

Pseudo-Exhaustive Verification of Rule Based
Systems

D. Richard Kuhn1, Dylan Yaga1, Raghu N. Kacker1, Yu Lei2, Vincent Hu1

1 National Institute of
Standards and Technology

Gaithersburg, MD 20899, USA
{kuhn,dylan.yaga,raghu.kacker}@nist.gov

2Computer Science & Engineering
University of Texas at Arlington

Arlington, TX, USA
ylei@uta.edu

Abstract — Rule-based systems are important in application
domains such as artificial intelligence and business rule engines.
When translated into an implementation, simple expressions in
rules may map to a large body of code that requires testing. We
show how rule-based systems may be tested efficiently, using
combinatorial methods and a constraint solver in a test method
that is pseudo-exhaustive, which we define as exhaustive testing of
all combinations of variable values on which a decision is
dependent. The method has been implemented in a tool that can
be applied to testing and verification for a wide range of
applications.

Keywords — combinatorial testing; constraint solvers; formal
methods; t-way testing; rule-based systems; test automation

I. INTRODUCTION
Rule-based systems have been important in a variety of

application domains for many years. Some of the earliest
artificial intelligence systems (AI) were designed to evaluate
large rule sets, and this approach continues to be important for
AI. In other domains, business rule engines automate complex
enterprise resource planning (ERP) problems [1]. The terms
used in rules may be expressed as Boolean (dichotomous) or
relational conditions on inputs, values from databases, and
environmental conditions such as time of day. Thus even a rule
that contains only a few simple conditionals may invoke
significant processing involved in computing the values used in
the rule conditions. A rule-based system must work for any set
of inputs, and can be implemented with a wide variety of rule
engines. For example, JBoss, Oracle Policy Automation,
OpenRules, Drools, IBM ODM, and many other tools exist to
process rules supplied by users. But as with conventional
software, exhaustive testing is nearly always intractable. This
paper generalizes a practical method developed for testing
access control systems [2], and introduces a tool that implements
this method.

The approach to testing rule-based systems is pseudo-

exhaustive, which we define as exhaustive testing of all
combinations of variable values on which a decision is
dependent. This approach is analogous to pseudo-exhaustive
methods for testing combinational circuits [3], where the
verification problem is reduced by exhaustively testing only the

DOI reference number: 10.18293/SEKE2018-072

subset of inputs on which an output is dependent, or by
partitioning the circuit and exhaustively testing each segment.
The general concept of exhaustively testing subsets of variable
values on which a decision is dependent is applied here to rule-
based systems by transforming rule conditions to disjunctive
normal form, then considering each term separately [2].

Testing a rule-based system requires showing that the rules

as specified, P, are correctly implemented. The implementation
P' must be shown to produce the same response as P for any
combination of input values used in rules. That is, for input
values x1,…, xn, P'(x1,…, xn) = P(x1,…, xn). Positive testing to
show that a rule produces a specified result is easy: instantiate
conditions to true for each antecedent associated with the result
and verify that the system returns the designated result. Negative
testing, showing that no combination of input values will
produce the same result when it should not, is much more
difficult. With n Boolean variables there are 2n possible
combinations of variables. For example, it would not be unusual
to have 50 Boolean variables, resulting in 2"# ≈ 10'"
combinations, which would appear to make full negative testing
intractable. In this paper, we show how combinatorial methods
can be used to make this testing problem practical, given
assumptions that apply to many or most rule-based systems.

II. TEST CONSTRUCTION
We describe the derivation of complete test cases from rules

converted to k-DNF structure (disjunctive normal form where no
term contains more than k literals, and a term is a conjunction of
one or more literals within the disjunction), using a constraint
solver and a covering array generator. Two arrays are
constructed for each possible rule consequent, such that every
test in each array should produce the same result, with variations
indicating an error. The method may be applied to rule systems
with multiple outputs, where outputs are either discrete values
or are defined by a predicate or expression with a Boolean result.

