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Abstract— The ever increasing usage of Android devices and
apps has created a demand for faster and reliable testing
techniques. While the quality of test cases can be summed
up based on the amount of code they cover, fault detection
in applications is one of the main objectives for testing. We
introduce an Android app testing approach which uses multi-
objective genetic algorithm with elitism which finds optimal test
cases by minimizing their length, maximizes the code coverage
and fault detection capability, and minimizes the whole test
suite for re-usability. In addition to that, we also incorporate a
progress indicator which checks for improvements in test suite
quality after subsequent generations and use it as a stopping
criterion. The effectiveness of our approach is shown in our
evaluation where it is able to perform better than the existing
state-of-the-art tools.

Keywords: Android Testing;Evolutionary Testing;Multi-
Objective Testing

I. INTRODUCTION

The boom in the use of smartphones in personal and
business related services has created a rapid increase in the
demand for fast delivery of quality software. This demand
has left Google Play Store with over 3.5 million apps, as of
December 2017 [5] and this number is increasing every day.
These apps are used by a huge number of people and to stay
in business, the providers have to make sure that the apps
are bug free and behave as planned.

Unlike a desktop application which runs as a single mono-
lithic process, Android apps have to be a lot more flexible
and a tightly coupled architecture among the components
with event based control flow may make automated testing
difficult and this causes heavy reliance on labour intensive
manual testing [24]. Several attempts have been made in the
past to automate Android Testing. Some of the techniques
include random testing, model-based testing, testing with
dynamic exploration etc.

Search-based software engineering techniques [15], [16]
have been used in the past for GUI [11], [12], [14], as well as
Android testing [10], [26] and have shown promising results.
Even though code coverage is used as the basis of most
of the testing tools, multiple objectives like fault detection,
code coverage, shorter optimized test sequences have to be
considered in order to generate optimal test suites.
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We propose an Android testing approach which uses an
elitist based multi-objective genetic algorithm which covers
all these objectives while exploring the application under
test (AUT) and creates optimal test suites. In addition to
that, since search-based testing requires execution of a large
number of tests, a stopping criteria is required to stop the
process with enough confidence to guarantee sub-optimal
solutions. Most of the existing tools set a pre-defined upper
bound on either the number of test cases executed or the
number of iterations (generations) for which the process will
run. This may result in either pre-mature convergence or
waste of CPU time. We use a progress indicator, MDR [25]
to calculate the improvement of every generation and stop
the process if no improvement, or degradation is found.

The remainder of this paper is organized as follows:
Section II provides related works on Android testing, Section
III describes the methodology as well as the architecture,
Section IV evaluates our approach, Section V outlines the
limitations of our approach, and Section VI concludes the
paper with the future work.

II. RELATED WORK

Google’s Android Monkey [1], a random input generator
for Android apps stress tests the app in order to achieve cov-
erage and detect faults. Due to its integration with Android
development toolkit, it is widely available, is easy to use and
is therefore considered the state-of-the-art testing software
for Android apps [8].

Dynodroid [30] is another state-of-the-art automated test-
ing tool [8] which uses heuristics to explore the application.
It is a bit “smarter” than Monkey since it uses frequency and
relevance of events to generate test sequences. In addition, it
allows the user to give input, for example login info, when
the search is stalled.

EvoDroid [10] is one of the first search-based testing tools
for Android and is closely related to our work. It uses a call
graph (obtained using MoDisco [5]) and an interface model
to generate a Population of test cases which achieve a fitness
score based on unique paths/line in the code they cover in
the call graph.

Sapienz [26] is another tool that combines fuzz testing
and search based exploration for testing. It uses NSGA-
II [34] to maximize coverage and fault revelation while
decreasing the sequence length. It considers multiple levels



of instrumentation and can be used for both white and black
box testing.

III. METHODOLOGY

We use app’s source code to generate two models. A
Screen Flow Graph model and a Widget-Screen Map model.
Details of these models are discussed later in this section.
These two models are then used to create a population of
Individuals (test cases). Finally, these test cases are then
executed using the multi-objective algorithm and the process
stops when the stopping criteria is met.

