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Abstract—A great number of mobile applications (apps) have been 

released to the market. Therefore, software maintenance for these 

apps become an important and challenging task. For each app, 

developers usually submit issue reports to report the bugs, the 

features, the questions, and other changes appearing in it. In the 

process of software maintenance, developers refer to the 

corresponding labels to decide which one should be fixed first. If 

the label of an issue report is “bug” which means the report 

describes a serious error, developers should fix the bug first. 

Otherwise, if the label is not “bug” (e.g., feature or question), 

developers can resolve it later. However, according to our 

investigation, 36.7% of issue reports in top-10 popular mobile apps 

are not labeled. In other words, there are not any labels in them. 

It is difficult for developers to decide which issue should be 

resolved preferentially. To resolve this problem, we propose a 

method to verify whether an issue report describes a bug or not by 

using user reviews. Developers usually extract useful information 

from user reviews to maintain mobile apps. In this work, we utilize 

tf • idf, Word2Vec, and Microsoft Concept Graph (MCG) to 

compute the textual similarity between issue reports and user 

reviews related to real bug in order to find the issue reports which 

describe the real bugs. As a result, our approach with Word2Vec 

performs the best among three similarity metrics.  

Keywords-issue report; user reviews; simialrity metrics; mobile 

apps; software maintenance 

I.  INTRODUCTION 

Recently, the number of mobile devices such as smartphones 
and tablet computers have been produced for a wider group of 
people. These mobile devices result in the increase of the 
number of mobile applications (apps). Therefore, maintaining 
mobile apps is becoming important and challenging [1]. Fixing 
bugs is a core task in software maintenance activities [2]. Once 
a bug is found, a developer can upload an issue report to describe 
this bug. The detailed information can help developers fix it. 
However, we find that 36.7% of issue reports in top-10 popular 
mobile apps were not labeled as “bug” or others. In this situation, 
developers should verify whether these issue reports describe the 
real faults or not. For a large number of issue reports, it is a time-
consuming work. Thus, it is necessary to develop an approach to 
automatically label the issue reports instead of manual 
versification. 
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In online app stores (e.g., Google Play Store, Apple Store), 
users can evaluate each app by using scores and post their 
reviews. These reviews are free-form text that may include 
important information such as bugs that need to be fixed by 
developers. The buggy user reviews can guide developers 
resolve bugs appearing in apps. Therefore, the bugs appearing in 
user reviews may be very close to the real faults reported in the 
issue report so that they can help to verify whether an issue 
report describes a bug or not. To the best of our knowledge, there 
was no any work to study the relationship between user reviews 
and issue reports in mobile apps.  

In this paper, we propose an automated labeling approach to 
verify whether an issue report describes a bug or not. First, 
according to the suggestion mentioned in the literature [3], we 
choose user reviews that have less than 3 stars or lower because 
the reviews with few number of stars have high probability of 
describing bugs. Second, we use SURF [4], a popular review 
analysis tool, to automatically classify these user reviews into 
five categories: information giving, information seeking, feature 
request, problem discovery, and others. Next, we utilize natural 
language processing techniques to pre-process the user reviews 
in the category-problem discovery to build an index set. Third, 
we compute the similarity scores between each candidate issue 
report and the index set by using three popular similarity metrics 

that include tf•idf [5], Word2Vec [6], and Microsoft Concept 

Graph (MCG) [7]. If the similarity is more than a threshold, the 
issue report is labeled as “bug”. Otherwise, the issue report does 
not describe a software fault. 

We perform experiments on user reviews and issue report 
selected from 10 open source mobile apps on GitHub. As a result, 

the average F1 scores of our approach using tf•idf, Word2Vec, 

and MCG achieve 56.1%, 61.4%, and 58.9%, respectively when 
the best threshold is set for each metric. The result denotes that 
our approach with Word2Vec performs the best among three 
similarity metrics. 

We summarize the contributions of our work as follows: 

• We first propose an approach to automatically label the
issue reports with “bug” by computing the similarity
scores between the issue reports and buggy user reviews.
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• We perform our approach on top-10 popular mobile 
apps. The result shown that our approach with 
Word2Vec performs the best among three similarity 
metrics. 

