
Parallel Property Checking with
Symbolic Execution

Junye Wen, Guowei Yang
Department of Computer Science

Texas State University, San Marcos, TX
{j w236, gyang}@txstate.edu

Abstract—Systematically checking code against functional cor-
rectness properties is costly, especially for complex code anno-
tated with rich behavioral properties. This paper introduces a
novel approach to checking properties in parallel using symbolic
execution. Our approach partitions a check for the whole set
of properties into multiple simpler sub-checks—each sub-check
focusing on a single property, so that different properties are
checked in parallel among multiple workers. Furthermore, each
sub-check is guided by the checked property to avoid exploring
irrelevant paths and is prioritized based on distances towards
the checked property to provide early feedback. We implement
our approach in Symbolic PathFinder, and experiments on
systematically checking assertions in Java programs show the
effectiveness of our approach.

I. Introduction
Researchers have long recognized the value of annotating

functional correctness properties of code using assertions [7]
or executable contracts, such as those supported by the Java
Modeling Language [15] or Eiffel [17]. However, developers
are often reluctant to use them largely due to the high
computational cost of running automated analyses to check
them.

Symbolic execution [13], [14] is a powerful program anal-
ysis technique that has a number of useful applications and
has been widely used as a systematic technique for bug
finding [10], [20], [22], [28], but symbolic execution is com-
putationally expensive due to the large number of paths to
explore as well as the high cost of underlying constraint
solving. Scaling symbolic execution remains challenging for
complex programs in practice. When programs are annotated
with functional correctness properties, symbolic execution can
be naturally applied to automatically check program behaviors
against the annotated properties to check their validity. How-
ever, the scalability issue is even exacerbated as the annotated
properties often introduce extra paths and extra constraints.
This paper is focused on reducing the computational cost of
symbolic execution in checking properties.

A lot of advances in symbolic execution have been made
during the last decade. Specifically, parallel analysis [5], [23]–
[25] allows multiple workers to explore largely disjoint sets
of program behaviors in parallel, and has shown particular
promise in addressing the scalability issue of symbolic ex-
ecution. However, to the best of our knowledge, none of

DOI reference number: 10.18293/SEKE2018-171

the approaches consider the characteristics of the annotated
properties in their parallelization strategies.

This paper introduces a novel approach to parallel property
checking using symbolic execution. Our key insight is that
properties are normally written without side effects, and thus
checking of each property is independent of checking of other
properties. Our approach partitions a check for the whole set of
properties into multiple simpler sub-checks—each focusing on
one single property, so that different properties are checked in
parallel among multiple workers. Furthermore, each sub-check
is guided by the checked property to avoid exploring irrelevant
paths and is prioritized based on distances towards the checked
property to provide earlier feedback, allowing users to fix bugs
in code or refine properties earlier. Specifically, during state
space exploration we statically check whether the checked
property is reachable or not along the current path, and prune
the search when the checked property cannot be reached.
Moreover, we prioritize the state space exploration so that the
state whose corresponding location has the shortest distance
towards the checked property is explored first, i.e., the shortest
path to the checked property gets explored first. Therefore, the
prioritized state space exploration can provide earlier feedback
on the checked property. Note that the chance of pruning
irrelevant state space is much higher in each sub-check than
in the original check, since in a sub-check the program under
analysis has only one property at a particular location in the
program, while the program under analysis in the original
check has multiple properties scattered in different locations
in the program.

We implement our approach in Symbolic PathFinder [18].
To evaluate the efficacy of our approach we apply it in the
context of symbolic execution for checking Java programs
annotated with assertions. We conduct experiments based
on five subjects: three Java programs with manually written
assertions and two Java programs with synthesized assertions.
Experimental results show that our approach for parallel prop-
erty checking detects more assertion violations and reduces
the overall analysis time compared with regular non-parallel
property checking. For one subject, while regular property
checking timed out after executing for two hours, our parallel
property checking technique completed within four seconds. In
addition, for most sub-checks, our guided check prunes state
space and reduces the time cost, and our prioritized check
provides earlier feedback compared to regular check.

II. Motivating Example

We use an example to illustrate how our approach leverages
the annotated properties to improve the scalability of symbolic
execution for property checking. Consider the source code of
median shown in Figure 1. It computes the middle value of
its three integer inputs; this method is adapted from previous
work [12], and five assertions are manually added to check
the correctness of the program. For example, the user asserts
x <= y && y <= z at line 4, indicating that y should be
the middle value of the three inputs; otherwise, an assertion
violation is captured.

1int median(int x, int y, int z) {
2 if (y < z) {
3 if (x < y){
4 assert x <= y && y <= z; //#1
5 return y;}
6 else if (x < z){
7 assert y <= x && x <= z; //#2
8 return x;}
9 }

10 else {
11 if (x > y){
12 assert z <= y && y <= x; //#3
13 return y;}
14 else if (x > z){
15 assert z <= x && x <= y; //#4
16 return x;}
17 }
18

19 assert (x<=z && z<=y) || (y<=z && z<=x); //#5
20 return z;
21}

Fig. 1. Method to compute the middle value of three input numbers and its
annotated assertions.

The workload of checking five assertions in this program is
conducted by five workers running in parallel, such that each
worker checks one single assertion. For example, the worker
responsible for checking assertion #1 analyzes a program
version, where the code together with the target assertion
#1 remain unchanged, while all the other four assertions are
removed.