Fig. 1. The overall architecture

The overall architecture of our approach in shown in Fig.
1. Our approach can be divided into the following steps:

• Generate Screen Flow Graph to get the transition infor-
mation of various activities, dialogues, options menu,
etc.

• Generate Widget-Screen Map by obtaining the informa-
tion about all the widgets/components available for user
interaction on different screens.

• Generate test individuals based on the two models
obtained earlier.

• Execute the test cases generated using the multi-
objective algorithm.

A. Model Generation

In order to generate test cases, we generate the following
two models:

• Screen Flow Graph: We used GATOR [29], an open
source analysis toolkit which performs a static analysis
on the app to capture the possible control/data-flow
by tracking the event handling callbacks and window
(Activities, dialogue boxes, listviews, etc) life cycle
callbacks. This information is used to create a Screen
Flow Graph, as shown in Fig. 2 , which is then used to
create test cases with sections (discussed later) of events
valid for a particular screen.

• Widget-Screen Map: In an Android app, each Activity
is coupled with a layout XML file which contains
organized information about that activity’s components.
These components include the type of layout (e.g.,

Fig. 2. An example of a Screen Flow Graph for an Android app. The
nodes represent the various screens in the app and the edges represent the
events that cause a transition.

LinearLayout, RelativeLayout, etc.), and GUI interac-
tion widgets known as views (e.g., TextView, Button,
ImageView, etc.).
Each view has a unique ID which is used in the
application code’s context. We first parse the Android-
Manifest XML file to list all the activities in the app.
To create the Widget-Screen Map model, each layout
file attached to these activities/screens is parsed and
the obtained widgets information is mapped to their
respective screens. This information is used to create
events for a particular screen.

We now discuss how these two models are used to create
test individuals for the initial population.

B. Generating Test Individuals

Individual representation is an important aspect in evolu-
tionary algorithms as it depicts how a single solution on the
whole population is encoded. Prior researches like [11] and
[23] have used entire test suites as individuals wherein each
individual consists of a random number of test cases (genes).
This approach can be ideal for test suite minimization.
However, the overall quality of each gene (test case) remains
the same throughout the process because the crossover and
mutation takes place at test suite level and not the test case
level. Therefore, we use individual representation similar
to EvoDroid [10] where each test case represents a single
individual in the population.

Fig. 3 shows an example of the representation of a single
individual. To create an individual, the events for the launch
screen (first screen shown to the user when the app starts)
section are randomly selected from the Widget-Screen Map
and are checked against the Screen Flow Graph for any
transitions. If the selected event causes a transition to another
screen, a new section is created for that screen and events
are selected randomly for that screen. This process repeats
itself until the number of sections reach n sec, where n sec



Fig. 3. Representation of a single Individual used in our approach.

is chosen randomly for each individual before its creation.
If there is only one screen in the app, the test individuals
contain only one section with n ev random events, where
n ev is chosen randomly for each individual before its
creation.

C. Evolutionary Approach

A number of multi-objective evolutionary algorithms [18],
[19], [20], [21], [22], [34] have shown to be quite effective
in solving problems with multiple constraints/objectives. We
use CBGA-ES [22] genetic algorithm in our approach to
optimize test cases by selecting shorter individuals that have
high code coverage and high fault revelation capability. In
addition, the algorithm selects l elite solutions after the first
generation which further reduces the test suite as well as the
search space for subsequent generations. The main idea of
the approach is to cluster the individuals with similar fitness
into k clusters, sort the cluster based on cluster dominance
strategy, and then select the individuals(elite individuals) for
the best cluster as a population for next generation. The
details are as follows:

1) Clustering: After the execution of all the individuals
in the first population, each individual gets a fitness vector
containing its fitness value for each objective. For exam-
ple, an individual Ia will have a fitness vector F Ia =
{fval1, fval2, ..., fvaln}, where n is the number of ob-
jectives.

Next, k individuals are chosen randomly and their fitness
vectors are assigned as the centres of the corresponding
clusters. The CBGA-ES algorithm uses Lloyd’s algorithm
[31] to cluster all the individuals. The next step is to sort
these k clusters using cluster dominance strategy [22].