Roadmap. Section 2 introduce the background and motivation 
of our work. In Section 3, we detail the proposed automated 
labeling approach. Section 4 presents the experimental results. 
In Section 5, we show the limitations of this work and 
corresponding solutions. Section 6 introduces the related work. 
Section 7 concludes the paper and introduce the future work. 

II. BACKGROUND AND MOTIVATION 

For each app, users can input free-text to comment it. 

These comments are called user reviews. Since some user 

reviews describe the real bugs, they can help us label the issue 

reports as “bug” or not. Fig. 1 shows the examples of four 

reviews in AntennaPod, which are collected from Google Play 

Store. 

 
Fig. 1 User reviews in AntennaPod 

From these user reviews, we note that users find the running 

problems of podcasts due to the update of the versions. They 

post their comments in Google Play Store and give the 

relatively low scores (i.e., less than 4 stars). In fact, this is a bug 

appearing in AntennaPod. An issue report also describes it, we 

show it in Fig. 2. 

 
Fig. 2 An issue report with the label- “bug” 

We note that the developer reported a problem when he 

downloaded podcast files. The bug is also caused by the version 

update. It is similar to the problems described in four reviews 

shown in Fig. 1, especially for Review B. 

The label of the issue report-#544 is “bug”, therefore, the 

user reviews which describe the real faults have the close-knit 

relations with the issue reports which are labeled by “bug”. 

        According to our investigation for issue reports in top-10 

popular mobile apps, we find that 36.7% of issue reports are not 

labeled (See Table Ⅰ). In Fig. 3, we show an example of 

unlabeled issue report. 

 
Fig. 3 An example of unlabeled issue report 

        In Fig. 3, we can see that the reporter did not label this 

issue report. In such a situation, a bug fixer should verify 

whether the issue report describes a bug or not so that he or she 

can decide the priority of resolving the issue. Obviously, this is 

a time-consuming task when he or she needs to resolve the 

increasing number of unlabeled issue reports.  

        When we carefully read the issue report-#237, note that the 

report describes a crash problem appearing in AntennaPod. In 

the other words, this is a bug. Thus, it should be fixed first. By 

analyzing the relationship between the user reviews shown in 

Fig. 1 and the issue report-#544 shown in Fig. 2, we think that 

buggy reviews can help to verify whether an issue report 

describes a bug or not. In the following sections, we introduce 

the details of the method and the corresponding experiment. 

III. RELATED WORK 

A. Software maintenance for mobile apps 

Software maintenance for mobile apps become an 

important task due to an increasing number of mobile apps. 

However, only a few research teams study this problem. Syer et 

al. [12] analyzed 15 most popular open source Android apps, 

and they found that the “best practices” of existing desktop 

software development cannot be utilized for mobile apps due to 

the different features. Bhattacharya et al. [13] executed an 

empirical analysis of issue reports and bug fixing in open source 

Android apps. They analyzed the bug-fixing process and the 

quality of issue reports. Zhou et al. [14] conducted a cross-

platform analysis of bugs and bug-fixing process in open source 

projects of different platforms such as desktop, Android, and 

IOS. They analyzed the different features such as fixing time 

and severity of bug-fixing process in these different platforms. 

These studies on empirical analysis of issue reports and 

bug fixing process of mobile apps give us the inspiration for 

beginning this work. In our work, we not only analyze issue 

reports, but also analyze user reviews. In addition, we utilize 

Just can't seem to get the podcast files to download in 

one go. Log just shows connection error and download 

failed. Will have to keep downloading again and again 

(luckily, it resumes from where it stopped) Pretty sure 

that my wifi connection is not getting disconnected or 

anything. Damn annoying, this. I use a Motorola E. 



user reviews to label the issue reports which describe the real 

software bugs.  

B. User review analysis 

In online app stores such as Google Play Store, Apple App 

Store, and Windows Phone App Store, users can rate the apps 

by selecting the stars from 1 (the lowest rating level) to 5 (the 

highest rating level) and inputting the reviews. These reviews 

describe users’ impressions, experience, and preference degree. 

Therefore, they can be used by developers as a feedback to 

facilitate the process of software maintenance. Some studies 

focus on user review analysis to extract important information. 

