
DOI reference number: 10.18293/SEKE2017-170

An Approach to Mobile Application Testing Based on Natural

Language Scripting

Chuanqi Tao

①
, Jerry Gao

②③
, Tiexin Wang

①

① College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

②Department of Computer Engineering , San Jose State University, USA

③Taiyuan University of Technology, Taiyuan, China

Correspondence to: jerry.gao@sjsu.edu

Abstract: With the rapid advance of mobile computing

technology and wireless networking, there is a significant increase

of mobile subscriptions. This brings new business requirements

and demands in mobile software testing, and causes new issues and

challenges in mobile testing and automation. As there are multiple

platforms for diverse devices, engineers suffer from the different

scripting languages to write platform-specific test scripts. In

addition, a unified automation infrastructure is not offered with the

existing test platform. This paper proposes a novel approach to

mobile application testing based on natural language scripting. A

Java-based test script generation approach is developed to support

executable test script generation based on the given natural

language-based mobile app test operation scripts. A prototype tool

is implemented based on some open sources. Finally, the paper

reports empirical studies to indicate the feasibility and

effectiveness of the proposed approach.

KEYWORDS: mobile application testing; test automation;

scenario-based testing; behavior-based testing

1. Introduction

Today mobile computing is the beginning of another

revolution that is going to sweep the consumer industry with

its fast paced growth. The demand for smart phones and

tablets coupled with their expensive data plans is already

soaring high and is a trillion dollar industry. As mobile APP

and mobile application vendors, they have encountered the

following critical issues. Testing mobile apps on different

mobile platforms and various devices becomes very costly

and tedious due to the fast upgrading of mobile devices, and

rapid updates of mobile platforms and technologies. Testing

mobile web applications on diverse mobile browsers on

different devices become very difficult and costly due to

increasing mobile scalability, constantly updates of mobile

devices and mobile technologies, diversity of involved

mobile web technology, and fast upgrading mobile

application services [1, 2, 3, 18].

 Most of the present research work focuses on providing

solutions to the technical problems in the following areas: a)

mobile app white-box testing methods; b) GUI-based test

technique for mobile apps [5]; c) usability testing [6]; d) ad

hoc scripting test tools; e) wireless network testing [9].

There are two challenges in mobile testing: the first issue is

too costly to deal with diversity of mobile test environments

on varieties of mobile devices, and the other is the lack of

cost-effective method and platforms to support a unified

mobile test automation crossing different mobile platforms

on diverse devices. Most of the existing mobile testing tools

support GUI-based functional testing and few support

load/performance testing. Currently, a unified automation

infrastructure is not offered with the existing test tools. In

addition, there is lack of well-defined mobile test scripting

method to deal with the massive multiple mobile test

running. Therefore, test automation central control is needed

to support behavior-based testing or scenario-based testing

at multiple levels.

In this paper we develop practical solutions and design a

unified mobile test platform to address the needs and

limitations. The intent is to develop a unified system that

enables test engineers to dynamically test the mobile

applications without the dependency on any scripting

language. The proposed approach will enable test engineers

to define the scenarios to be tested in plain natural language

that supports seamless and efficient testing of mobile

applications. In this approach, we attempt to design a system

capable of testing the properties of the application

automatically once the scenarios are written for a set of

features from natural language. As the test cases can be

purely user written stories, we can simple use natural

language to write the functionality and scenarios to test, and

then script the code to perform those tests automatically.

Further, the code to execute these tests would be a part of

step-definitions in the overall test automation framework.

The paper is structured as follows. The next section

presents the background and related work. The architecture

of the BDD-based natural language processing analysis is

discussed and the designed and implemented prototype tool

for the proposed approach is presented in Section 3. Case

studies of testing on several mobile apps are shown in

Section 4. Conclusion and future work are summarized in

Section 5.

2. Background and Related Work

2.1 Background

Behavior driven development (BDD) includes a work flow

which requires the software developers to test the behavior

DOI reference number: 10.18293/SEKE2017-170

of a piece of code as and when it is developed [21, 23]. It is

used by the stakeholders to verify if the product approach is

correct or wrong. BDD is based on scenarios to check the

validity of the system. Using this design flow based on the

scenarios will allow us to analyze the whole piece of code,

scenario by scenario. This not only helps developers

understand the functioning of the component, the

stakeholders can also verify the step process. BDD is

written in natural language which is easier for both the

parties to understand and verify the functionality. Natural

language allows the developers to see if there is any

ambiguity in the thought process of a system due to a

complicated process. BDD works in a sentence by sentence

approach rather than taking the whole code as a whole. It

allows everyone to see which line is getting the correct

result and which is not. As the test cases can be purely user

written stories, there is no need to write test cases in code.