2) Cluster Dominance Strategy: Consider two clusters
Ca and Cb with centroids ma and mb, respectively. These
two clusters are checked for either dominance or partial
dominance:

• Cluster Dominance: Ca � Cb (i.e., Ca completely
dominates Cb) iff

∀i=1−nmai ≤ mbi ∧ ∃mai > mbi

where mai and mbi are the fitness values for the ith

objective in the two centroids, respectively.

• Cluster Partial Dominance: Ca � Cb(i.e., Ca partially
dominates Cb) if one of the two cases holds true.

Case 1.

n(∀i=1−nmai > mbi) > n(∀i=1−nmai < mbi)

where n(∀i=1−nmai > mbi) is the number of fitness
values of centroid ma which are better than those in mb.

Case 2.

If n(∀i=1−nmai > mbi) = n(∀i=1−nmai > mbi),(
Σn

i=1

mai −mbi

mai
× 100%

)
> 0

which means that for all the objectives, ma is able to
get higher percentage of centre values than mb.

Once the clusters have been sorted, an elite population
of size l is created by adding the individuals from the best
cluster. If the size of the best cluster is less than l, the
individuals from the next best cluster are added to the elite
population. This elite selection strategy reduces the search
space as compared to the initial population and helps create a
minimized test suite with optimal test cases. This population
then undergoes crossover and mutation and proceeds to the
next generation unless the stopping criteria is met.

Crossover

Crossover is a genetic operator used in Evolutionary Algo-
rithms to create individuals for the next generation. We use
a single-point random crossover where two random points
are chosen in the selected individuals and the crossover
operation is performed. Test case level crossover increases
the possibility of creating better test cases since the created
individual contains events from the parent individuals. Fig.
4 shows an example of a crossover.

Fig. 4. Examples of crossover (A) and mutation (B).

To preserve the validity of the produced test case,
crossover points are chosen in the sections which corre-
sponds to the same screen (refer section B). A similar
approach has been used in EvoDroid where they use multi-
point probabilistic crossover in segments [10] belonging to
the selected parent individuals.



Mutation

Mutation is another genetic operator used in Genetic
Algorithms which mutates/changes a gene of an offspring
with some probability to maintain genetic diversity in the
population and avoid getting stuck in a local minima. In
our case, we apply mutation at a gene (event) level by
randomly selecting a segment in the new individual created
and applying one of the following mutation operations.

• Adding/Removing: A new event valid for that segment
is added/removed at a randomly selected position in
the segment. Some screens may need a specific event
to be performed for a specific number of times. This
mutation may help an individual (test case) to cover
those cases and possibly explore a new state.

• Changing the order: This mutation operator changes
the sequence of events in a segment randomly. Events
performed in a specific order may trigger a transition
to a new state. For example, a game application may
need button clicks in a specific order to advance to the
next stage.

• Modifying gene properties: This specific mutation op-
eration is only valid for events which need some sort of
input (Text, Number inputs). For example, invalid/fuzzy
inputs like blank spaces, number zero and special char-
acters may not be handled properly by an app and may
throw an exception.

Stopping Criterion

A genetic algorithm requires some criteria for termination.
Some of the traditionally employed termination criteria in-
clude having an upper bound on the number of generations,
giving the process a pre-defined time limit, and stopping
the algorithm if there is no improvement in subsequent
generations.

In our case, the number of generations and the initial
population depends on the complexity of the problem. The
chosen parameters may lead to either pre-mature conver-
gence or CPU time wasted through executing redundant test
cases with no improvement [9]. In addition to that, Android
Emulators [2] are known to be slow and may further increase
the total execution overhead.

According to previous researches [25], [27], [28], finding
a stopping criteria for a multi-objective problem is a multi-
objective problem itself since the improvement has to be
considered for all the defined objectives. We use Mutual
Domination Rate indicator (MDR) [25], a progress indicator
that is specially designed for multi-objective evolutionary
algorithms to check the quality of solutions after each
generation. The details are as follows.

Consider PF ∗
t−1 and PF ∗

t as the non-dominated (elite)
solutions obtained at generation t-1 and t, respectively.
Imdr(t) ∈ [−1, 1] contrasts between the number of non-
dominated individuals of generation t that dominate the non-
dominated individuals of generation t-1 and vice-versa.