Palomba et al. [15] traced informative crowd reviews onto 

source code change, and use this relation to analyze the impact 

of reviews on the development process. Ciurumelea et al. [16] 

analyzed the reviews and classify them. They also 

recommended for a particular review what are the source code 

files that need to be modified to hander the issue. Genc-Nayebi 

and Abran [17] presented the proposed solutions for mining 

online opinions in app store user reviews. Chen et al. [18] 

proposed an approach to identify attackers of collusive 

promotion groups in an app store by exploiting the unusual 

ranking change patterns from user reviews. 

In our work, we not only analyze and classify user reviews, 

but also utilize the relation between user reviews and issue 

reports to automatically label the unlabeled reports as “bug” or 

“not bug”. 

IV. METHOD

A. Framework 

In this paper, we propose an automated labeling approach 

to verify whether an issue report describes a real bug or not. Fig. 

4 shows the framework of this method. 

Fig. 4 The framework of automated labeling approach 

From this figure, we first use Natural Language Processing 

(NLP) techniques to pre-process the issue reports in our data 

sets. These issue reports are treated as queries to be labeled. 

Second, we classify user reviews into five categories: 

information giving, information seeking, feature request, 

problem discovery, and others by using an automated review 

analysis tool. We extract the user reviews in problem discovery 

as buggy reviews according to the suggestion proposed in the 

literature [3]. Third, we also preprocess these buggy reviews to 
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produce the buggy-review set. Finally, we compute the textual 

similarity between each query and the buggy-review set by 

using three similarity metrics that include tf•idf, Word2Vec, 

and MCG. If the similarity score is more than the threshold, we 

label this issue report to “bug”.     

In the following subsections, we show the details of each 

step. 

B. Document Preprocessing 

As a first step, we preprocess the issue reports in our data 

set by using NLP technologies [8]. We use the python libraries 

NLTK1 and TEXTBLOB2 to implement the following steps:  

• Tokenization: an issue report is divided into a bag of
words (i.e., tokens), which can be used to compute the
textual similarity.

• Stop word removal: Some stop words such as “the”,
“a”, “are” are common words that are frequent in written
English. These words cannot provide more semantic
information. Thus, they should be removed according to
the list of WordNet English stop words.

• Stemming: the words should be transformed to their
basic forms (i.e., stems) in order to keep the high
accuracy when we compute the textual similarity. For
example, “providing” is changed to “provide”, and
“faults” is changed to “fault”.

• Nouns and verbs filtering: we adopt a part of speech
(POS) tagging classification to identify the nouns and
verbs from issue reports. Since these words are the most
representative, they are considered to compute the
textual similarity scores.

C. Review classification 

In order to remove the uninformative reviews and find 

buggy reviews, we adopt SURF [4], a state-of-the-art review 

analysis tool, to classify them into five categories: Information 

Giving, Information Seeking, Feature Request, Problem 

Discovery, and Others. Because we focus on buggy reviews, we 

only collect user reviews in the category Problem Discovery to 

label the issue reports as real bugs. 

To verify whether the classification is acceptable, we 

randomly select 20% of user reviews in the category Problem 

Discovery. The first author and one research assistant (RA)-Mr. 

Jiachi Chen from the Hong Kong Polytechnic University are 

responsible for checking whether each user review describes a 

real fault. The selected user reviews are equally divided into two 

groups. Each person is invited to check one group. In order to 

reduce the possible bias, two persons exchange their data to 

execute the verification again. The corresponding author can 

make a final decision when the verification results are 

inconsistent. As a result, we get the accuracy of 91.4%. 

Therefore, the classification results are acceptable.   

D. Structuring buggy-review set 

When extracting the user reviews in the category Problem 

Discovery, we preprocess these reviews using the same 

2 http://textblob.readthedocs.io/en/dev/ 



approach described in Section Ⅲ.B. Then they are grouped into 

buggy-review set to be used to compute the similarity scores 

with issue reports. 

