Modeling of software process families with
automated generation of variants

Andrea Delgado' and Daniel Calegari®
Instituto de Commputacién
Universidad de la Repiblica
11300 Montevideo, Uruguay

ladelgado @fing.edu.uy, 2dcalegar@fing.edu.uy

Abstract—Modeling variability in software systems or
processes promotes reuse of core assets. In particular, variability
in software development processes allows customization of
activities, artifacts, roles and other elements to specific projects,
in what is called a process variant. Each process variant is
derived from a base common process, called process tailoring,
which is usually a tedious and error prone manual process. In
the last years, there has been a growing interest in supporting
the process variability approach, being v-SPEM a proposal that
integrates and advanced view of variability into the SPEM
standard. In this paper we present an extension of v-SPEM
support for final users, with automated generation of variants, to
help during process tailoring. The use of automatic mechanisms
reduces errors and simplifies the tailoring process by hiding the
details to the end users.

Keywords: software development processes, SPEM, process
variability, Software Process Lines, Model Driven Engineering.

I. INTRODUCTION

A Software Process is a specific type of business process
that focuses on the software development domain, as other
domains have their own typical processes such as banking,
health, or education. The Software Process Engineering Meta-
modeling language (SPEM 2.0 [1]), is commonly used as a
domain specific modeling language in this context.

Software processes may accept variants based on specific
requirements of an organization or project, leading to the
definition of a process family. A Software Process Line (SPrL)
[2], [3] aims to provide the techniques and mechanisms to
model the common (known as base process) and variable
parts (known as variation points) of a process family, as
well as to support the customization of each process variant
(known as process tailoring). The advantages of using the
SPrL paradigm to model software process families are well-
known, but although there are many proposals and some
tools to support them [4], the tailoring process is in general
carried out by final users with the aid of technical users,
following a not well defined, manual, error prone and complex
process. What is more, existing tools such as Eclipse Process
Framework (EPF) Composer] which implements SPEM, are
mostly targeted to process modelers with process families
modeling skills, not to final users.

DOI reference number: 10.18293/SEKE2018-019
'EPF Composer, https://www.eclipse.org/epf/

Félix Garcia
Escuela Superior de Informatica
Universidad de Castilla-La Mancha
13071 Ciudad Real, Espaifia
felix.garcia@uclm.es

With the aim of improving the automation of SPrL. by
reducing technical complexity to final users, the Model-Driven
Engineering (MDE) [5] paradigm can be considered as a very
promising approach. Based on this, we identify the following
research question for our work: How the automated tailoring
of specific variants from a process family can be supported
using the MDE approach?

In this paper, we improve the v-SPEM [3] approach, a
proposal of our own that integrates an advanced view of
variability into the SPEM standard. The base approach does
not formalize the variability process, its tool support is not
user-friendly (VEPF?)for non-technical users, and the tailored
process is hard-coded. In this context, we extend v-SPEM by
defining a process composed by roles, activities and tool sup-
port for MDE-based process tailoring. Tailoring is performed
by means of an ATL [6] model transformation, based on user’s
selection. The main contributions of our work are: i) a web tool
targeted for final users in which a process family model can be
imported and tailored to generate variants; ii) guidance on how
to perform such tailoring; and iii) a set of ATL transformations
which automatically generate the selected variant.

The rest of this paper is structured as follows. In Section II
we briefly present the SPEM standard and v-SPEM extension.
In Section III we present related work regarding existing
process variability proposals. In Section IV we describe our
proposal to support process tailoring within v-SPEM, includ-
ing transformations for the automated generation of variants,
and in Section V we provide an example of application. Finally
in Section VI we present conclusions and future work.

II. SPEM AND V-SPEM

The SPEM [1] standard defines specific elements for soft-
ware process modeling, such as: tasks, activities, roles, work
product, and processes. It also provides a way for mod-
eling variability, defining several variability types between
two related elements, such as: “replaces” which states that
the origin element substitutes the target element under some
assumptions, and “extend” which states that the origin element
expands the target element definition, probably by overriding
attributes and associations.