Consider a function C = d(A,B) that returns a set of
elements of A that are dominated by at least one element of
B, and |C| is the number of elements in the set, then,

Imdr(PF ∗
t , PF ∗

t−1) =
|d(PF ∗

t−1, PF ∗
t )|

|PF ∗
t−1|

−
|d(PF ∗

t , PF ∗
t−1)|

|PF ∗
t |

(1)
Imdr = 1 indicates that generation t is completely better than
t-1, Imdr = 0 indicates that there has been no improvement
since the last generation, and in the worst case, Imdr = −1
indicates that the quality of the generation has degraded.
If there is no improvement for a pre-defined number of
generations, the execution process stops with the last test
suite considered as the optimal test suite.

IV. EVALUATION

We establish and answer three research questions to com-
pare our evaluation results with the study conducted by
Choudhary et al. [8].

• RQ1 (Code Coverage): How does the code coverage
achieved by our approach compare to the state-of-
the-art existing approaches as mentioned in study by
Choudhary et al. [8]?

• RQ2 (Fault Detection): How effective is our approach
in finding faults?

• RQ3 (Multiple Objective Handling): How effective is
our approach in handling the trade-off between the three
objectives used for evaluation?

Creating a test oracle is another problem in the field of
automated testing and has been covered in various researches
[32], [33]. However, our main focus here is not the behaviour
of the application or validity of the test cases, but to increase
the code coverage, detect faults, reduce the test sequence
length and minimize the test suite.

A. Experimental Environment and Settings

All our experiments were done on Nexus 5’s emulator
with 1586 MB of RAM. The emulator was run on a 64-
bit MacOS 10.12.4 machine with 2.5 GHz Intel Core i5
processors and 8 GB of RAM. We ran the evalution on a
set of open source Android applications. We set the initial
population n to 100 test cases and the elite population l to 50
and the number of clusters k to 2. The mutation probability
was 0.2 with 50% of the elite solutions undergoing crossover
(25 solutions in our case). Since our test cases represents an
individual with varying number of events in it, they cannot be
compared directly to the event inputs used in DynoDroid and
Monkey in terms of number of test cases executed. Hence,
we evaluated our approach first, and the time spent on each
app using our approach was then given to DynoDroid and
Monkey to compare the performance. Since our approach is
non-deterministic, we ran the evaluation 10 times and took
an average of the results. We used JACOCO [4] to obtain
the code coverage and all the test cases were in Espresso [3]
and UI Automator [6] format.



TABLE I
ACCUMULATED CODE COVERAGE FOR OUR APPROACH (#COVE),

MONKEY(#COVM) AND DYNODROID(#COVD) WHERE LOC IS THE

LINES OF CODE IN THE APP AND THE EXECUTION TIME, TIME IS IN

MINUTES.

AUT LOC #CovE #CovM #CovD Time
Munchlife v1.4.2 163 93.86% 58% 76% 112
Munchlife v1.4.4 186 94.62% 63.55% 74.82% 101

BatteryCircle 251 82% 62% 79.38% 34
Triangle 281 91% 69% 81.23% 38
JustSit 276 75% 43% 66% 102

CalorieMate v1.0.0 132 84% 53% 81.22% 109
CalorieMate v1.1.0 197 87.30% 67.65% 80.27% 119

TippyTipper 996 88% 81.54% 51.33% 125
LearnMusicNotes 398 62% 50.7% 47% 117

Bats-HIIT 316 40% 24% 45% 89
BatteryDog 466 64% 51% 62.54% 34
SpriteText 1165 60.51% 58.21% 58.76% 48
SwiFTP 2160 22.8% 12.44% 16.22% 92

PasswordMaker 1436 42.96% 22% 32.22% 56
Translate 711 37.97% 19.44% 32% 78

TABLE II
FAULTS DETECTED DURING THE EVALUATION.

AUT Faults Exception
JustSit 1 java.lang.SecurityException

Bats-HIIT 1 java.lang.NullPointerException
CalorieMate v1.0.0 2 java.lang.IllegalArgumentException

java.lang.NumberFormatException

B. Evaluation Results and Discussion

We chose a set of 15 (2 of which were different versions
of the respective apps) open source apps to compare the line
coverage of our approach, Monkey, and DynoDroid.

