by
the “Template Engine” component. Design patters describe
general solutions for design problems that occurs repeatedly in
many projects including SaS domain. Architectural decisions
represent implications for the environment in which the archi-
tecture will be deployed. Domain information encompasses the
previous two, since the domain specialists must have a special
knowledge to design each template according to requirements
and restrictions and limitations imposed by the architectural
and design models. Finally, the third level represents the source
code for the new software entities.

The “Template Engine” component, illustrated on the sec-
ond level, is a subsystem whose purpose is to generate
source code for the software entities. Figure 4 illustrates
the UML model of this subsystem, which is composed
of three logical classes (FileManager, FreeMarkerUtils,
and TemplateManager), an enum of constants (FileType),
two external packages (external, and freemarker.template)
and four stereotypes, i.e., two boundary classes (Metamodel
Boundary and Template Boundary) and two control classes
(Metamodel Control and Template Control). These pack-
ages contain a symbolic class (Jacobe) that represents the
code formatter (external package) and three logical classes
of the FreeMarker TE (freemarker.template package). The
aforementioned stereotypes are used to represent: (i) the
metamodels for the self-adaptive software entities, which are
provided by the reflection module after insertion of adapta-
tion changes; and (ii) the templates for generating software
entities, since they may have been developed based on design
patterns and architectural models; however, they may require
a set of templates to generate the source code. Among of
the logical classes, TemplateManager can be considered the
main class of this subsystem because it is responsible for
“orchestrating” activities so that the source code of software
entities is generated. Initially, Step I, the start method
(TemplateManager class) receives as input a metamodel (from

Metamodel Control and Metamodel Boundary) containing the
software entities that will be generated. Next, Step 2, the
createEntity method is invoked by the start method so
that the software entities contained in this metamodel are
fragmented and inserted in the entity list (entities attribute).
In this step, the FileType enum is used, since provides a
set of useful constants to maintain the nomenclature of such
entities and to assist in the configuration of the code type
that will be generated. Thus, for each retrieved entity, the
generateCode method is invoked (Step 3). The purpose of
this method is to match three important items: (i) nomen-
clature information (FileType enum), (ii) metamodel of each
entity (entities attribute), and (iii) templates (from Template
Boundary and Template Control). Regarding the operation,
this method allows generating source code for three categories:
logic classes, persistence classes, and business classes. These
categories are identified by annotations inserted in the devel-
opment phase (AnnotationClass — Figure 2). As Step 4, the
generateCode method performs a call to parser2Template
method of the FreeMarkerUtils class, transferring an en-
tity map and template name that must be used to generate
each entity. This method uses the templates provided by
the software engineers, which are represented by stereotypes
Template Boundary and Template Control. Moreover, the
FreeMarkerUtils class can be considered as an abstraction
for our subsystem because it encapsulates the classes of
the FreeMarker TE (freemarker.template package). The
source code files generated by the FreeMarkerUtils class are
returned to TemplateManager class (generateCode method)
so that they are formatted and inserted in their respective
packages (Step 5). Operations for managing directories and
files, both necessary in the source code generation process, are
performed by the FileManager class. The formatFile method
uses the Jacobe symbolic class to format the generated source
code according to the standard established in the development
phase. Finally, it is noteworthy that this process (Step 2 to 5)
must be performed until the entity list (entities attribute —
TemplateManager class) has been generated. Thus, the source
code can be transferred to the compile module to be compiled
and inserted into the execution environment.

B. Comparative Analysis

This section presents a brief comparative analysis between
both modules (new and old). Next, a brief description of each
feature is provided, as well as our analysis on both modules
in relation to each of them, comparing their advantages and
limitations.

Both modules have been developed based on the Java
programming language. This language was selected because
our RA is based on reflection [1]. Although the new module
have been designed based on FreeMarker TE and uses
the FreeMarker Template Language (FTL) for developing
templates, the benefits highlighted in the next features are
worthwhile. In addition, we can add the advantages already
presented in Section II and the automated support by the main
IDEs as complementary benefits.

