
Bug or Not Bug? Labeling Issue Reports via User

Reviews for Mobile Apps

Haoming Li1, Tao Zhang1,2*, Ziyuan Wang3

1College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
2Key Laboratory of Network Assessment Technology, Institute of Information Engineering, CAS, Bejing 100093, China

3School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

{heulaoyoutiao, cstzhang}@hrbeu.edu.cn, wangziyuan@njupt.edu.cn

*Corresponding author: Tao Zhang

Abstract—A great number of mobile applications (apps) have been

released to the market. Therefore, software maintenance for these

apps become an important and challenging task. For each app,

developers usually submit issue reports to report the bugs, the

features, the questions, and other changes appearing in it. In the

process of software maintenance, developers refer to the

corresponding labels to decide which one should be fixed first. If

the label of an issue report is “bug” which means the report

describes a serious error, developers should fix the bug first.

Otherwise, if the label is not “bug” (e.g., feature or question),

developers can resolve it later. However, according to our

investigation, 36.7% of issue reports in top-10 popular mobile apps

are not labeled. In other words, there are not any labels in them.

It is difficult for developers to decide which issue should be

resolved preferentially. To resolve this problem, we propose a

method to verify whether an issue report describes a bug or not by

using user reviews. Developers usually extract useful information

from user reviews to maintain mobile apps. In this work, we utilize

tf • idf, Word2Vec, and Microsoft Concept Graph (MCG) to

compute the textual similarity between issue reports and user

reviews related to real bug in order to find the issue reports which

describe the real bugs. As a result, our approach with Word2Vec

performs the best among three similarity metrics.

Keywords-issue report; user reviews; simialrity metrics; mobile

apps; software maintenance

I. INTRODUCTION

Recently, the number of mobile devices such as smartphones
and tablet computers have been produced for a wider group of
people. These mobile devices result in the increase of the
number of mobile applications (apps). Therefore, maintaining
mobile apps is becoming important and challenging [1]. Fixing
bugs is a core task in software maintenance activities [2]. Once
a bug is found, a developer can upload an issue report to describe
this bug. The detailed information can help developers fix it.
However, we find that 36.7% of issue reports in top-10 popular
mobile apps were not labeled as “bug” or others. In this situation,
developers should verify whether these issue reports describe the
real faults or not. For a large number of issue reports, it is a time-
consuming work. Thus, it is necessary to develop an approach to
automatically label the issue reports instead of manual
versification.

DOI reference number: 10.18293/SEKE2018-059

In online app stores (e.g., Google Play Store, Apple Store),
users can evaluate each app by using scores and post their
reviews. These reviews are free-form text that may include
important information such as bugs that need to be fixed by
developers. The buggy user reviews can guide developers
resolve bugs appearing in apps. Therefore, the bugs appearing in
user reviews may be very close to the real faults reported in the
issue report so that they can help to verify whether an issue
report describes a bug or not. To the best of our knowledge, there
was no any work to study the relationship between user reviews
and issue reports in mobile apps.

In this paper, we propose an automated labeling approach to
verify whether an issue report describes a bug or not. First,
according to the suggestion mentioned in the literature [3], we
choose user reviews that have less than 3 stars or lower because
the reviews with few number of stars have high probability of
describing bugs. Second, we use SURF [4], a popular review
analysis tool, to automatically classify these user reviews into
five categories: information giving, information seeking, feature
request, problem discovery, and others. Next, we utilize natural
language processing techniques to pre-process the user reviews
in the category-problem discovery to build an index set. Third,
we compute the similarity scores between each candidate issue
report and the index set by using three popular similarity metrics

that include tf•idf [5], Word2Vec [6], and Microsoft Concept

Graph (MCG) [7]. If the similarity is more than a threshold, the
issue report is labeled as “bug”. Otherwise, the issue report does
not describe a software fault.

We perform experiments on user reviews and issue report
selected from 10 open source mobile apps on GitHub. As a result,

the average F1 scores of our approach using tf•idf, Word2Vec,

and MCG achieve 56.1%, 61.4%, and 58.9%, respectively when
the best threshold is set for each metric. The result denotes that
our approach with Word2Vec performs the best among three
similarity metrics.