Therefore, we can use natural language to write the

functionalities and scenarios to test, and then script the code

to perform those tests automatically. Thus, we can easily

write human understandable user stories and this can enable

even beginners to test the applications. Further, the code to

execute these tests would be a part of step-definitions. This

acts as a layer of abstraction and promotes a series of

advantages and efficiencies in mobile application testing.

2.2 Related Work

Up to today, many papers have been published to address

different testing areas in mobile applications. These areas

include such as white-box and black-box testing, quality-of -

service testing, wireless connectivity testing, and test

automation frameworks.

Existing white-box testing methods are still applicable to

mobile apps. For example, Java Pathfinder [1] is a mobile

program verification tool supporting white-box mobile Java

program testing. Engineers can use this tool to detect race

conditions and deadlocks based on UML state machines and

symbolic execution. Mahmood and his colleagues [2] use a

white-box approach to generate test cases with two

program-based models (call graph and architectural) to

achieve mobile program code coverage. Many black-box

testing techniques are useful in mobile apptesting. Random

testing and the scenario-based testing method [3] are good

examples. GUI-based testing has been discussed in

numerous papers. For instance, Anand and his colleagues [4]

introduced an automated testing approach to validating

mobile GUI event sequences for smart-phone apps.

Similarly, Amalfitano and his colleagues [5] presented a

tool AndroidRipper that uses an automated GUI-based

technique to test Android apps in a structured manner.

There are many tools that support BDD such as cucumber,

jBehave, twist etc. In recent times, a large number of mobile

testing tools have been developed to support mobile

development [17, 21, 23]. As the number of mobile products

is increasing, the testing of these products is important. We

need to choose the testing tool that best suits the product.

Thereby, increasing demand for mobile devices has lead to

the needs for developing tools to test them at a high level.

Based on our research, we found that most of the testing

tools either perform the GUI testing or load and

performance testing. But all the tools have some limitations.

For instance, many tools require engineers to learn different

scripting languages in order to write platform specific and

tool specific scripts which would be difficult for them.

However, engineer still need new test models to address

special needs in testing mobile applications.

Unlike the existing research, our goal in this paper is to

address the growing needs of the mobile market like the use

of natural language to test the mobile applications. Our

approach aims in providing solution to such problems and

our research has a wide impact on the market which keeps

on changing rapidly.

3. BDD-Based Natural Language Scripting for

Mobile Application Test Generation

The order of behavior driven development in the form of

acceptance tests is as follows.

(a) A scenario is described to define the action or

behavior of the system to be tested;

(b) Step definition is the part where the natural language

is converted into the actual working code based on

the mapping of the constructs of the natural language.

A specific regular expression is used to determine the

code which is to be executed on reading the sentence;

(c) A code skeleton is needed to comply with the tool

that is being used, so that efficient codes can be

written and run;

(d) Codes in the code skeleton are then run which will

show us the results. This will verify if the code has

passed or failed depending on the scenario.

We used the tool cucumber (https://cucumber.io/to) to

run the nature language scripts written in Gherkin language.

The server side code i.e., the step definitions for cucumber

are written in Ruby language which contains all the

definitions and classes needed to test the functionalities of

the mobile app. Cucumber runs and points out the steps

which have been used but not yet defined and prompts the

user to define each of those steps. These step definitions can

be written in any language where we used Ruby for defining

steps in our approach. The framework Calabash

(http://calabash.sh) is used to support automated tests

written in ruby and Gherkin. The framework contains all the

scenarios in the feature file written in nature language,

Gherkin. It also contains the step definitions which act as a

server side code written in Ruby language. A number of

self-defined functions are used in our current approach.

In brief, the process of BDD for mobile testing here

includes scenario description, step definition, code skeleton,

and implementation. Figure 1(a), (b), (c), and (d) shows the

http://calabash.sh/

DOI reference number: 10.18293/SEKE2017-170

examples of BDD in the scenario of telephone call.

Figure 1 A sample BDD process

3.1 Modeling Semantic Relation of Natural Language

In order to obtain a semantic relation between the keywords

of the defined language, we need to put together the

sentence in a syntactical manner. Both these parsers will

help us create a Phrase Structure tree (PST). This phrase

structure tree will be the backbone of our natural language.

Our approach will try and break all the keywords to be used

into skeleton codes. We firstly divide the language into

grammatical components, and then define each and every

grammatical component. Secondly, a class and function is

tied to every component. Thirdly, we define the code for

each and every specific tie up. Finally, we run the scripts to

return the behavior. Figure 2 shows some examples on how

to break a sentence into a PST. Figure 3 presents some key

words in our language (bold words). When a part of natural

language has been written, a parser is required to break the

language into components and relate with the skeleton code

in the background.