 Rules are assumed to be given as expressions made up of

variables with logical connectives in an antecedent, with a
consequent given as a discrete value or simple predicate,
structured as shown below where Ri are predicates evaluating
the values of one or more variables, and resulti is the result
expected when conditions of Ri evaluate to true:

(R1 → result1) (R2 → result2) … (Rm → resultm)

else → default
which is equivalent to:

(R1 → result1) (R2 → result2) … (Rm → resultm)
 (~R1) (~R2)… (~Rm) → default

Each Ri may include multiple variables, conditions, and
logical connectives. It is required that the rule antecedents Ri are
mutually exclusive, i.e., for any set of input variable values, only
one antecedent will be matched. We believe this requirement is
not overly restrictive, as in most applications it would be an error
for matches of more than one rule. (It would be possible to use
the constraint solver to check that rule antecedents are mutually
exclusive, but this feature has not been implemented.)

Example 1: Suppose we have a rule set as shown below:
 if (a && (c && !d ||e)) R1;
 else if (!a && b && !c) R2;
 else exit();

This code can be mapped to the following expression (note
second line is "else", i.e., negation of predicates for R1 and R2):

 (a(cd̅ +e) → R1) (a̅ b c̅ → R2)
((∼(a(cd̅ +e)))(∼(a̅ b c̅)) → exit)

Literals can be conditions, such as age>18, or Boolean

variables such as employee (yes, no), but the structure will be a
series of expressions specifying subsets of conditions that
produce each result, followed by a default rule when none of the
attribute expressions have been instantiated to true.

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	
1	 0	 0	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0	 0	 1	 0	
2	 0	 0	 1	 0	 1	 1	 1	 1	 1	 0	 0	 0	 0	 0	 1	
3	 0	 1	 0	 0	 0	 1	 0	 1	 1	 1	 1	 1	 1	 0	 0	
4	 0	 1	 1	 1	 1	 0	 0	 1	 0	 0	 0	 1	 0	 0	 1	
5	 1	 0	 0	 0	 1	 0	 0	 1	 0	 0	 1	 1	 1	 1	 0	
6	 1	 0	 1	 1	 0	 1	 1	 1	 0	 1	 0	 1	 1	 1	 0	
7	 1	 1	 0	 1	 1	 1	 0	 0	 0	 1	 0	 0	 1	 0	 1	
8	 1	 1	 1	 0	 0	 0	 1	 1	 1	 1	 1	 0	 1	 1	 1	
9	 1	 0	 0	 0	 0	 1	 1	 0	 1	 0	 0	 1	 1	 1	 1	
10	 0	 1	 1	 1	 0	 1	 1	 0	 1	 0	 1	 1	 0	 1	 0	
11	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 1	 0	 1	 1	 1	
12	 1	 0	 1	 1	 1	 0	 0	 0	 1	 0	 1	 0	 1	 0	 0	
13	 1	 0	 0	 1	 1	 0	 1	 1	 1	 1	 1	 1	 0	 1	 1	
14	 1	 0	 1	 0	 0	 1	 0	 0	 0	 0	 1	 1	 0	 0	 1	
15	 0	 1	 1	 0	 0	 1	 1	 0	 0	 1	 1	 0	 0	 0	 0	
16	 0	 1	 1	 0	 1	 0	 0	 0	 1	 1	 0	 1	 1	 1	 1	
17	 1	 1	 0	 1	 0	 0	 1	 1	 1	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 1	 1	 1	 1	 1	 1	 1	 1	 1	 0	 0	
19	 0	 1	 0	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	
20	 1	 1	 1	 1	 0	 0	 1	 0	 0	 1	 1	 1	 0	 1	 1	
21	 1	 0	 0	 0	 1	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	
22	 0	 1	 1	 1	 0	 1	 1	 1	 0	 1	 0	 0	 1	 1	 1	
Figure 1. 3-way covering array of 15 boolean parameters