We summarize the contributions of our work as follows:

• We first propose an approach to automatically label the
issue reports with “bug” by computing the similarity
scores between the issue reports and buggy user reviews.

mailto:cstzhang%7d@hrbeu.edu.cn

• We perform our approach on top-10 popular mobile
apps. The result shown that our approach with
Word2Vec performs the best among three similarity
metrics.

Roadmap. Section 2 introduce the background and motivation
of our work. In Section 3, we detail the proposed automated
labeling approach. Section 4 presents the experimental results.
In Section 5, we show the limitations of this work and
corresponding solutions. Section 6 introduces the related work.
Section 7 concludes the paper and introduce the future work.

II. BACKGROUND AND MOTIVATION

For each app, users can input free-text to comment it.

These comments are called user reviews. Since some user

reviews describe the real bugs, they can help us label the issue

reports as “bug” or not. Fig. 1 shows the examples of four

reviews in AntennaPod, which are collected from Google Play

Store.

Fig. 1 User reviews in AntennaPod

From these user reviews, we note that users find the running

problems of podcasts due to the update of the versions. They

post their comments in Google Play Store and give the

relatively low scores (i.e., less than 4 stars). In fact, this is a bug

appearing in AntennaPod. An issue report also describes it, we

show it in Fig. 2.

Fig. 2 An issue report with the label- “bug”

We note that the developer reported a problem when he

downloaded podcast files. The bug is also caused by the version

update. It is similar to the problems described in four reviews

shown in Fig. 1, especially for Review B.

The label of the issue report-#544 is “bug”, therefore, the

user reviews which describe the real faults have the close-knit

relations with the issue reports which are labeled by “bug”.

 According to our investigation for issue reports in top-10

popular mobile apps, we find that 36.7% of issue reports are not

labeled (See Table Ⅰ). In Fig. 3, we show an example of

unlabeled issue report.

Fig. 3 An example of unlabeled issue report

 In Fig. 3, we can see that the reporter did not label this

issue report. In such a situation, a bug fixer should verify

whether the issue report describes a bug or not so that he or she

can decide the priority of resolving the issue. Obviously, this is

a time-consuming task when he or she needs to resolve the

increasing number of unlabeled issue reports.

 When we carefully read the issue report-#237, note that the

report describes a crash problem appearing in AntennaPod. In

the other words, this is a bug. Thus, it should be fixed first. By

analyzing the relationship between the user reviews shown in

Fig. 1 and the issue report-#544 shown in Fig. 2, we think that

buggy reviews can help to verify whether an issue report

describes a bug or not. In the following sections, we introduce

the details of the method and the corresponding experiment.

III. RELATED WORK

A. Software maintenance for mobile apps

Software maintenance for mobile apps become an

important task due to an increasing number of mobile apps.

However, only a few research teams study this problem. Syer et

al. [12] analyzed 15 most popular open source Android apps,

and they found that the “best practices” of existing desktop

software development cannot be utilized for mobile apps due to

the different features. Bhattacharya et al. [13] executed an

empirical analysis of issue reports and bug fixing in open source

Android apps. They analyzed the bug-fixing process and the

quality of issue reports. Zhou et al. [14] conducted a cross-

platform analysis of bugs and bug-fixing process in open source

projects of different platforms such as desktop, Android, and

IOS. They analyzed the different features such as fixing time

and severity of bug-fixing process in these different platforms.

These studies on empirical analysis of issue reports and

bug fixing process of mobile apps give us the inspiration for

beginning this work. In our work, we not only analyze issue

reports, but also analyze user reviews. In addition, we utilize

Just can't seem to get the podcast files to download in

one go. Log just shows connection error and download

failed. Will have to keep downloading again and again

(luckily, it resumes from where it stopped) Pretty sure

that my wifi connection is not getting disconnected or

anything. Damn annoying, this. I use a Motorola E.

user reviews to label the issue reports which describe the real

software bugs.

B. User review analysis

In online app stores such as Google Play Store, Apple App

Store, and Windows Phone App Store, users can rate the apps

by selecting the stars from 1 (the lowest rating level) to 5 (the

highest rating level) and inputting the reviews. These reviews

describe users’ impressions, experience, and preference degree.