Figure 2 PST examples

Figure 3 A sample keywords in our language

3.2 Design and Implementation for the Approach
This section presents the developed software system

architecture and explains about the involved components

and their relations and connectivity.

Figure 4 shows the workflow of the designed system. The

blue colored components are developed in our approach.

Most of the yellow colored components can be built from

the existing work and some open source tools. The Gherkin

extension is implemented where the majority of the

functionality and logic is defined. The intelligence goes in

extending the behavior of Cucumber by defining extensions

based on scenarios written in nature language. The part

enclosed in the dotted lines is the work flow of test scripting

in the solution. Our approach aims to design a prototype

systematic tool which can support to generate mobile

application testing scripts based on the requirements of the

user input. The user input determines which script to be

selected from the database and which environment to set up.

We analyze the user inputs and categorize them into three

different parts. Then these parts will be segregated into the

Gherkin extension which forms the scripts based on the user

inputs. Next, some implemented key components and used

technology are discussed in details.

Figure 4 The workflow of the designed system for mobile

application testing

DOI reference number: 10.18293/SEKE2017-170

User inputs - Three types of user inputs are shown in Figure 4.

The first set of inputs refers to the environment parameters. These

set of options is predefined by the system user and would be

allowed to choose the options according to the test suite or the

test script. Test automation scripts in behavior driven

development will be supplied by the user for automating test

scripts execution. These scripts are being handled by some

other team. The third input would be the required test

scenarios for testing the application. The test scenarios are

implemented at a multiple level.The existing work only

focuses on one level scenario that was being executed. In

this approach, we try and implement the scenarios at

multiple levels.

Gherkin extension - Gherkin is a simple natural language

based programming language. It does not have a very

complex and detailed syntax. Only a few keywords are

required to use gherkin as a language. The input supplied by

the user is processed by the Gherkin extension. When we

run the gherkin scripts in cucumber, it generates a report

based on the keywords and sentences provided no matter the

script will run or not. If it runs, then we check if it behaves

in the way we have defined in gherkin script. After that, the

related information is sent to the Mobile Test generator (the

component shown in Figure 4) for execution.

Mobile test generator - In this mobile test generator, all the

additional functionality and logic is applied to define the test

scripts. The Cucumber understands the natural language

based scripts, while internally uses Java/ Ruby language for

procession. The interactions among the servers happen by

using the defined API's.

Defining Steps in Cucumber- We used the tool cucumber

to run our natural language scripts written in Gherkin

language. The server side code i.e., the step definitions for

Cucumber are written in Ruby language which contains all

the definitions and classes needed to test the functionalities

of the mobile app. The sample features and scenarios are

illustrated as follows.

Cucumber Components- Features and Scenarios -

Following this approach for defining the steps will make the

steps/scenarios more complete and readable though the

order is not critical. Cucumber runs and points out the steps

which have been used but not yet defined and prompts the

user to define each of those steps. These step definitions can

be written in any language where we used Ruby for defining

steps in our approach. Even if one step is pending, the entire

scenario is marked as pending. In case the first step fails to

execute or is pending, the entire scenario is skipped. Step

definitions can be used and re-used and one step can be

called from another.

We have used the framework Calabash to support

automated tests written in ruby and Gherkin. It contains all

the scenarios in the featurefile written in natural language,

Gherkin. It also contains the step definitions which act as a

server side code which are written in Ruby language.

Calabash Android provides the client-server architecture.

We have included many custom defined functions which are

used in our current approach.

4. Case Studies

To apply the developed tool for dynamic mobile application

testing, we used several realistic mobile applications and

system. NDTV, Waze, and WordPress APP are selected for

the study objects. We created step definitions for multiple

apps to implement different functionalities and scenarios.

The operational flow to set up the calabash android and

finally run the test scripts is as below.

Step 1: To define the calabash android environment;

Step 2: To set up the apk parameters to build;

Step3: To obtain the apk and start the calabash console;

Step 4: To generate a feature directory;

Step 5: To run cucumber;

Step 6: Run the calabash android;

Step7: Calabash Android Dem Spec Created.

4.1 Study Results

Case 1: NDTV App- Syntax

Initially we started working on the NDTV new app for

testing the buttons and scrolling features of the app.

We defined multiple scenarios where a test engineer can

test different properties according to the requirements. Here

we explicitly defined 5 different scenarios. In the first

scenario we change the headline once the app is launched.

When the “news” shows, we define the steps to scroll down.