To make testing tractable, we use combinatorial methods
[2][4]. To see the advantages of a combinatorial approach, refer
to Fig. 1, which shows a covering array of 15 boolean variables.
A covering array is an 𝑁 × 𝑘 array of N rows and k variables. In
every 𝑁 × 𝑡 subarray, each t-tuple occurs at least once. In
software testing, each row of the covering array represents a test,
with one column for each parameter that is varied in testing. For
example, Fig. 1 shows a complete 3-way covering array that
includes all 3-way combinations of binary values for 15

parameters in only 22 tests. The size of a t-way covering array
of n variables with v values each is proportional to 𝑣.	𝑙𝑜𝑔	𝑛
[6][7]. For Example 1, with five attributes and two possible
decisions for each attribute, there are 25 = 32 possible rule
instantiations. However, a covering array of all 3-way
combinations contains only 12 rows. The number of variables
for which all settings are guaranteed to be covered in a covering
array is referred to as the strength; a 3-way array is of strength
3. We use covering arrays of variables from rules that have been
converted to k-DNF form. For example, abc + de contains two
terms, one with three literals and one with two, so the expression
is in 3-DNF form. The covering array does not contain all
possible input configurations, but it will contain all k-way
combinations of variable values. Where an expression is in k-
DNF, any term containing k literals that is resolved to true will
clearly result in the full expression being evaluated to true. For
example, an access control rule in 2-DNF form could be: “if
employee && US_citizen || auditor then grant”. This rule
contains one term of two attributes and one term of one attribute,
so it is 2-DNF. Because a covering array of strength k contains
every possible setting of all k-tuples and i-tuples for i < k, it
contains every combination of values of any k literals.

As noted in the Introduction, we exhaustively test all

combinations of values on which a decision is dependent. For
the example above, the decision grant depends on either of two
terms being true: employee && US_citizen or auditor. Any
other setting of these three variables should result in deny. A
truth table of all eight possible settings of these three variables
would allow exhaustive testing of this set of rules. In general,
exhaustive testing is intractable for nearly all applications, but
note that at most two variables are required to produce a grant
result. So if we test all 2-way combinations of settings of the
input variables, we have achieved exhaustive testing of all
combinations of variable values on which a decision is
dependent, since no decision depends on more than two
variables. (Later in the paper we show how this approach scales
up to larger problems, and address the effectiveness for detecting
errors when implemented rules contain more variables than are
included in specified rules.)

Covering array generation tools, such as ACTS [4][6], make

it possible to include constraints that prevent inclusion of
variable combinations that meet criteria specified in a first order
logic style syntax. For example, if we are testing applications
that run on various combinations of operating systems and
browsers, we may include a constraint such as ‘OS = “Linux”
=> browser != “IE”’. Constraints are typically used in situations
such as this, where certain combinations do not occur in practice
or are physically impossible, and therefore should not be
included in tests. Modern constraint solvers such as Choco [8]
and Z3 [9] make it possible to process very complex constraint
sets, converting logic expressions into combinations that are
invalid and can be avoided in the final array.

Method: Let R = rule antecedents (left side of an implication
rule such as p in p → q) of one or more rules being tested in k-
DNF, and Ti are terms (conjuncts of one or more variables or

terms) in R. We designate the result/consequent of the rule
being tested as (+), and any other possible result as (-). For the
example included in Example 1, terms Ti of R1 would be acd̅,
and ae, and R1 would be designated as (+) and R2 or exit()
designated as (-), for this test.

Positive testing: Generate a test set PTEST for which every test
should produce a particular response. It must be shown that for
all possible inputs, where some combination of k input values
matches a (+) condition, a (+) result is returned. Construct test
set PTEST = {PTESTi} with one test for each term Ti of R as
follows: PTESTi = 𝑇5(7 ~𝑇9)9;5

The construction ensures that each term in P is verified to

independently produce the expected response for that rule.
Negating each term Tj, i ≠ j, prevents masking of a fault in the
presence of other combinations that would return the same
result. For example, if a rule condition is ab + cd →R1, inputs of
1100, 1101, 1110 could be used for testing ab →R1. However,
input 1111 would not detect the fault if the system ignores
variable a or b, because the condition cd would cause a result of
R1, and no other predicates in the rule would be evaluated. One
such test is required for each term in a rule, so for m rules with
an average of p terms each, the number of tests required is
proportional to mp.