Therefore, they can be used by developers as a feedback to

facilitate the process of software maintenance. Some studies

focus on user review analysis to extract important information.

Palomba et al. [15] traced informative crowd reviews onto

source code change, and use this relation to analyze the impact

of reviews on the development process. Ciurumelea et al. [16]

analyzed the reviews and classify them. They also

recommended for a particular review what are the source code

files that need to be modified to hander the issue. Genc-Nayebi

and Abran [17] presented the proposed solutions for mining

online opinions in app store user reviews. Chen et al. [18]

proposed an approach to identify attackers of collusive

promotion groups in an app store by exploiting the unusual

ranking change patterns from user reviews.

In our work, we not only analyze and classify user reviews,

but also utilize the relation between user reviews and issue

reports to automatically label the unlabeled reports as “bug” or

“not bug”.

IV. METHOD

A. Framework

In this paper, we propose an automated labeling approach

to verify whether an issue report describes a real bug or not. Fig.

4 shows the framework of this method.

Fig. 4 The framework of automated labeling approach

From this figure, we first use Natural Language Processing

(NLP) techniques to pre-process the issue reports in our data

sets. These issue reports are treated as queries to be labeled.

Second, we classify user reviews into five categories:

information giving, information seeking, feature request,

problem discovery, and others by using an automated review

analysis tool. We extract the user reviews in problem discovery

as buggy reviews according to the suggestion proposed in the

literature [3]. Third, we also preprocess these buggy reviews to

1 http://www.nltk.org/

produce the buggy-review set. Finally, we compute the textual

similarity between each query and the buggy-review set by

using three similarity metrics that include tf•idf, Word2Vec,

and MCG. If the similarity score is more than the threshold, we

label this issue report to “bug”.

In the following subsections, we show the details of each

step.

B. Document Preprocessing

As a first step, we preprocess the issue reports in our data

set by using NLP technologies [8]. We use the python libraries

NLTK1 and TEXTBLOB2 to implement the following steps:

• Tokenization: an issue report is divided into a bag of
words (i.e., tokens), which can be used to compute the
textual similarity.

• Stop word removal: Some stop words such as “the”,
“a”, “are” are common words that are frequent in written
English. These words cannot provide more semantic
information. Thus, they should be removed according to
the list of WordNet English stop words.

• Stemming: the words should be transformed to their
basic forms (i.e., stems) in order to keep the high
accuracy when we compute the textual similarity. For
example, “providing” is changed to “provide”, and
“faults” is changed to “fault”.

• Nouns and verbs filtering: we adopt a part of speech
(POS) tagging classification to identify the nouns and
verbs from issue reports. Since these words are the most
representative, they are considered to compute the
textual similarity scores.

C. Review classification

In order to remove the uninformative reviews and find

buggy reviews, we adopt SURF [4], a state-of-the-art review

analysis tool, to classify them into five categories: Information

Giving, Information Seeking, Feature Request, Problem

Discovery, and Others. Because we focus on buggy reviews, we

only collect user reviews in the category Problem Discovery to

label the issue reports as real bugs.

To verify whether the classification is acceptable, we

randomly select 20% of user reviews in the category Problem

Discovery. The first author and one research assistant (RA)-Mr.

Jiachi Chen from the Hong Kong Polytechnic University are

responsible for checking whether each user review describes a

real fault. The selected user reviews are equally divided into two

groups. Each person is invited to check one group. In order to

reduce the possible bias, two persons exchange their data to

execute the verification again. The corresponding author can

make a final decision when the verification results are

inconsistent. As a result, we get the accuracy of 91.4%.

Therefore, the classification results are acceptable.

D. Structuring buggy-review set

When extracting the user reviews in the category Problem

Discovery, we preprocess these reviews using the same

2 http://textblob.readthedocs.io/en/dev/

approach described in Section Ⅲ.B. Then they are grouped into

buggy-review set to be used to compute the similarity scores

with issue reports.