As recent headlines appear, we further scroll down and use

the button press feature to select the “recent” button on the

app. Then we wait for progress and again scroll down. Yet

again, we press the “trending” button and scroll down. In

this way, we can create multi-level scenarios for testing

different attributes of the application. We have used the

NDTV apk file from the Google Play and tested it using the

scenarios. When we try to run the calabash android gen

command, it creates a sub directory.

When all the cases are tested successfully, it displays the

results as passed including the number of successful

scenarios. The scenarios are executed on an android device

and the screenshots depict the execution summary for

different scenarios for NDTV app. Figure 5 presents the test

results when running the scripts for the app. Right below

NDTV we can see the text “News” which will be read by

the application as a starter sign to execute next steps in the

scenario shown in Figure 5(a). The next steps are directing

the application to scroll down the page three times. The

second screenshot shown in Figure 5(b) here shows the

same feature of the script file but a different scenario. Here

the second tab after “Top Stories” is clicked which can be

seen down below as “Recent”.

DOI reference number: 10.18293/SEKE2017-170

(a) (b)

Figure 5 Test results when running the scripts for 'NDTV' app

Case2: WAZE App- User Sign in Syntax

We further enhanced the functionalities of our approach and

implemented user sign-in feature for waze app as depicted

below. The scenario is to log into the application. The

scenario is defined as below.

The test engineer logs into the application and upon login

should see the User Agreement and then touch the Accept

check box. Next user touches the Login button and enters

the user id and password and then presses sign-in. Figure 6

shows the sample of syntax for testing the scenarios.

Figure 6 A sample syntax for testing the scenarios

Case 3: Wordpress App: Scenarios and Syntax

The next step was to execute some key functionalities for

WordPress App. The below execution summary depicts the

different scenarios for this app. Two scenarios are defined in

detail. The first scenario is to log into the app being a valid

user. The test engineer can validate the sign-in feature of

app using this natural language based scenario. As the user

gets to sign-in, it enters the username and password and then

presses the sign-in button. As the user enters the application,

it should see the “Posts” tab and press view for “more

options”. The user then logs out of the application. There is

a two second timer after which the user is prompted to sign-

in again.

The second scenario describes the scenario when the

login information is incorrect. The user should get a

message that “login information is not correct”. Figure 7

presents the feature of two scenarios.

Figure 7 A sample syntax for testing the scenarios

4.2 Study Limitations

While designing the system and developing the tool, we

faced several issues. Some of those issues are listed below.

We had used emulator for testing the apps which took

DOI reference number: 10.18293/SEKE2017-170

longer time to run the whole scenario. To improve this we

replaced the emulator with the android tablet we have and

reduced the running time. Regarding to the resign tool,

when the apps are tested, the .apk file needs to use the same

signature in our approach. To achieve this we used the re-

sign jar which is a drag and drop java tool that strips the apk

file from its signature and then signs it with our android

debug key and solves the issue.

5 Conclusions and Future Work
As more constructions and deployments of mobile APPs
and web applications on devices, engineers need more
quality validation research and test automation tools to deal
with the related issues and challenges. Currently, there is a
need for an autonomous test scripting architecture for
mobile apps, which we focus in this paper. This paper is a
step forward towards natural language scripting. The intent
of this work is to limit the dependency on any one scripting
language and come out with the universal widely defined
natural language.

The proposed approach has a lot of application scope in
the future industry. There is also a scope for automation in
the future as the present server side code requires manual
testing. This approach suffers from some limitations. For
example, the syntax is currently dependent on variables.
Thus if the variables associated change, the step definitions
need to be modified. The new id’s need to be extracted from
the app properties which is a complex problem in the known
space. Therefore, there is tremendous scope to automate and
reduce this dependency on the variables in the future work.

References
[1] H. van der Merwe et al., “Verifying Android Applications

Using JavaPathFinder,” ACM SIGSOFT Software Eng. Notes,

vol. 37, no. 6, 2012,pp. 1–5.

[2] R. Mahmood et al., “A Whitebox Approach for Automated

SecurityTesting of Android Applications on the Cloud,” Proc.

7th Int’l WorkshopAutomation of Software Test (AST 12),

2012, pp. 22–28.

[3] J. Bo et al., “MobileTest: A Tool Supporting Automatic Black

Box Test for Software on Smart Mobile Devices,” Proc. 2nd

Int’l Workshop on Automationof Software Test (AST 07),

2007, pp. 8–14.

[4] S. Anand et al., “Automated Concolic Testing of Smartphone

Apps,”Proc. ACM SIGSOFT 20th Int’l Symp. Foundations of

Software Eng. (FSE12), 2012, pp. 1–11.