E. Bug report verification 

In our work, we propose an automated labeling approach 

to verify whether an issue report is a bug or not. To implement 

this purpose, we adopt buggy user reviews to verify bug reports 

by computing the textual similarity between issue reports and 

the buggy-review set via three similarity metrics that include tf

•idf, Word2Vect, and MCG. These metrics are introduced to

transfer the documents to different kinds of vectors so that they 

can be input into cosine similarity function [9] to compute the 

similarity scores. These metrics are presented as follows: 

tf•idf: it is a popular metric to represent documents as 

vectors of words. The value for each word is its tf-idf weight 

which is defined by: 

tf − idf weight = 𝑡𝑓𝑡,𝑑 × 𝑙𝑜𝑔
𝑁

𝑛𝑡
 ,     (1) 

where 𝑡𝑓𝑡,𝑑 is an appearing frequency of term t in the document

d. 𝑙𝑜𝑔
𝑁

𝑛𝑡
 is the inverse document frequency which is a measure 

of how much information the word provides. N is the total 

number of documents while nt is the number of documents 

which contain term t. 

When we get all words’ tf-idf weights, a document can be 

transferred to a vector of the tf-idf weights. Thus, we can use 

the cosine similarity function to compute the textual similarity 

between an issue report IRi and buggy-review set BRS. It is 

defined by: 

sim(𝐼𝑅𝑖 , BRS) =
∑ 𝜔𝑘𝑖𝜔𝑘

𝑛
𝑘=1

√∑ 𝜔𝑘𝑖
2𝑛

𝑘=1 ×√∑ 𝜔𝑘
2𝑛

𝑘=1

 ,   (2) 

where 𝜔𝑘𝑖  and 𝜔𝑘 denote the weight of kth word in IRi and BRS,

respectively. They are computed by tf-idf weight (see formula 

(1)). 

Word2Vec: it maps a word into semantic word embedding. 

A large corpus of text can be transferred to a vector space, and 

each unique word in the corpus being assigned a corresponding 

vector in the space. We utilize Word2Vec with the skip-gram 

model [10]. In k dimensions (k=100 in our work), each word 

can be represented as the vector defined as follows:  

𝑣𝑒𝑐(𝑤𝑜𝑟𝑑)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =< 𝑣1, 𝑣2, … , 𝑣𝑘 >                           (3)

        Thus, a document can then be mapped into the space by: 

𝐶𝑠 = 𝜃𝑇 ∙ 𝐻𝑊 ,                                                     (4)

where 𝜃𝑇 is the vector of the tf-idf weights of the words in the

document computed by formula (1) and 𝐻𝑊 is the word vector

matrix. In this matrix, the i-th line represents the word vector of 

the word i. The matrix is constructed by concatenating the word 

vectors of all words in the document. Via matric multiplication, 

a document is transferred to a vector of semantic categories, 

denoted by 𝐶𝑠.

        When we get the word vectors of the issue report and 

buggy-review set, we can use cosine similarity defined by 

formula (2) to compute their semantic similarity. 

3 https://github-ranking.com/repositories 

MCG: it maps text format entities into semantic concept 

categories with some probabilities. This similarity metric can 

also overcome the limitation in traditional token-based models 

such as tf•idf that only compares lexical words in the document. 

It captures the semantics of words by mapping words to their 

concept categories. By using MCG, a word can be represented 

as its semantic concept categories with probabilities. For 

example, the word “Baidu”, which can be categorized into a 

large number of concepts such as “company”, “software”, and 

“search”. Therefore, a word can be transferred to a concept 

vector so that a document can then be mapped into the space by: 

𝐶𝑑 = 𝜃𝑇 ∙ 𝐻𝑀 ,                                          (5)

where 𝜃𝑇 is the vector of the tf-idf weights of the words in the

document computed by formula (1) and 𝐻𝑀  is the concept

matrix, which is constructed by concatenating the concept 

vectors of all words in the document. Via matrix multiplication, 

a document is transferred to a vector of concept categories, 

denoted as 𝐶𝑑. Actually, the document is mapped to the concept

space by assigning a probability to each concept category to 

which the document belongs. This probability is estimated by 

summing up the corresponding probabilities of all the words 

contained in the document. 

        When we get the concept vectors of the issue report and 

buggy-review set, we can use cosine similarity defined by 

formula (2) to compute their semantic similarity. 

        When the similarity score is more than the threshold, we 

treat the issue report as the bug report. In other words, the issue 

report is labeled as “bug”. Otherwise, the issue report’s label is 

not bug. 