E. Bug report verification

In our work, we propose an automated labeling approach

to verify whether an issue report is a bug or not. To implement

this purpose, we adopt buggy user reviews to verify bug reports

by computing the textual similarity between issue reports and

the buggy-review set via three similarity metrics that include tf

•idf, Word2Vect, and MCG. These metrics are introduced to

transfer the documents to different kinds of vectors so that they

can be input into cosine similarity function [9] to compute the

similarity scores. These metrics are presented as follows:

tf•idf: it is a popular metric to represent documents as

vectors of words. The value for each word is its tf-idf weight

which is defined by:

tf − idf weight = 𝑡𝑓𝑡,𝑑 × 𝑙𝑜𝑔
𝑁

𝑛𝑡
 , (1)

where 𝑡𝑓𝑡,𝑑 is an appearing frequency of term t in the document

d. 𝑙𝑜𝑔
𝑁

𝑛𝑡
 is the inverse document frequency which is a measure

of how much information the word provides. N is the total

number of documents while nt is the number of documents

which contain term t.

When we get all words’ tf-idf weights, a document can be

transferred to a vector of the tf-idf weights. Thus, we can use

the cosine similarity function to compute the textual similarity

between an issue report IRi and buggy-review set BRS. It is

defined by:

sim(𝐼𝑅𝑖 , BRS) =
∑ 𝜔𝑘𝑖𝜔𝑘

𝑛
𝑘=1

√∑ 𝜔𝑘𝑖
2𝑛

𝑘=1 ×√∑ 𝜔𝑘
2𝑛

𝑘=1

 , (2)

where 𝜔𝑘𝑖 and 𝜔𝑘 denote the weight of kth word in IRi and BRS,

respectively. They are computed by tf-idf weight (see formula

(1)).

Word2Vec: it maps a word into semantic word embedding.

A large corpus of text can be transferred to a vector space, and

each unique word in the corpus being assigned a corresponding

vector in the space. We utilize Word2Vec with the skip-gram

model [10]. In k dimensions (k=100 in our work), each word

can be represented as the vector defined as follows:

𝑣𝑒𝑐(𝑤𝑜𝑟𝑑)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =< 𝑣1, 𝑣2, … , 𝑣𝑘 > (3)

 Thus, a document can then be mapped into the space by:

𝐶𝑠 = 𝜃𝑇 ∙ 𝐻𝑊 , (4)

where 𝜃𝑇 is the vector of the tf-idf weights of the words in the

document computed by formula (1) and 𝐻𝑊 is the word vector

matrix. In this matrix, the i-th line represents the word vector of

the word i. The matrix is constructed by concatenating the word

vectors of all words in the document. Via matric multiplication,

a document is transferred to a vector of semantic categories,

denoted by 𝐶𝑠.

 When we get the word vectors of the issue report and

buggy-review set, we can use cosine similarity defined by

formula (2) to compute their semantic similarity.

3 https://github-ranking.com/repositories

MCG: it maps text format entities into semantic concept

categories with some probabilities. This similarity metric can

also overcome the limitation in traditional token-based models

such as tf•idf that only compares lexical words in the document.

It captures the semantics of words by mapping words to their

concept categories. By using MCG, a word can be represented

as its semantic concept categories with probabilities. For

example, the word “Baidu”, which can be categorized into a

large number of concepts such as “company”, “software”, and

“search”. Therefore, a word can be transferred to a concept

vector so that a document can then be mapped into the space by:

𝐶𝑑 = 𝜃𝑇 ∙ 𝐻𝑀 , (5)

where 𝜃𝑇 is the vector of the tf-idf weights of the words in the

document computed by formula (1) and 𝐻𝑀 is the concept

matrix, which is constructed by concatenating the concept

vectors of all words in the document. Via matrix multiplication,

a document is transferred to a vector of concept categories,

denoted as 𝐶𝑑. Actually, the document is mapped to the concept

space by assigning a probability to each concept category to

which the document belongs. This probability is estimated by

summing up the corresponding probabilities of all the words

contained in the document.

 When we get the concept vectors of the issue report and

buggy-review set, we can use cosine similarity defined by

formula (2) to compute their semantic similarity.