<<use>>

FileManager

- gefFileName(entityName : String, type : FileType) : String
- getPath(package : String, type : FileType) : String

- ode : String, path : String, entityName : String, type : FileType) : boolean

- makeDir(package : String, type : FileType) : String

- formatFile(absolutePathdFileName : String) : boolean

- ENTITY_SERVICE : String -

- ENTITY_SERVICE_IMPL : String ' '

- GENERIC_DAO : String | Ssuses>>
- GENERIC_DAO_IMPL : String

- DAO_FACTORY : String

- SERVICE_FACTORY : String

- ENTITY_MANAGER_PROVIDER : String
- SERVICE_PROVIDER : String

- JAVABEANS : String

- BUSINESSCLASS : String

<<enum>>
FileType

- ENTITY : String
- ENTITY_DAO : String

1 <<call>>
'

external |
|

TemplateManager

- entities : Set<Class>

<<resource>>

+ start(metamaodel : Class) : void ot

- createEntity(entity : Class) : boolean
- getTemplateName(type : FileType) : String

T —aeee> | 9 : String, type : FileType) : String
777777777777777 - generateCode(entity : Class, type : FileType) : boolean

- generateCode(entities : Set<Class>, type : FileType) : boolean

<<call>>
'

FreeMarkerUtils

- parser2T : Map, templ

|
|
|
| Boundary trol
I
I
|
|

[Template
1 I 1
1 L 1 L

Figure 4. UML model of the source code module

Regarding the design, developers were obliged, during the
development of the old module, to elaborate the “embedded
templates” and processing logic (i.e., engine) of such templates
in parallel. In this new version, the processing logic was
abstracted to a simple class (TemplateManager class) and
developers may devote their time in the preparation of code
templates for software entities. Thus, a significant gain can be
obtained when our RA is instantiated in a different domain
that needs of changes for generating new entities.

As development approaches, two types were identified. The
old module was developed based on internal approach and the
new one based on external approach. As reported in previous
feature, “embedded templates” and engine were developed by
the developers in first approach (internal). This task was con-
sidered too costly (e.g., time and cost) to the developers when
our RA had to be instantiated for a new application domain.
On the other hand, a well-defined segmentation between code
templates and engines was developed in the second approach
(external). Thus, developers can coordinate their efforts in
the development of code templates, since the engines of such
templates were already implemented.

In the context of this paper, flexibility and maintainability
can be considered related features because the first may assist
or impair the second or vice-versa. According to previous para-
graph, this new module has been more susceptible to change
than the old one. In other words, when our RA is instantiated to
meet a new domain, only the required entity templates should
be developed. In addition, a significant minimization of code
lines for processing templates in this new version compared to
previous one must be highlighted. Therefore, this aspect can
be considered highly favorable to maintain this new module.

V. CASE STUDY

In this section, we present a case study to evaluate the
applicability of the generator module of source code. The main
purpose of this study is to demonstrate the real value of this
module for our RA and, hence, for the SaS development. In
previous work, we have instantiated our RA in Java and some

validation types were conducted. Therefore, we will approach
the same studies in this paper; however, emphasizing the use
of the module presented in this paper. Next, a brief description
of our subject application and the empirical strategies adopted
for conducting this case study is addressed.

Subject Application. RA4SaS enables structural and be-
havioral adaptation at runtime [1]. Thus, for space reasons,
only the structural adaptation was chosen for our empirical
analysis, since this type of adaptation is sufficient to show
the applicability of this module for the generation of source
code. Thereby, a software entity will be used in the scope
of this empirical study to meet two levels of granularity:
(1) association of entity, which represents the addition of new
information (i.e., entities) through the following relationships:
aggregation, composition or association. In this paper, the
composition relationship will be presented; and (ii) extension
of entity, which represents the addition of new information
(i.e., entities) by means of an inheritance relationship.