RQ1(Code Coverage): As shown in Table I, our approach
is able to achieve a a higher coverage than Monkey and
DynoDroid for most of the apps.

Some of the reasons for not achieving higher code cov-
erage are due to dependence on external native apps (e.g.,
camera, contacts, messaging) and unavailability of external
services on an Emulator (e.g., the app SwiFTP requires a
WiFi connection to start a FTP server). Also, some apps
may have asynchronous behaviour based on timers/thread
events. For example, apps like Bats-HIIT (exercise timer) and
LearnMusicNotes have features where a new state is created
(register high score/personal best) only after the timer runs
out. These events cannot be handled unless a specific timeout
is defined, regardless of the technique used.

RQ2(Fault Detection): The fault finding capability of our
approach is shown in Table II

Our approach was able to find a total of four new excep-
tions which lead to app crashes. These issues were reported
to the app’s respective online repositories. These exceptions
were not detected by Monkey or DynoDroid during our
evaluation.

RQ3(Multiple Objective Handling): To answer the third
research question, we compared the first generation and the
last generation in terms of decrease in average length of the
fault revealing test cases for all the apps in Table II.

TABLE III
DECREASE IN THE LENGTH OF FAULT REVEALING TEST CASES.

AUT Decrease %
JustSit 74%

Bats-HIIT 82.21%
CalorieMate v1.0.0 64.12%

TABLE IV
EXECUTION TIME AND COVERAGE RESULTS FOR OPTIMAL TEST SUITES.

App Name Coverage% Time
JustSit 75% 16

Bats-HIIT 42% 15
CalorieMate v1.1.0 74.12% 24

The results are shown in Table III. This shows the effec-
tiveness of our approach in choosing test sequences of shorter
length if the same faults are found by multiple test cases.
In addition, to check the re-usability of the optimized test
suite, we ran the optimal test suites on newer versions/fixed
versions of the apps. The coverages obtained on a single run
are shown in Table IV.

The effectiveness of the optimal test suites on newer
versions of the apps depends on the type of changes made.
The test suites may have limited coverage if new features
like widgets/functions are added. For example, new views
were added in CalorieMate v1.1.0 and therefore the coverage
obtained is less than the coverage obtained when the app was
used for normal execution (Table I).

C. Threats to Validity

Two important threats to validity are the following:
• First, even though the evaluation apps were chose at

random, our results cannot be generalized since our
technique may not be applicable to all type of apps.

• Second would be the type of stopping criteria used.
Even though the MDR improvement index has been
found to be effective in our implementation, it still
checks the improvement of the search locally, i.e.,
comparing tth generation with t− 1th generation. This
may limit the whole search to a local optima.

V. LIMITATIONS OF OUR APPROACH

This section outlines the current limitations of our tool.

A. Static Analysis Limitations

Currently, our approach is limited to the scope of the static
analysis techniques available for Android. As discussed in
GATOR [29], modeling transitions caused by asynchronous
events (timers and sensors) is difficult and is yet to be
handled. This can lead to an incomplete model.

B. Limited Information in Layout

Depending on the way the app is written, complete infor-
mation about a View may not be obtainable. For example,
a developer may choose to have views without specifying



their resource ID, or, options in a ListView may be added
in through code (sometimes dynamically while the user
exercises the app) rather than defining them in resource XML
files. A dynamic modeling/assertion may handle these cases
in a better way.

VI. CONCLUSION AND FUTURE WORK

We proposed an approach to test Android applications
which uses CBGA-ES algorithm to maximize code coverage,
find short fault revealing test cases and minimize test suite for
possible re-usability. In addition, we incorporate a stopping
criterion to limit the testing time in case no improvement
is detected over the generations. Our approach was able to
achieve significantly higher coverage than current state-of-
the-art tools. Also, we were able to use the minimized test
suite for newer versions of three apps.

Future work includes incorporating better model genera-
tion to our approach to increase the variety of applications to
which our approach can be applied to. Also, it is possible to
check improvement on a global level rather than checking
for local improvements after every generation. This can
be done by analyzing the complexity of the application
and/or predicting a global pareto front by analyzing the local
improvements using MDR [25].
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