 When the similarity score is more than the threshold, we

treat the issue report as the bug report. In other words, the issue

report is labeled as “bug”. Otherwise, the issue report’s label is

not bug.

V. EXPERIMENT

A. Setup of experiment

We collect the issue reports and the user reviews which

have less than 3 stars or lower from 10 open source mobile apps

in GitHub. Note that we treat the closed issue reports as the

experimental object because they have the whole records of life-

cycle so that it is easy to verify the experimental results. We

first download top-100 popular open source mobile apps

according to Ranking Repositories3 in GitHub as our candidate

projects, and then we filter out the projects which have less than

1400 reviews because a small number of user reviews can affect

the result of automated labelling. The scale of our data set is

shown in Table Ⅰ.

In this data set, we note that there are 36.7% (2921/7966

≈36.7) of issue reports are not be labeled. Therefore, the goal

of our experiment is to automatically label them using our

approach described in Section Ⅲ.

In order to easily verify our approach, we also utilize the

proposed approach to predict the label “bug” for the issue report

which had labeled as “bug”. If the final list includes this issue

report, the prediction is correct; otherwise, the prediction is

wrong. For unlabeled issue reports, we first label them

manually to verify the final result using our automated approach.

The first author and Mr. Jiachi Chen who is a RA at the Hong

Kong Polytechnic University are responsible for marking the

unlabeled issue reports. They all have more than 3 years

debugging experiences and are familiar with the projects in

GitHub. One person is responsible for labeling half of unlabeled

data while another person is responsible for labeling another

half of data. Then they exchange their data each other. If the

result is not consistent, a senior developer who has more than

10 years debugging experience and also has the experience to

develop the projects managed in GitHub is invited to make the

final decision for ensuring the reliability of the final result.

Table Ⅰ The scale of our data set
Project #reports #unlabeled

reports

#reviews Period

AntennaPod 1,107 382 2,082 03.08.2012-

21.12.2016

Automattic 222 44 1,394 18.01.2013-

30.11.2016

cgeo 1,434 331 4,466 18.01.2011

chrislacy 193 22 1,471

k-9 mail 783 337 4,456 15.03.2015-

23.01.2017

OneBusAway 314 30 2,103 16.02.2013-

28.06.2014

Twidere 653 245 2,031 06.07.2014-

16.12.2016

UweTrottmann 399 192 4,459 26.07.2011-

23.11.2016

WhisperSystems 1,524 1,170 4,443 26.12.2011-

17.01.2017

WordPress 1,337 168 4,433 08.03.2013-

14.01.2017

All 7,966 2,921 31,368

We utilize F1 score [11] to evaluate our result. F1 is a

frequently-used evaluation function, which is defined by:

F1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 , (6)

where Precision and Recall are computed by:

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (7)

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

Here, TP (i.e., Ture Positive instances) indicates the

number of instances (i.e., issue reports in our work) labeled

correctly, FP (i.e., False Positive instances) represents the

number of instances labeled incorrectly, and FN (i.e., False

Negative instances) shows the number of correct instances that

are not labeled by the approach.

B. Parameter adjusting

After we compute the similarity score between each issue

report and the buggy-review set by using three metrics-tf•idf,

Word2Vec, and MCG, the issue reports are labeled as “bug”

when the scores are more than the defined threshold. Therefore,

the threshold is the important parameter, which decides the

performance of our approach. Table Ⅱ shows the F1 scores of

10 projects when we select the different thresholds (0.1 to 0.9)

using Word2Vec. We highlight the best values when selecting

the corresponding threshold. Due to the limited space, we do

not show the adjusting process of the thresholds for 10 projects

by using other similarity metrics, i.e., tf•idf and MCG. But we

show them at our GitHub repository:

https://github.com/heulaoyoutiao/bugtag in order to let each

scholar easily reproduce our work.

C. Experimental result

We adopt the best threshold to implement our approach.

Table Ⅲ shows the Precision, Recall, and F1 scores of all

projects using three metrics.

From this table, we note that our approach using

Word2Vec shows the best performance due to the highest

Precision (47.26%), Recall (93.77%), and F1 scores (61.47%).

Our approach using MCG shows the second-best performance

while our approach using tf•idf shows the lowest performance.