Negative testing: Generate a test set NTEST for which every test
should produce a response other than the result designated by
the rule being tested. It must be shown that for all possible
inputs, where no combination of k input values matches a rule,
an alternative result is returned.

NTEST = covering array of strength k, for the set of
variables in all rules, with constraints specified by ~Ri.

Note that the structure of the rule evaluation makes it
possible to use a covering array for NTEST, compressing a large
number of test conditions into a few tests. Converted to k-DNF,
each rule antecedent includes a sequence of conditions that are
each sufficient to trigger the specified result. Because rule
antecedents are mutually exclusive, masking of one combination
by another can only occur for NTEST when a test produces a
negative response, i.e., a response that is not a consequent of the
rule instantiated in PTEST. In such a case, an error has been
discovered, which can be repaired before running the test set
again. Since NTEST is a covering array, the number of tests will
be proportional to vk log n, for v values per variable (normally
v=2 since most will be Boolean conditions), and n variables.

Rule antecedents are assumed to be mutually exclusive (to

prevent masking as discussed above), but we allow for cases
where multiple rules may have the same consequent (result). In
such cases, rule antecedents are combined to produce the set of
conjuncts used in generating PTEST and NTEST arrays. For
example, if two rules are R1→ Q1 and R2→ Q1, then k-DNF
terms for PTEST are produced from (R1+ R2) and constraints for
NTEST are given by ~(R1+ R2). For m rules with the same

consequent (result), the number of tests is multiplied by the
constant m.

Example 2: Table I gives a set of Boolean variables a through
e, where each row defines values for the variables that determine
an access control decision, either grant (+) or deny (-). Thus a
covering array for the antecedent R of a rule in 3-DNF such as
(acd̅ +	a̅bc̅ → grant) is given in Table 1. The total number of 3-
way combinations covered is the number of settings of three
binary variables multiplied by the number of ways of choosing
three variables from five, i.e., 2= >53A = 80.	

TABLE I. 3-WAY COVERING ARRAY
 a b c d e
1 0	 0	 0	 0	 0	
2 0	 0	 1	 1	 1	
3 0	 1	 0	 1	 0	
4 0	 1	 1	 0	 1	
5 1	 0	 0	 1	 1	
6 1	 0	 1	 0	 0	
7 1	 1	 0	 0	 1	
8 1	 1	 1	 1	 0	
9 1	 1	 0	 0	 0	
10 0	 0	 1	 1	 0	
11 0	 0	 0	 0	 1	
12 1	 1	 1	 1	 1	

TABLE II. 3-WAY COVERING ARRAY WITH CONSTRAINT ~R

 a b c d e
1 0	 0	 0	 0	 0	
2 0	 0	 1	 1	 1	
3 0	 1	 1	 0	 0	
4 1	 0	 0	 1	 0	
5 1	 0	 1	 1	 0	
6 1	 1	 0	 0	 1	
7 1	 1	 1	 1	 1	
8 0	 0	 1	 0	 1	
9 1	 1	 0	 1	 0	

10 0	 0	 0	 1	 1	
11 1	 0	 0	 0	 0	
12 0	 1	 1	 1	 0	
13 1	 0	 0	 0	 1	
14 0	 1	 1	 0	 1	

Table II shows a covering array for this set of variables

generated using ~R as a constraint. That is, the two terms of the
rule, acd̅ and	a̅bc̅, have been excluded from the array, but all
other 1-, 2-, and 3-way combinations can be found in the array.
Because acd̅ and	a̅bc̅ are the only conditions under which access
should be granted, the array in Table II should result in a deny
response from the system for every test. Collectively, tests
include all 78 3-way settings of variables that will not instantiate
the access control rule to true.