[5] D. Amalfitano et al., “Using GUI Ripping for Automated

Testing ofAndroid Applications,” Proc. 27th IEEE/ACM Int’l

Conf. Automated SoftwareEng. (ASE 12), 2012, pp. 258–261.

[6] T. Kallio and A. Kaikkonen, “Usability Testing of Mobile

Applications:A Comparison between Laboratory and Field

Testing,” J. UsabilityStudies, vol. 1, no. 1, 2005, pp. 4–16.

[7] R. Mizouni et al., “Performance Evaluation of Mobile Web

Services,”Proc. 9th IEEE European Conf. Web Services

(ECOWS 11), 2011,pp. 184–191.

[8] T. Puhakka and M. Palola, “Towards Automating Testing of

CommunicationalB3G Applications,” Proc. 3rd Int’l Conf.

Mobile Technology,Applications & Systems, 2006, article no.

27, pp. 1–6.

[9] I. Satoh, “Software Testing for Wireless Mobile

Computing,“ IEEE WirelessComm., vol. 11 , no. 5, 2004, pp.

58–64.

[10] H. Song et al., “An Integrated Test Automation Framework

for Testingon Heterogeneous Mobile Platforms,” Proc. 1st

ACIS Int’l Symp. Softwareand Network Eng., 2011, pp.141–

145.

[11] E. Giordano et al., “MoViT: The Mobile Network Virtualized

Testbed,”Proc. 9th ACM Int’l Workshop Vehicular Inter-

networking, Systems, andApplications, 2012, pp. 3–12.

[12] C. Q. Tao, J. Gao, “Modeling Mobile Application Test

Platform and Environment: Testing Criteria and Complexity

Analysis”, Proc. the 2014 Workshop on Joining AcadeMiA

and Industry Contributions to Test Automation and Model-

Based Testing, 2014, pp 28-33.

[13] R. Buyya, et al., “Modeling and Simulation of Scalable Cloud

Computing Environments and the CloudSim Toolkit:

Challenges and Opportunities”, Proceedings of International

Conference on the High Performance Computing &

Simulation (HPCS), 2009, pp 1-11.

[14] W.T. Tsai, Y. Hang, and Q. H. Shao, “Testing the Scalability

of SaaS Applications”, Proc. IEEE International Conference

on Service-Oriented Computing and Applications (SOCA),

2011, pp 1-4.

[15] W. Hargassner, et al.,“A Script-Based Testbed for Mobile

Software Frameworks”, Proc. of International Conference on

Software Testing, Verification, and Validation, 2008, pp 448-

457.

[16] I. Satoh, “A Testing Framework for Mobile Computing

Software”. IEEE Transaction on Software Engineering, Vol.

29(12), 2012, pp 1112-1121.

[17] H. Muccini, A. D. Francesco, and P. Esposito, “Software

Testing of Mobile Applications: Challenges and Future

Research Directions”, Proc. International Workshop on

Automatic Software Test Automation, 2012, pp 29-35.

[18] J. Gao, et al., “Mobile Application Testing: A Tutorial”, IEEE

Computer, 47(2), 2013, pp 46-55.

[19] J. Hartikainen, (July, 2013) Why use user story based testing

Retrieved (July, 2014) from

http://codeutopia.net/blog/2013/07/28/why-use-user-story-

based-testing-tools-like- cucumber-instead-of-other-tddbdd-

tools/.

[20] C. Siemens, (November 2013) The Search of Mobile App

Test Automation. Retrieved (June, 2014) from

http://engineering.zillow.com/the-search-for-mobile-app-test-

automation/.

[21] Testing Methods and Tools. Retrieved (July, 2014) from

http://www.methodsandtools.com/tools/tools.php

[22] B. Phar, Hooking into the Test Process. Retrieved (July, 2014)

from http://docs.behat.org/guides/3.hooks.html

[23] TDD Style of software development Retrieved(Aug, 2014)

from www.ibm.com

Acknowledgement

This paper is supported by the National Natural Science

Foundation of China under Grant No.61402229, 61502233, and

61602267; the Open Fund of the State Key Laboratory for Novel

Software Technology (KFKT2015B10); the Postdoctoral Fund of

Jiangsu Province under Grant No.1401043B, and the Natural

Science Foundation of the Jiangsu Higher Education Institutions of

China under Grant no. 15KJB52003.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6693676&refinements%3D4291944246%26queryText%3DMobile+Application+Testing
http://engineering.zillow.com/the-search-for-mobile-app-test-%20automation/
http://engineering.zillow.com/the-search-for-mobile-app-test-%20automation/