We analyze the possible reasons for this evaluation result.

tf•idf adopts term frequency and inverse document frequency,

but it does not consider the term’s semantic concept. On the

contrary, Word2Vec and MCG also preserve terms’ semantic

and syntactic relationships. Therefore, our approach using

Word2Vec or MCG performs better than that using tf• idf.

Word2Vec performs the best may be caused by the

characteristics of our data sets. We will deeply analyze the

reasons in the future.

VI. LIMITATION

We only collected the issue reports and bug reports from

10 mobile apps managed by GitHub to perform our experiments.

These apps are selected according to Ranking Repositories in

GitHub. Thus, our approach may not be generalizable to other

projects. Even though we think that these popular projects are

representative, we would like to further explore more projects

in our future work.

Moreover, we only consider to automatically label the

“bug” for issue reports by computing the textual similarity

between buggy user reviews and issue reports. Machine

learning techniques can also be utilized to do this task. In this

future, we can consider to implement deep learning-based

automated labelling approach for recommending more labels

such as feature and question to unlabeled issue reports.

VII. CONCLUSTION AND FUTURE WORK

In this paper, we propose an approach to automatically

label an issue report as “bug” or not. This approach considers

the relationship between buggy user reviews and issue report. It

computes the similarity scores between them using three

metrics such as tf•idf, Word2Vec, and MCG. The experimental

result shows that our approach with Word2Vec performs the

best.

In the future, we will propose an approach and

corresponding system to automatically recommend more labels

(e.g., feature, question) for issue reports. Moreover, we consider

to utilize deep learning to tag these labels.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural

Science Foundation of China under grant 61602258, the China

Postdoctoral Science Foundation under grant 2017M621247,

the Heilongjiang Postdoctoral Science Foundation under grant

LBH-Z17047, and the Fundamental Research Funds for the

Central Universities under grant HEUCFJ170604.

https://github.com/heulaoyoutiao/bugtag

Table Ⅱ F1 scores (%) of 10 projects when selecting different threshold using Word2Vec

Threshold
F1 scores (%) of 10 projects

AntennaPod Automattic cgeo chrislacy k-9 mail OneBusAway Twidere UweTrottmann WhisperSystems WordPress

0.1 63.05 76.51 65.40 57.50 62.18 70.12 46.66 62.20 74.85 35.41

0.2 63.01 76.13 65.24 57.05 62.29 70.12 46.99 62.06 74.89 35.32

0.3 62.70 74.23 65.20 57.41 62.17 70.27 47.07 60.41 73.73 35.29

0.4 62.90 74.53 64.17 55.77 62.39 70.00 45.80 60.69 72.41 35.31

0.5 60.80 72.26 62.12 53.33 61.00 70.06 44.81 58.15 69.30 35.34

0.6 54.45 72.92 57.22 51.23 56.39 70.95 37.43 56.84 60.89 36.01

0.7 41.93 60.41 46.57 33.33 45.68 68.60 32.56 48.45 45.11 30.29

0.8 26.79 40.21 30.91 19.21 31.59 55.93 17.56 26.86 18.54 22.88

0.9 5.73 4.11 7.30 1.40 9.65 11.34 2.60 2.07 3.44 2.74

Table Ⅲ Performance of our approach using three similarity metrics when the best threshold is selected

Project
Our approach using tf•idf Our approach using MCG Our approach using Word2Vec

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%)