Empirical research strategy. Figure 5 illustrates the
Customer software entity and the changes (i.e., association of
entity and extension of entity) that will be applied to it. Before
describing the case study, it is noteworthy that this entity
belongs to the information system context for the bookstore
management. Thus, to illustrate the first type of adaptation
(i.e., association of entity), the original entity (Customer),
initially developed to act in a local system, will be adapted to
act in a web system with authentication. Based on this context,
a Login entity with two attributes (username and password)
must be created and added to the Person entity by means
of a composition relationship. This entity (Person) receives
the adaptation changes because it has an annotation (from
“Annotation” module) that determines where such changes can
be inserted. Then, a brief description of the adaptation process
will be presented, but, for space reasons, the implementation
commands are not shown in this paper.

Original entity Contact Association of entity
- homePhone : String Too oo
- String 4 P
- mobilePhone : String - username : String ko - name : String
- email : String - password : String [Nhas | - birthDate : Date
+ Contact() +Login() + Person()
A 1
Address has @ 1 Extension of entity
- street : String
- number : int e Berson Customer
- neighborhood : String - name : String N
iy : String o CbirthDate - Date individualRegistration : long
- state : String e + Customer()
- zipCode : String erson() £|§
+ Address() Lﬁ
Customer Student
- individualRegistration : long - academicRecord : long
+ Customer() + Student()
. : < » .
Figure 5. Adaptation types for the “Customer” software entity

To conduct the adaptation of the Person entity, the adapta-
tion process of our RA will be used. In short, a metamodel
(Figure 2) for this entity must be instantiated by the ‘“Reflec-
tion” module so that the changes to be incorporated into it.
Thus, a Login entity (i.e., an instance of Class — Figure 2)
composed of two attributes (i.e., username and password —
instance of FieldClass) is created in other metamodel (i.e.,
in a different plan). To associate these entities, the Person

metamodel must receive an attribute from Login metamodel,
i.e., the entity list attribute (entityList) of the Class class.
Metadata as type of relationship (e.g., composition), multiplic-
ity (e.g., ONE-to-ONE), and navigability (e.g., bidirectional),
also are provide in this step.

To show the extension of entity, it will be considered
the modification of new Customer software entity. Now, this
entity acts in a web system with authentication for book-
store management and it will be adapted to act in school
management system. Similarly to the previous adaptation, the
Person metamodel was instantiated so that a new entity was
added via inheritance relationship. To do so, a metamodel for
Student entity with academicRecord attribute must be created
and associated with Person metamodel. Finally, specifically
for this type of relationship, metadata determines the type of
association (e.g., EXTENDS).

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the design and implementation of a
module for automatic generation of source code for SaS.
This module is part of a wider project, i.e., a RA4SaS that
aims to support the development and adaptation of software
entities at runtime [1]. Using this RA, software entities are
transparently monitored and adapted at runtime without user’s
perception and developer’s involvement. This RA uses a set
of modules that coordinately work in an ‘“assembly line”,
i.e., a software entity is automatically disassembled, adapted,
and reassembled by the modules in an automated process. As
discussed in Section IV, this new module aims to optimize the
generation of source code and, at the same time, to boost the
SaS development. Thus, the main contributions of this paper
are: (i) SaS area, since we have a means that enables the
development of self-adaptive software entities and it allows to
adapt them at runtime; (ii) software architecture, because we
have proposed the first RA for SaS based on reflection and,
most importantly, we have worked in its evolution; (iii) soft-
ware engineering community, since we believe that our RA
may be adequately used together with software development
processes that have been used by companies, since they seem
to be complementary.

As future work, some activities are being planned: (i) the
first is related to case studies that will be conducted for
evaluation of the module presented in this paper, since the
case study reported in Section V does not cover all cases
and does not solve all problems related to software adapta-
tion at runtime; however, other types of adaptation must be
investigated; (ii) the second is related to the use of our RA
in different domains, since we can get some indicators as
flexibility and maintainability of this module; (iii) the third
is related to execution performance of this module compared
to previous one; and (iv) the fourth is related to the use of our
RA in the industry, since we intend to evaluate the behavior
of this module when it is applied in larger environments
of development and execution. Finally, we have a positive
scenario of research, intending to make this module (and our
RA) become an effective contribution to the SaS community.