V. EXPERIMENT 

A. Setup of experiment 

We collect the issue reports and the user reviews which 

have less than 3 stars or lower from 10 open source mobile apps 

in GitHub. Note that we treat the closed issue reports as the 

experimental object because they have the whole records of life-

cycle so that it is easy to verify the experimental results. We 

first download top-100 popular open source mobile apps 

according to Ranking Repositories3 in GitHub as our candidate 

projects, and then we filter out the projects which have less than 

1400 reviews because a small number of user reviews can affect 

the result of automated labelling. The scale of our data set is 

shown in Table Ⅰ. 

In this data set, we note that there are 36.7% (2921/7966

≈36.7) of issue reports are not be labeled. Therefore, the goal 

of our experiment is to automatically label them using our 

approach described in Section Ⅲ.  

In order to easily verify our approach, we also utilize the 

proposed approach to predict the label “bug” for the issue report 

which had labeled as “bug”. If the final list includes this issue 

report, the prediction is correct; otherwise, the prediction is 

wrong. For unlabeled issue reports, we first label them 

manually to verify the final result using our automated approach. 

The first author and Mr. Jiachi Chen who is a RA at the Hong 



Kong Polytechnic University are responsible for marking the 

unlabeled issue reports. They all have more than 3 years 

debugging experiences and are familiar with the projects in 

GitHub. One person is responsible for labeling half of unlabeled 

data while another person is responsible for labeling another 

half of data. Then they exchange their data each other. If the 

result is not consistent, a senior developer who has more than 

10 years debugging experience and also has the experience to 

develop the projects managed in GitHub is invited to make the 

final decision for ensuring the reliability of the final result.  

Table Ⅰ The scale of our data set 
Project #reports #unlabeled 

reports 

#reviews Period 

AntennaPod 1,107 382 2,082 03.08.2012-

21.12.2016 

Automattic 222 44 1,394 18.01.2013-

30.11.2016 

cgeo 1,434 331 4,466 18.01.2011 

chrislacy 193 22 1,471  

k-9 mail 783 337 4,456 15.03.2015-

23.01.2017 

OneBusAway 314 30 2,103 16.02.2013-

28.06.2014 

Twidere 653 245 2,031 06.07.2014-

16.12.2016 

UweTrottmann 399 192 4,459 26.07.2011-

23.11.2016 

WhisperSystems 1,524 1,170 4,443 26.12.2011-

17.01.2017 

WordPress 1,337 168 4,433 08.03.2013-

14.01.2017 

All 7,966 2,921 31,368  

 

We utilize F1 score [11] to evaluate our result. F1 is a 

frequently-used evaluation function, which is defined by: 

F1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ,                                                 (6) 

where Precision and Recall are computed by: 

         Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,                                                        (7) 

          Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                               (8) 

Here, TP (i.e., Ture Positive instances) indicates the 

number of instances (i.e., issue reports in our work) labeled 

correctly, FP (i.e., False Positive instances) represents the 

number of instances labeled incorrectly, and FN (i.e., False 

Negative instances) shows the number of correct instances that 

are not labeled by the approach. 

B. Parameter adjusting 

After we compute the similarity score between each issue 

report and the buggy-review set by using three metrics-tf•idf, 

Word2Vec, and MCG, the issue reports are labeled as “bug” 

when the scores are more than the defined threshold. Therefore, 

the threshold is the important parameter, which decides the 

performance of our approach. Table Ⅱ shows the F1 scores of 

10 projects when we select the different thresholds (0.1 to 0.9) 

using Word2Vec. We highlight the best values when selecting 

the corresponding threshold. Due to the limited space, we do 

not show the adjusting process of the thresholds for 10 projects 

by using other similarity metrics, i.e., tf•idf and MCG. But we 

show them at our GitHub repository: 

https://github.com/heulaoyoutiao/bugtag in order to let each 

scholar easily reproduce our work.  

C. Experimental result 

We adopt the best threshold to implement our approach. 

Table Ⅲ shows the Precision, Recall, and F1 scores of all 

projects using three metrics. 

From this table, we note that our approach using 

Word2Vec shows the best performance due to the highest 

Precision (47.26%), Recall (93.77%), and F1 scores (61.47%). 

Our approach using MCG shows the second-best performance 

while our approach using tf•idf shows the lowest performance. 