2y-EPF, https://alarcos.esi.uclm.es/vepf/variant_rich_process_paradigm/
vepf.html

Activity WorkProductUse RoleUse TaskUse
Base Element 1 ‘ O 0 <
Activity WorkProductUse RoleUse TaskUse
VarPoint ——J E Ly -
VPActivity VPWorkProductUse VPRoleUse VPTaskUse
y TR v 2l V .
Variant 7fJ = ‘0 =9
VActivity VWorkProductUse VRoleUse VTaskUse

Fig. 1. Main v-SPEM concepts [3]

However, it has some limitations from the perspective of
a SPrL, e.g.: it is not clear how common and variable parts
interact, and it is difficult to visualize the base process with
the common elements [7]. In this context, the variability
extension for SPEM (v-SPEM) [3], [7] provides means for a
direct specification of the variability in a process. Variability
is modeled in two ways: single (or on-point) variations for
expressing variability with respect to specific elements of the
process model (e.g.: tasks), and crosscutting variations for
expressing variability with respect to several elements at once.
Both kinds allow full modeling of software process families.
In this work we focus on single variations.

A process engineer defines the variation points over the
common process, specifying which variants can occupy these
points (i.e.: a ’replaces” relation), and during process tailoring,
each variation point is substituted with exactly one variant.
v-SPEM extends the SPEM metamodel and defines a new
notation to represent variants and variation points for SPEM
elements, as shown in Figure 1, in which a base SPEM
element, e.g.: Activity, can be defined as a variation point
(VPActivity) or as a variant (VActivity).

It also provides tool support as an extension of the EPF
Composer, as mentioned, the v-EPF The tool allows modeling
a process family and the Java-based generation of process
variants. However, it is devised exclusively for technical users,
and hard-codes the generation of variants.

III. RELATED WORK

Some proposals are also based on SPEM 2.0 models. Smar-
tySPEM [8] adds variability over SPEM by adding stereotypes
to the metamodel. It provides guidelines for identifying and
representing process variability, and process tailoring by vari-
ability resolution. Tool support is using any UML editor, which
are as EPF, targeted to technical users. It was defined after v-
SPEM and provides similar elements, and no generation of
variants. In CASPER [9] the authors define two input models:
the base process with variability, and a context model for
a specific project, specifying things such as: project size,
schedule, team size, among others. The approach provides
automated support for process tailoring based on a ATL [6]
model transformation, which takes the context model for the
inference of variants. Then, variants are deduced from the
values entered by the final user, leading to a variant they

generate based on previous knowledge. In this approach, the
final user is not able to choose between variants for the
variation points.

Other works are based on feature models (FMs), which
is the common approach in software product lines. In [10]
the authors use FMs for expressing variability with respect to
roles, tasks and work products. One drawback is that features
and relations of different types cannot be distinguished. Also,
the control flow of the process is lost. In [11] the authors
use a SPEM model for identifying variation points, and an
Orthogonal Variability Model associates each variation point
with the defined variants (as with FMs).

The Common Variability Language (CVL)* [12] is an ap-
proach for language independent variability modeling. Besides
that automated generation of variants is supported (but not
provided), models are hard to specify and maintain.

As a summary, all approaches provide support for variability
almost over the same type of elements. Most of them also
provide supporting tools, but not all are available. Also,
all approaches provide guides for process tailoring. Besides
CASPER, the generation of process variants in the other
approaches is carried out manually. Unlike CASPER, we let
the user choose each specific variant for each variation point.

IV. V-SPEM TAILORING SUPPORT

In what follows we describe the roles, activities, process
tailoring and tool support we propose for v-SPEM.

A. Roles

When managing process families, there are different stake-
holders involved, who participate in different activities and
are interested in different artifacts or work products, as in
the software development process itself. We have defined two
main roles within our proposal, the process engineer (technical
user) and the final user (non-technical user).

The Process engineer role, is in charge of modeling the
process family, thus it needs advanced software engineering
skills such as knowing about SPEM, v-SPEM, SPrLL and
process families, being familiar with process modeling and
using tools such as v-EPF for doing it.

The Final user can be a software project manager who has
knowledge of software engineering and software development
processes but, not necessarily about SPrLL and process families.
However, this user is the one who needs to tailor base
processes into a specific variant for each project he will lead.
Thus, for this kind of user, it is very valuable to have extra
support to carry out the tailoring process.

Based on these definitions we defined the main activities
each one must perform within the tailoring process with the
Use Cases shown in Figure 2. As it can be seen, the process
engineer is mostly involved with the technical activities to
define the base process, variability points and possible variants
to occupy them. The final user is the focus of the tailoring
process, for which we extended the v-SPEM existing sup-
port. Also, we add the possibility of working with a central

3CVL. http://www.omgwiki.org/variability/doku.php

Model
base process

Check-in
base process
in repository

Process
Engineer

[~
Tailor
process
Final user
<<extends>>
Export N, cmmem=mT
Process variant
Import
e Process variant

Fig. 2. Use cases for the tailoring process

Check-in
process variant
in repository

Check-out
process vari ant
from repository

<<extends>>

repository for models, both the base process and the generated
variants, such as GitHub*. The advantage of this is that the
organization can manage their models in a centralized and
consistent way, promoting the reuse of elements.