III. FAULT DETECTION PROPERTIES
Now consider the faults that this method can detect. Suppose

that some combination of variables exists that produces a
different response than required by the rule set P, for example
because of errors in code that instantiates variable values. Tests
contained in PTEST and NTEST will detect a large class of

missing terms, added terms, or altered terms containing k or
fewer variables. In this section we analyze faults that will be
detected, and the underlying conditions in these faults. Table III
illustrates the fault types and detection conditions for each.

TABLE III. EXAMPLE FAULTS AND DETECTION CONDITIONS.

 Term C=correct
term

F=faulty
term

PTEST detect
condition

NTEST detect
condition

notes

1 missing abc -- abc none
2 added -- ab none ab
3 abc a̅b none a̅bc, a̅bc̅
4 abc ab none abc̅
5 ab abc -- -- no fault
6 altered abc abc̅ abc abc̅
7 abc ab none abc̅
8 abc a̅b abc a̅bc, a̅bc̅

k-DNF detection property: It is shown in [2] that

collectively, tests from PTEST and NTEST will detect faults
introduced by added, deleted, or altered terms with up to k
variables. We can also show [2] that if more than k attributes are
included in the altered term, some faults are still detected.
Specifically, where a correct term has more than k variables and
is not a subset of a faulty term, the fault will be detected. If a
correct term is a subset of a faulty term in this case, some faults
will be detected.

IV. SOFTWARE TOOL
The prototype research tool, Pseudo-Exhaustive Verifier

(PEV), was developed in Java, and utilizes several open source
external Java libraries. The software is packaged as a Java
Archive (.jar) file which is directly executable as a Graphical
User Interface (GUI), or can be run as a Command Line
Interface (CLI) from a terminal.

The PEV software has been designed to accept rule sets

comprised of Boolean variables, Boolean operators and
relational expressions, implementing the algorithm described in
Sect. II. The software parses the rule set, converts to Disjunctive
Normal Form (DNF), inverts the DNF rule set, solves for
positive conditions, and uses NIST’s Automated Combinatorial
Testing for Software (ACTS) tool [6] to compute a covering
array for negative conditions.

Algorithm implementation: PEV utilizes several publicly
available Java Archive libraries to generate test arrays.
Transforming the input Boolean rule set to DNF is done using
jbool_expressions [10], and the Choco constraint solver [11] is
used for resolving relational statements.

Parsing: Parsing is a critical step of the PEV software, which
occurs before any testing is performed. Since the software needs
to accept input from the user, any input must be modified and
sanitized prior to use, to ensure compatibility with the various
APIs used, as well as to catch any syntactical problems prior to
testing... The parser strips extraneous whitespace, and then
normalizes Boolean operators (&&, &, ||, |, !, ~),
and attempts to match open and closing parenthesis. This
sanitization ensures compatibility with the various APIs used

throughout the software, and catches any syntactical problems
prior to testing.

 The software is not restricted to Boolean expressions, and
has initial support for relational expressions (e.g., b < 3;). Note
that a semicolon is used to identify a relational expression.
During parsing, PEV will locate numeric relational expressions
and replace them with temporary Boolean variables. After the
replacement, the rule set is processed as normal. The relational
values are solved at a later step and the results are recorded.

Once the initial input rule set is parsed, the software will

convert it to Disjunctive Normal Form (DNF) to be tested. The
user will be presented with a breakdown of the DNF rule set
(split on the OR statements), each part of which is a positive
condition that needs to be solved. Additionally, the user can set
minimum and maximum values for any relational variable found
in the rule set.

Solve for positive conditions: Each individual expression
between OR operators is an expression that, once solved, will
produce one positive condition. These expressions represent the
only possible positive conditions for the original rule set – so it
is possible to produce exhaustive positive conditions.