AntennaPod 45.37 90.75 60.50 44.60 93.50 60.39 46.13 99.61 63.05

Automattic 76.03 78.72 77.35 67.03 86.52 75.54 66.49 90.07 76.51

cgeo 48.47 77.19 59.55 47.45 92.11 62.63 48.83 99.00 65.40

chrislacy 49.01 52.86 50.86 50.30 60.00 54.72 51.11 65.71 57.50

k-9 mail 38.30 74.22 50.53 41.48 90.37 56.86 45.51 99.15 62.39

OneBusAway 55.81 84.71 67.29 54.43 97.65 69.89 54.34 99.41 70.27

Twidere 30.61 79.71 44.24 29.90 89.86 44.87 31.27 95.17 47.07

UweTrottmann 46.67 64.32 54.09 46.75 81.62 59.45 47.44 90.27 62.20

WhisperSystems 55.29 80.76 65.64 55.90 91.21 69.32 59.97 99.67 74.89

WordPress 21.35 56.09 30.93 21.55 94.46 35.09 21.53 99.63 35.41

Average 46.69 73.93 56.10 45.94 87.73 58.88 47.26 93.77 61.47

REFERENCES

[1] T. Zhang, J. Chen, X. Luo, and T. Li, “Bug reports for desktop software
and mobile apps in github: what is the difference?” IEEE Software,
published online, 2017.

[2] N. Shahmehri, M. Kamkar, and P. Fritzson, “Semi-automatic bug
localization in software maintenance,” Proceedings of the International
Conference on Software Maintenance 1990, 1990, pp.30-36.

[3] B. Fu, J. Lin, C. Faloutsos, J. Hong, and N. Sadeh, “Why people hate your
app: Making sense of user feedback in a mobile app store,” Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2013, pp. 1276-1284.

[4] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio,
G. Canfora, and H. C. Gall, “What would users change in my app?
Summarizing app reviews for recommending software changes,”
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2016, pp. 499-510.

[5] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok, “Interpreting tf-
idf term weights as making relevance decisions,” ACM Transactions on
Information Systems, vol. 26, no. 3, pp. 1-37, 2008.

[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,”
Proceedings of the 26th International Conference on Neural Information
Processing Systems, 2013, pp. 3111-3119.

[7] L. Wei, Y. Liu, and S.-C.Cheung, “Oasis: Prioritizing static analysis
warnings for android apps based on app user reviews,” Proceedings of the
11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
672-682.

[8] E. Cambria, an B. White, “Jumping NLP curves: a review of natural
language processing research,” IEEE Computational Intelligence
Magazine, vol. 9, no. 2, pp. 48-57, 2014.

[9] S. Tata, and J. M. Patel, “Estimating the selectivity of tf-idf based cosine
similarity predicates,” SIGMOD Record, vol. 36, no. 2, pp. 7-12, 2007.

[10] L. De Vinc, G. Zuccon, B. Koopman, L. Sitbon, and P. Bruza, “Medical
semantic similarity with a neural language model,” Proceedings of the 23rd
ACM International Conference on Information and Knowledge
management, 2014, pp. 1819-1822.

[11] C. Goutte, and E. Gaussier, “A probabilistic interpretation of precision,
recall, and f-score, with implication for evaluation,” Advances in
information retrieval, 2005, pp. 345-359.

[12] M. D. Syer, M. Nagappam, A. E. Hassan, and B. Adams, “Revisiting prior
empirical findings for moble apps: an empirical case study on the 15 most
popular open-source android apps,” Proceedings of the 2013 Conference
of the Center for Advanced Studies on Collaborative Research, 2013, pp.
283-297.

[13] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical
analysis of bug reports and bug fixing in open source android apps,”
Proceedings of the 17th European Conference on Software Maintenance
and Reengineering, 2013, pp. 133-143.

[14] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs
and bug-fixing in open source projects: desktop vs. android vs. ios,”
Proceedings of the 19th International Conferrence on Evaluation and
Assessment in Software Engineering, 2015, no. 7, pp. 1-10.

[15] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests for
mobile apps based on user reviews,” Proceedings of the 39th International
Conference on Software Engineering, 2017, pp. 106-117.

[16] A. Ciurumelea, A. Schaufelbhl, S. Panichella, and H. C. Gall, “Analyzing
reviews and code of mobile apps for better release planning,” Proceedings
of the IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, 2017, pp. 91-102.

[17] N. Genc-Nayebi, and A. Abran, “A systematic literature review: opinion
mining studies from mobile app store user reviews,” Journal of Systems
and Software, vol. 125, pp. 207–219, 2017.

[18] H. Chen, D. He, S. Zhu, and J. Yang, “Toward detecting collusive ranking
manipulation attackers in mobile app markets,” Proceedings of the 2017
ACM Asia Conference on Computer and Communications Security, 2017,
pp. 58-70.