ACKNOWLEDGMENT

This research is supported by PROPe/UNESP and Brazilian
funding agencies (FAPESP, CNPq and CAPES).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

F. J. Affonso and E. Y. Nakagawa, “A reference architecture based on
reflection for self-adaptive software,” in SBCARS’ 13, 2013, pp. 129—
138.

F. J. Affonso, G. Leite, R. A. P. Oliveira, and E. Y. Nakagawa, “A
framework based on learning techniques for decision-making in self-
adaptive software,” in SEKE’ 15, 2015, pp. 1-6.

J. V. Bergen, “Velocity or freemarker?” [On-line], World Wide
Web, 2007, available in: http://www.javaworld.com/article/2077797/
open-source-tools/velocity-or-freemarker.html, Accessed on March 08,
2017.

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1-42, 2009.

B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. An-
dersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Seru-
gendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Miiller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle, Software Engineering for Self-Adaptive Systems: A Research
Roadmap. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
1-26.

F. J. Affonso and E. L. L. Rodrigues, “A proposal of reference architec-
ture for the reconfigurable software development,” in SEKE’ 2012, San
Francisco, USA, 2012, pp. 668-671.

G. Coulson, G. Blair, and P. Grace, “On the performance of reflective
systems software,” in PCCC’ 2004, 2004, pp. 763-769.

F. J. Affonso, M. C. V. S. Carneiro, E. L. L. Rodrigues, and E. Y.
Nakagawa, “A reference model as automated process for software
adaptation at runtime,” IEEE Latin America Transactions, vol. 13, no. 1,
pp. 214-221, 2015.

IBM, “An architectural blueprint for autonomic computing,” [On-
line], World Wide Web, 2005, available in: http://www-03.ibm.com/
autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf, Ac-
cessed on March 08, 2017).

P. Maes, “Concepts and experiments in computational reflection,” in
Object-oriented Programming Systems, Languages and Applications
(OOPSLA’ 87), New York, NY, USA, 1987, pp. 147-155.

J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in FOSE”’ 07, 2007, pp. 259-268.

D. Weyns, S. Malek, and J. Andersson, “Forms: a formal reference
model for self-adaptation,” in ICAC’ 2010, 2010, pp. 205-214.

C. E. Silva and R. De Lemos, “A framework for automatic generation
of processes for self-adaptive software systems,” Informatica Journal,
vol. 35, no. 1, pp. 3-13, 2011.

E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A reference
model of reference architectures,” in WICSA/ECSA’ 2012, 2012, pp.
297-301.

R. High, S. Kinder, and S. Graham, “Ibm’s soa foundation - an archi-
tectural introduction and overview,” 2005, available in: http://signallake.
com/innovation/soaNov05.pdf, Accessed on March 08, 2017.

E. Y. Nakagawa, F. C. Ferrari, M. M. F. Sasaki, and J. C. Maldonado,
“An aspect-oriented reference architecture for software engineering
environments,” Journal of Systems and Software, vol. 84, no. 10, pp.
1670-1684, 2011.

A. FreeMarker, “What is apache freemarker?” [On-line], World Wide
Web, 2016, available in: http://freemarker.incubator.apache.org/, Ac-
cessed on March 08, 2017.

L. M. Daniele, E. Silva, L. F. Pires, and M. van Sinderen, A SOA-Based
Platform-Specific Framework for Context-Aware Mobile Applications.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 25-37.

S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo,
A. Mamelli, and G. Papadopoulos, “A development framework and
methodology for self-adapting applications in ubiquitous computing
environments,” Journal of Systems and Software, vol. 85, no. 12, pp.
2840-2859, 2012.

P-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing, 2005.

S. Dobson, S. Denazis, A. Ferniandez, D. Gaiti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of
autonomic communications,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 1, no. 2, pp. 223-259, 2006.

F. J. Affonso, G. Leite, and E. Y. Nakagawa, “Dms-modeler: A tool for
modeling decision-making systems for self-adaptive software domain,”
in SEKE’ 16, 2016, pp. 617-622.