Consider Fig. 1, with the original input rule set:

 emp & age>18; & (fa | emt | med) | b<3;

Converted to DNF, this is:

((age > 18; & emp & emt) | (age > 18; & emp
& fa) | (age > 18; & emp & med) | b < 3;)

Splitting on the OR operators, there are four individual

expressions for the positive conditions (replacing relational
expressions with temporary Boolean variables
tmp0 = age > 18; and tmp1 = b < 3;):

• tmp0 & emp & emt
• tmp0 & emp & fa
• tmp0 & emp & med
• tmp1

To solve these expressions, any variable present is evaluated

with the following rules, as shown in Table V:
• Non-negated variables evaluate to true
• Negated variables evaluate to false
• Variables not present evaluate to false

 Solve for negative conditions: Depending on the complexity

of the input rule set, it may not be feasible to produce exhaustive
negative condition output combinations. By utilizing
combinatorial test methods, it is possible to generate covering
arrays of sufficient strength to have good test coverage. The
method for producing negative conditions can be found by
generating the full covering array for all the unique Boolean
variables within the rule set, and using the DNF rule set as a
constraint – which will remove the positive conditions from the
resulting output.

Figure 1. PEV software, after initial rule set parsed

TABLE V - SOLVED POSITIVE CONDITIONS
Expression tmp0 tmp1 emp emt fa med
tmp0 & emp & emt 1	 0	 1	 1	 0	 0	
tmp0 & emp & fa 1	 0	 1	 0	 1	 0	
tmp0 & emp & med 1	 0	 1	 0	 0	 1	
tmp1 0	 1	 0	 0	 0	 0	

 A covering array for all negative conditions is computed as

described in Sect. II. To perform this task, PEV creates an
internal instance of the ACTS software, and passes a list of the
unique Boolean variables from the rule set (including temporary
Boolean replacements for relational expressions). The next step
is to add the DNF rule set as a constraint to the system – so that
the positive conditions are not included as negative results.
Finally, the k-way combination is dynamically set after the k-
DNF transform, which finds the conjunction with the largest
combination of Boolean variables. In this example, the value of
3 is set (Table VI). PEV currently supports k = 2..6, because
ACTS is used as the covering array generator, but there is no
inherent limit to 6-way combinations and the method could
support k > 6.

Solve for relational expressions using the Choco Expression
Parser and the Choco Constraint Solver.
 Relational Expression Formatting: The general format is:

Variable OPERATOR Integer_Value; Or
Integer_Value OPERATOR Variable;

Every relational expression must end with a semicolon (;),
and two or more relational expressions in a row (without
Boolean operators between them) will be replaced with one
temporary Boolean variable during parsing. An example is
shown in Table VII.

 After being extracted and replaced by temporary Boolean
variables, and the Positive/Negative conditions are found, an
instance of Choco Expression Parser is created, and the
relational expressions are passed as parameters. The minimum
and maximum range for the expression to test against must be
set – the PEV GUI includes a section which will allow the
adjustment of every relational variable min and max values
(default set to 0 to 100). These values can be adjusted prior to

testing the rule set so that a customized range can be found. The
solutions to the solved expressions are then placed into the
results where appropriate.

TABLE IV. SOLVED NEGATIVE CONDITIONS

tmp0 tmp1 emp emt fa med
1	 0	 1	 0	 0	 0	
1	 0	 0	 1	 1	 1	
0	 0	 1	 1	 1	 0	
0	 0	 0	 0	 0	 1	
0	 0	 0	 1	 0	 0	
0	 0	 1	 0	 1	 1	
1	 0	 0	 0	 1	 0	
0	 0	 1	 1	 0	 1	
1	 0	 0	 1	 0	 1	
0	 0	 0	 0	 1	 0	
1	 0	 0	 0	 0	 1	
1	 0	 0	 1	 0	 0	

TABLE V. INPUT POLICIES AND RESULTING PARSED RULE SET

Input Rule set Parsed Rule set
a > 10; 20 < b; || n tmp0 || n
a > 10; || 20 < b; || n tmp0 || tmp1 || n

Results: Once testing completes, PEV displays usage metrics
and parameters which will result in positive conditions, and the
covering array for negative conditions. At this point, the results
can be saved as a comma separated value (.csv) file.