B. Process tailoring

The result of the process tailoring is a process variant,
defining a complete software development process, with no
variability, for the specific project we are customizing it to.
The process tailoring is part of the more general managing
process variability process, that is shown in Figure 3 modeled
with BPMN 2.0 as a business process.

As depicted in Figure 3, Model base process and Tailor
process are defined as sub-processes, meaning that several
tasks need to be carried out in order to obtain the base process
and then, from it, a process variant. We do not explicit the
Model base process sub-process since it is not the focus of
this paper, but we detail the Tailor process sub-process.

After obtaining the base process of the family (locally or
from the central repository) the final user has to derive the
specific variant from it, tailoring the base process. For doing
this, the final user has to select each variation point and, from
the possible variants, select the one that best fits the project at
hand. After this, an automated activity is performed to check
the restrictions associated with the selected variation point and
corresponding variant. An example of this can be if there was
a previous variation point that should have been filled with a
specific variant say A, to be able to select the variant B in
the following variation point. If the restrictions hold the final
user can continue selecting variation points and variants for it,
until there are no more variations point. When the restrictions
do not hold, the variant cannot be selected.

4GitHub. https://github.com/open-source

We enclose the import-export tasks in groups, to explicitly
show the interactions between the process engineer and the
final user via the base process and process variant generated.
This supports the use of a centralized repository, where all
base process and all generated variants can be stored and
reused within the organization. These tasks could have not
been shown in the process, since their corresponding work
products, i.e.: the process models, can also be seen as input
and output data from other activities. We explicitly model them
as tasks, since they show user tasks that the defined roles have
to carry out within the process.

Finally, after process tailoring is manually defined, we
execute an ATL [6] model transformations, automatically gen-
erating the corresponding process variant. This transformation
takes as an input the base process and the configuration model
with the information of the variants that the user selected to
occupy each variation point. For now, this variant has to be
imported in the EPF so the process engineer is able to publish
it as a web site using the facilities provided by the framework.
However, we are working on integrating these facilities in the
web site, so the generated process variant can be also published
by the final user.

C. Automated generation of variants

The automated generation of variants provides support for a
cleaner and repeatable tailoring process, with knowledge reuse
and less human errors. The ATL transformation takes as input
the base process which was modeled by the process engineer,
and the configuration model containing the information of the
variants selection made by the final user, when tailoring the
process. The transformation contains the knowledge regarding
which key elements of the variability modeling extension in
the vSPEM metamodel can be mapped to which key elements
of the SPEM metamodel, used to specify the generated process
variant, based on the information in the configuration model.

Since the base process of the process family also contains
elements that are common to all process variants of the family,
these elements with no variability have to be maintained in
the transformation, as they must be included in all process
variants. For this reason, we have separated the generation in
two main blocks: i) elements with no variability that have to
be copied as they are into the output process variant, and ii)
variation points (i.e.: elements with variability) whose selected
variant is defined in the configuration model, thus replacing
the variation point in the base process with the selected variant.

In Listing 1 we present an excerpt of an adaptation
rule to generate a variant from an Activity variation
point. The transformation takes a model conforming to the
v-SPEM metamodel (Vuma.ecore) and the configuration
model (Configuration.ecore) and produces another v-
SPEM model (the process variant). The rule takes an activity
variant point (vpActivity), selects the variant (by id in the
configuration model using and auxiliary function) that must
be used (VarActivity), and generates as output an activity
with the information provided by the selected variant.

o
g — — i — i m— o s _— — — —
E r [
o
2 c ‘
% o proorEeiJs:se | . cl'rcn‘)oon process & Publish
= g E p . watiant : process vatiant
= [} | |
: | £ | \
& Model base process .
E g
s |
; |
£ - .
g 5 E&thurt base @aurt process .
E E | process variant
|
_ ' Process tailoring i ’
o
ﬁgalectn'arlant Check
forthe
: : restrictions
wariation point
Are restrictions Are there more
ak? wariation points?
Fig. 3. Managing process variability process
Listing 1. Example of a variant generation rule = Library 57 e & 8

-— @path MM=/Vuma.ecore
—— @path MMl=/Configuration.ecore
-— (@path MM2=/Vuma.ecore

module vSpemYconf;
create OUT: MM2 from IN: MM,

IN1l: MM1;