We analyze the possible reasons for this evaluation result. 

tf•idf adopts term frequency and inverse document frequency, 

but it does not consider the term’s semantic concept. On the 

contrary, Word2Vec and MCG also preserve terms’ semantic 

and syntactic relationships. Therefore, our approach using 

Word2Vec or MCG performs better than that using tf• idf. 

Word2Vec performs the best may be caused by the 

characteristics of our data sets. We will deeply analyze the 

reasons in the future.  

VI. LIMITATION 

We only collected the issue reports and bug reports from 

10 mobile apps managed by GitHub to perform our experiments. 

These apps are selected according to Ranking Repositories in 

GitHub. Thus, our approach may not be generalizable to other 

projects. Even though we think that these popular projects are 

representative, we would like to further explore more projects 

in our future work.  

Moreover, we only consider to automatically label the 

“bug” for issue reports by computing the textual similarity 

between buggy user reviews and issue reports. Machine 

learning techniques can also be utilized to do this task. In this 

future, we can consider to implement deep learning-based 

automated labelling approach for recommending more labels 

such as feature and question to unlabeled issue reports.  

VII. CONCLUSTION AND FUTURE WORK 

In this paper, we propose an approach to automatically 

label an issue report as “bug” or not. This approach considers 

the relationship between buggy user reviews and issue report. It 

computes the similarity scores between them using three 

metrics such as  tf•idf, Word2Vec, and MCG. The experimental 

result shows that our approach with Word2Vec performs the 

best.  

In the future, we will propose an approach and 

corresponding system to automatically recommend more labels 

(e.g., feature, question) for issue reports. Moreover, we consider 

to utilize deep learning to tag these labels.  
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Table Ⅱ F1 scores (%) of 10 projects when selecting different threshold using Word2Vec 

Threshold 
F1 scores (%) of 10 projects 

AntennaPod Automattic cgeo chrislacy k-9 mail OneBusAway Twidere UweTrottmann WhisperSystems WordPress 

0.1 63.05 76.51 65.40 57.50 62.18 70.12 46.66 62.20 74.85 35.41 

0.2 63.01 76.13 65.24 57.05 62.29 70.12 46.99 62.06 74.89 35.32 

0.3 62.70 74.23 65.20 57.41 62.17 70.27 47.07 60.41 73.73 35.29 

0.4 62.90 74.53 64.17 55.77 62.39 70.00 45.80 60.69 72.41 35.31 

0.5 60.80 72.26 62.12 53.33 61.00 70.06 44.81 58.15 69.30 35.34 

0.6 54.45 72.92 57.22 51.23 56.39 70.95 37.43 56.84 60.89 36.01 

0.7 41.93 60.41 46.57 33.33 45.68 68.60 32.56 48.45 45.11 30.29 

0.8 26.79 40.21 30.91 19.21 31.59 55.93 17.56 26.86 18.54 22.88 

0.9 5.73 4.11 7.30 1.40 9.65 11.34 2.60 2.07 3.44 2.74 

 

Table Ⅲ Performance of our approach using three similarity metrics when the best threshold is selected 

Project 
Our approach using tf•idf Our approach using MCG Our approach using Word2Vec 

Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%) F1(%) 

AntennaPod 45.37 90.75 60.50 44.60 93.50 60.39 46.13 99.61 63.05 

Automattic 76.03 78.72 77.35 67.03 86.52 75.54 66.49 90.07 76.51 

cgeo 48.47 77.19 59.55 47.45 92.11 62.63 48.83 99.00 65.40 

chrislacy 49.01 52.86 50.86 50.30 60.00 54.72 51.11 65.71 57.50 

k-9 mail 38.30 74.22 50.53 41.48 90.37 56.86 45.51 99.15 62.39 

OneBusAway 55.81 84.71 67.29 54.43 97.65 69.89 54.34 99.41 70.27 

Twidere 30.61 79.71 44.24 29.90 89.86 44.87 31.27 95.17 47.07 

UweTrottmann 46.67 64.32 54.09 46.75 81.62 59.45 47.44 90.27 62.20 

WhisperSystems 55.29 80.76 65.64 55.90 91.21 69.32 59.97 99.67 74.89 

WordPress 21.35 56.09 30.93 21.55 94.46 35.09 21.53 99.63 35.41 

Average 46.69 73.93 56.10 45.94 87.73 58.88 47.26 93.77 61.47 
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