V. V. TEST SET SIZE AND PRACTICAL IMPLICATIONS
The process scales easily to systems with a large number of

variables and rules. Because the number of rows in a covering
array grows only with log n for n variables at a given number of
values, a large increase in the number of variables requires only
a few additional tests.

The most significant limitation for this approach occurs
where terms in rules contain a large number of values per
variable. Because the number of rows of a covering array
increases with vk, for v variable values, if terms in the rules have
more than 10 to 12 values, it may not be practical to generate
covering arrays. However, a large number of tests is not a
barrier, because the structure of the solution resolves the oracle
problem by ensuring that every test in PTEST should produce a
response of (+) and every test in NTEST should produce a
response of (-). Consequently, tests can be fully automated,
making it possible to execute a large test set.

VI. VI. RELATED WORK
This paper generalizes a method developed originally for

testing attribute-based access control systems [2], which had
been incorporated into the Access Control Policy Testing tool
ACPT [12]. The generalized method and new tool, PEV, were
developed to make the method useful in development and testing
for a wider range of applications. Pseudo-exhaustive test
methods for circuit testing have an extensive history of
application [1]. While our method is not derived from these
earlier approaches, it shares the basic notion of determining
dependencies, partitioning according to these dependencies, and

testing exhaustively the inputs on which an output is dependent.
We have previously applied this notion to software testing in a
more general form, using the observation that faults depend on
a small number of inputs, by covering all 2-way to 6-way
combinations of inputs [13]. This earlier work generated a test
oracle using a model checker with a formal specification of a
system, instantiated with inputs from a covering array.

 Relatively little work has been published on testing
specifically for rule-based systems. Dalal et al. [15] describe a
case study of a rule-based system in an evaluation of model
based testing, including the use of the combinatorial testing tool
AETG. However, their testing considered only high level
properties, such as whether updates correlated with the
assignment of jobs during a working day. That is, no tests were
generated from the rules. Rule based systems have also been
used in a number of studies of test data generation [16][17], but
used rules in generating tests for other software, rather than
testing the rule-based systems themselves.

Among automated test generation systems, PEV falls into

the class of tools with a specified test oracle, using the taxonomy
of Barr et al. [14], because system rules serve as a specification
of system behavior. Many such systems have been developed.
The test oracles used in those systems were designed to answer
the question "For a given set of inputs and initial state, what is
the system output?", using a formal spec of some kind. Given
such an oracle, test inputs must also be provided. Our method
differs from these in that we address a narrower class of systems,
but trade this limitation for complete coverage of inputs up to k-
way combinations, providing testing that is pseudo-exhaustive,
i.e., exhaustive for all subsets of inputs on which a rule result is
dependent.

VII. CONCLUSIONS
Rule-based systems are used extensively in applications such

as enterprise resource planning and machine learning [20]. If
rules contain at most k Boolean variables per conjunction, for an
expression in k-DNF, then a k-way covering array can test all
possible settings of such terms. Thus for any possible
combination of n inputs, only k (k < n) matter in determining the
truth of the expression. In most applications, the number of
conditions in conjunction will be small, even though the number
of rules may be very high, possibly several hundred or even into
thousands. The number of rows in a k-way covering array of
Boolean variables is proportional to 2k log n, and the ACTS
covering array generator used in PEV produces arrays up to 6-
way. Therefore PEV can efficiently process thousands of
conditions or rules with up to six conditions per conjunction,
sufficient for practical use.

 The method described here was initially used in access
control policy testing [2], and PEV has extended its applicability
to a broader range of potential use. We are also considering
methods to improve the efficiency of the PEV tool, including
use of SAT solvers for generating covering arrays [18][19]. It
may be possible to integrate the methods described in this paper
with SAT-solver based covering array generation, to produce
more compact arrays.