//rule to adapt an Activity
rule AdaptActivity {
from
input_name: MM!vpActivity (
input_name->vpProcessElementVa ()
)
using {
variant: MM!VarActivity = MM!VarActivity
-> alllInstances () —-> any (vt | vt.guid
= thisModule ->
getSelectedVariantOfVarPoint
(input_name.guid) .id);
}
to
output_name: MM2!Activity (
name <- ’AdaptedActivity:’ +
variant.name,
guid <- input_name.guid,
presentation <- variant.presentation

D. Tool support

As mentioned before, we use as basis the v-EPF tool that
is an extension of EPF to support the v-SPEM proposal. It
adds a new folder named Process Lines in which Capability
pattern and Delivery process with variability are defined.
SPrLs are in this folder are structured as shown in Figure 4.
Folders Var Points and Variants contain the variation points
and variants defined, also holding the dependence relations

a =)+ new_plug-in
» = Method Content
+ [gh Processes
4| & Process Lines
4 @ Linea A
4 lgh Core Process
+ kg, Capability Patterns
il Delivery Processes
» |5y Var Points
> [y Variants
> Ha. Tailored Processes
. [[7 Configurations

Fig. 4. VvEPF tool supporting the vSPEM extension

between variants and variation points. In the Tailored process
folder, the process variants that can be derived are specified.
Although v-EPF already provides support for the process
tailoring, it is aimed at technical users with broadly knowledge
of EPF and SPEM. Also, process variability does not allow
nested variability, and publishing the process in the web is not
allowed for processes defined below the process line folder.
Based on the definitions we have presented in previous
sections, we also extended the v-EPF tool to support process
tailoring with focus on the non-technical final user. For this,
we have developed a web application shown in Figure 5.
The web application we have implemented can be used by
any final user in the organization and works together with the
central repository and the v-EPF used by the process engineer.
Figure 5 shows at the top the three main activities (tasks and
sub-process) to be performed by the final user as defined in
the BPMN 2.0 process shown in Figure 3: (1) import the base
process from the repository, (2) perform process tailoring by
resolving every variation point (once it is done, the application
runs the model transformation), and (3) export process variant.

1

Import base process

Import base process

Repositors Github Derectorio local

Repository ————
File a
Fig. 5. Screen-shot of the v-SPEM web tool
- . B__. 58 HO.@ ¥

Incegtion Elaboration Construction Transition

+
oy — |

v
ViarPt

(a)

e

1) (©)

Fig. 6. BPSOM variability with v-SPEM: (a) phase, (b) activity, (c) task

V. EXAMPLE OF APPLICATION

In this section we present an example of application of
our proposal based on the BPSOM’ software development
process we have defined for implementing service-oriented
applications from business processes [13]. The process was
specified using EPF. It is based on the Unified Process and
customized with specific roles, disciplines, activities, work
products and a delivery process consisting of four phases.

The process engineer uses v-EPF, under the process line
category, to model the base process adding variability in the
elements that v-SPEM provides support for: phases, iterations,
activities, tasks and roles, as shown in Figure 6. In (a) a new
phase between the construction and transaction phases was
added, with variants that also have variability for one activity
and for one iteration (b); in (c) variability for a task was added,
which also has role variability in the corresponding variants.
Then, the process engineer exported the base process with
variability to a GitHub repository.

The web application allows a final user to perform process
tailoring in three steps. First, the base process is imported
from the repository. Second, process tailoring is performed as
shown in Figure 7. The process is graphically depicted, in this

Shttp://alarcos.esi.uclm.es/minerva/bpsom/published/

case: the phases of the BPSOM base process with the phase
variation point we added. The variation point has a link that,
when pressed, shows the defined variants that can be selected
to occupy its place. After selecting the varPhasel variant
for the VPPhase variation point, the variant corresponding to
the nested VPAct ivity variation point must be also defined.
In this case, the VarActivity?2 variant is selected, which
includes the task TaskVar2. This variant also requires to
select the role that will perform the TaskVar?2 task, thus the
VarRolel is selected. Third, the generated variant can be
exported to EPF and published as a web site, which facilities
its use as the software development process for the selected
project within the organization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a proposal that provides support
for process tailoring in SPrL based on v-SPEM. Although the
approach already provides support for managing variability
in SPrL, it does not provide guidance for final users (there
were no explicit process) and its tool support for carrying out
the process tailoring was hard-coded and within a technical
user environment. With this motivation, we specified the
activities to be performed for the defined roles and extended
the tool support with a new web application focused on process