To make the tool more useful for practical application,
features to allow import and export from common rule system
formats, or decision table structures, may be helpful. We plan to
investigate the possibilities depending on interest from users.
We have received inquiries regarding compatibility with
commercial tools, which could be considered for further
development. Thus far, the major interest for this test method is
for business rule systems, but it could be applied to traditional
expert system applications as well.

Note: Identification of products does not imply endorsement by NIST, nor that
products identified are necessarily the best available for the purpose.

REFERENCES
[1] Lu, R., & Sadiq, S. A survey of comparative business process modeling

approaches. In Intl Conf on Business Information Systems (pp. 82-94).
Springer, 2007.

[2] Kuhn, D. R., Hu, V., Ferraiolo, D. F., Kacker, R. N., & Lei, Y. (2016,
April). Pseudo-exhaustive testing of attribute based access control rules.
In Software Testing, Verification and Validation Workshops (ICSTW),
2016 IEEE Ninth International Conference on (pp. 51-58).

[3] McCluskey, E. J. (1984). Verification Testing: A Pseudoexhaustive Test
Technique. Computers, IEEE Transactions on, 100(6), 541-546.

[4] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). SP 800-142. Practical
Combinatorial Testing, NIST, Gaithersburg, MD 20899

[5] ACTS Home Page, http:// csrc.nist.gov/acts/
[6] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: A general

strategy for t-way software testing. 14th intl conference on the
engineering of computer-based systems, 2007, pp 549–556

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG
System: An Approach toTesting Based on Combinatorial Design,” IEEE
Trans. Software Eng., 23(7):437-444,1997.

[8] Jussien, N., Rochart, G., & Lorca, X. (2008). Choco: an open source java
constraint programming library. Open-Source Software for Integer and
Contraint Programming (OSSICP'08) (pp. 1-10).

[9] De Moura, L., & Bjørner, N. (2008). Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems (pp.
337-340). Springer Berlin Heidelberg.

[10] https://github.com/bpodgursky/jbool_expressions
[11] https://github.com/kaktus40/choco-exppar

http://www.choco-solver.org/
[12] ACPT Home Page, http://csrc.nist.gov/groups/SNS/acpt/

access_control_policy_testing.html
[13] D. R. Kuhn, V. Okun, Pseudo-exhaustive Testing For Software, 30th

NASA/IEEE Software Engineering Workshop, April 25-27, 2006
[14] Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015).

The oracle problem in software testing: A survey. IEEE transactions on
software engineering, 41(5), 507-525.

[15] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton,
G. C., & Horowitz, B. M. (1999, May). Model-based testing in practice.
21st Intl Conf on Software Eng. (pp. 285-294). ACM.

[16] Deason, W. H., Brown, D. B., Chang, K. H., & Cross, J. H. (1991). A
rule-based software test data generator. IEEE transactions on Knowledge
and Data Engineering, 3(1), 108-117.

[17] Edvardsson, J. A survey on automatic test data generation. 2nd
Conference on Computer Science and Engineering (pp. 21-28) 1999.

[18] Lopez-Escogido D, Torres-Jimenez J, Rodriguez-Tello E, Rangel-Valdez
N. Strength two covering arrays construction using a sat representation.
InMICAI 2008: Advances in Artificial Intelligence 2008 Oct 27 (pp. 44-
53). Springer Berlin Heidelberg.

[19] Banbara M, Matsunaka H, Tamura N, Inoue K. Generating combinatorial
test cases by efficient SAT encodings suitable for CDCL SAT solvers.
InLogic for Programming, Artificial Intelligence, and Reasoning 2010
Oct 10 (pp. 112-126). Springer.

[20] Lee, C. C. (1991). A self-learning rule-based controller employing
approximate reasoning and neural net concepts. International Journal of
Intelligent Systems, 6(1), 71-93.