‘SPEM

2

Process tailoring

Variant configuration

Selectvariant

l

BAEILION

+

[select | Cancel :

Incaptesn Elaboration Comst
P Evarphasel
* * BvarPhases

Fig. 7. Web process tailoring: selection of a variant for a variation point

tailoring for final users. The tool provides guides and support
for each activity in the tailoring process. Besides it seems
that tool support was improved, since the web application is
friendlier for non-technical users than the Eclipse environment,
and also technical complexity is completely hidden for them,
we require further empirical studies with final users in order
to conclude. In particular, we expect to evaluate and improve
the approach by carry out a case study in a real organization.

The tool also provides organizations with a central repos-
itory for SPrL, laying the foundation for a systematic gover-
nance of their processes. Moreover, the automated generation
of variants provides support for a clearer and less error prone
process with respect to the traditional manual tailoring process.

We expect to improve the tool, as for example, publishing
generated process variants directly from the web application
without the round trip to v-EPF. Moreover, we expect to
improve our work for supporting crosscutting variations, as
defined in v-SPEM. Finally, although the paper focuses on
software processes, the generation of variants approach is quite
generic. In fact, we are currently working on applying the
approach in the context of BPMN 2.0 business processes [14].

ACKNOWLEDGEMENT

This work was partially funded by Comisién Sectorial de
Investigacién Cientifica (CSIC), Uruguay. We would like to
thank undergraduate students Fabiana Rolddn and Marcela
Viera, and CSIC grantees Emiliano Alonzo and Martin Prino
who worded with the tool and transformation.

REFERENCES

[1] OMG, “Software and Systems Process Engineering Metamodel (SPEM)
v2.0,” Object Management Group (OMG), Tech. Rep., 2008.

[2] D. Rombach, “Integrated software process and product lines,” in Uni-
fying the Software Process Spectrum: Intl. SW Process Works. 2005,
Revised Sel. Papers. Springer, 2006, pp. 83-90.

T. Martinez-Ruiz, F. Garcia, and M. Piattini, “Towards a spem v2.0
extension to define process lines variability mechanisms,” in SW Eng.
Research, Mgnt and Applications (SERA). Springer, 2008, pp. 115-130.
T. Martinez-Ruiz, J. Miinch, F. Garcia, and M. Piattini, “Requirements
and constructors for tailoring software processes: a systematic literature
review,” Software Quality Journal, vol. 20, no. 1, pp. 229-260, 2012.
S. Kent, “Model driven engineering,” in Integrated Formal Methods,
Third Intl. Conf., IFM 2002, Proceedings, ser. Lecture Notes in Com-
puter Science, vol. 2335. Springer, 2002, pp. 286-298.

F. Jouault, F. Allilaire, J. Bezivin, and I. Kurtev, “Atl: A model
transformation tool,” Science of Computer Programming, vol. 72, no.
1-2, pp. 31 — 39, 2008.

T. Martinez-Ruiz, F. Garcia, M. Piattini, and J. Munch, “Modelling
software process variability: an empirical study,” IET Software, vol. 5,
no. 2, pp. 172-187, 2011.

E. Oliveira, M. Pazin, I. Gimenes, U. Kulesza, and F. Aleixo, SMar-
tySPEM: A SPEM-Based Approach for Variability Management in
Software Process Lines. Springer, 2013, pp. 169-183.

J. Hurtado and M. Bastarrica, “Building software process lines with
casper,” in Intl. Conf. on Software and System Process. 1EEE Press,
2012, pp. 170-179.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Carnegie Mellon
University, Tech. Rep. CMU/SEI-90-TR-021, 1990.

K. Pohl, G. Bockle, and F. van der Linden, Software Product Line
Engineering. Springer, 2005.

E. Rouille, B. Combemale, O. Barais, D. Touzet, and J. Jezequel,
“Leveraging cvl to manage variability in software process lines,” in 2012
19th Asia-Pacific Software Engineering Conference, 2012, pp. 148-157.
A. Delgado, F. Ruiz, I. Garcia, and M. Piattini, “Business process so
methodology (BPSOM) with service generation in soaml,” in Advanced
Inf. Systems Eng. - 23rd Intl. Conf., CAIiSE 2011, 2011, pp. 672-680.
A. Delgado and D. Calegari, “BPMN 2.0 based modeling and customiza-
tion of variants in business process families,” in XLIII Latin American
Computer Conference, CLEI 2017. 1EEE, 2017, pp. 1-9.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