In addition, each sub-check is further optimized using
guided and prioritized state space exploration based on the
checked assertion. For checking assertion #1, the sub-check
is guided by assertion #1, avoiding exploring the irrelevant
parts of the program. Therefore, instead of exploring all the
six possible paths in the program, the guided check only
explores one path, that satisfies path condition y < z and x < y
and reaches the checked assertion. It results into up to 5/6
reduction in terms of the number of paths to be explored. If
multiple paths can reach the checked assertion, we use shortest
distance based heuristics to prioritize the search so that the
assertion can be checked as early as possible and a feedback,
i.e., whether the assertion is violated or not, can be returned
to the user as early as possible.

Fig. 2. An overview of the approach

III. Approach

Our approach is focused on how to optimally utilize the
computing resources available to check properties, specifically
in a parallel setting where the checking can be conducted
among several workers. Our key insight is that properties are
normally written without side effects, and thus checking of
each property is independent of checking of other properties.
The result from checking all properties in one run should be
the same as that from checking properties in multiple multiple
runs in parallel. This enables us to partition a check for the
whole set of properties into multiple simpler checks–each
focusing on one single property, so that different properties
are checked in parallel among multiple workers. Therefore, the
original check is converted into multiple simpler sub-checks
in parallel for better scalability.

Figure 2 shows an overview of the approach. Consider a
program P with multiple properties PT = {PT1, PT2, ..., PTm}

to check. Our approach first statically analyzes the program
to find all the m properties to check, and accordingly prepare
m program versions V = {v1, v2, ..., vm} where each version
contains only one property that does not appear in other
versions. These versions are then checked by m workers, each
worker focusing on one version and altogether checking all the
properties in parallel. Each worker works on its own program
version with one single property using property guided and
prioritized check. Finally, the property checking results from
these workers are delivered to the user.

The partition of properties not only simplifies the program
to be checked due to the removal of other properties, but also
allows further optimization of each sub-check. Since each sub-
check focuses on one single property, it is more likely to have
paths that do not reach the checked property compared with the
original check that focuses on multiple properties. Leveraging
this observation, each sub-check, i.e., a symbolic execution run
for checking one single property, is guided by the checked
property such that it only explores the program state space
that is relevant to the checked property. If the current path
cannot reach the checked property, symbolic execution does
not continue along the path and backtracks. By effectively

Algorithm 1 Procedure check for checking a property
Input: Program P, property PT , search depth bound DepthBound
Output: A set of property violations detected during symbolic execution VS

1: Queue tq← enabled transitions at current state s
2: while ¬tq.isEmpty() do
3: t ← tq.remove()
4: nt ← GetCFGNode(P, t)
5: na← GetCFGNode(P, PT)
6: if ¬IsCFGPath(nt, na) then
7: continue
8: else
9: s′ ← execute(s, t)

10: pc← current path condition
11: depth← depth + 1
12: if pc is not satisfiable then
13: continue
14: end if
15: if isPropertyViolated(s′) then
16: VS .add(violation(s′))
17: continue
18: end if
19: if depth == DepthBound then
20: continue
21: else
22: check(s′)
23: end if
24: end if
25: end while

pruning paths that cannot reach the checked assertions, our
approach avoids the cost of exploring irrelevant paths.

Algorithm 1 shows the procedure check for performing
property checking for a program with one single property.
Given as input a program, a property to check, and a bound on
the search depth, the procedure check the conformance of the
program behaviors with the checked property, and return all
property violations in the program. It starts with the initial state
for s, 0 for depth, and an empty set for VS . It finds all enabled
transitions at the current state (Line 1) to systematically search
the state space. Lines 4 − 5 locate the Control Flow Graph
(CFG) nodes for the enabled transition, and the checked prop-
erty, respectively. Both the enabled transition and the checked
property could correspond to multiple CFG nodes, we simplify
it here assuming that each corresponds to one CFG node.
It checks whether the current transition reaches the checked
property, and if not prune the search (Lines 6− 7); otherwise,
it executes the transition to get to the next state, and update
the pc and depth (Lines 9 − 11). If pc is unsatisfiable (i.e.,
the corresponding path is infeasible), the checked property is
violated, or search depth reaches the bound, it backtracks to
explore other un-explored enabled transitions (Lines 12− 20);
otherwise, it recursively explores the states rooted at the new
state s′ (Line 22).

In addition, each sub-check is prioritized to provide early
feedback to the user. In the context of property checking,
usually one property violation is enough for investigating the
violation, and there is no need to find all property violations.
Our insight is that the earlier a property is checked, the earlier
the user could start the investigation and fix the potential
problem either by modifying the code or by refining the
checked property. As there is no precise way to predict the
feasibility of paths and how long each path would take. We use
a heuristics to prioritize the check. Specifically, we calculate

the distances from the current point towards the checked
property along all potential paths, and choose the shortest path
to explore first [16].

To prioritize the search, at each branching point, we sort
the list of enabled transitions based on an estimated distance
to the checked property in a CFG. For each enabled transition
ti, we compute an estimated distance to the checked property.
The enabled transitions queue (tq in Algorithm 1) is sorted
in ascending order based on the estimated distances of the
transitions before the queue is explored. The enabled transition
with the shortest distance is explored first. The distance is a
lower bound on the number of CFG branches from a node ni

(corresponding to ti) to node n j, that is corresponding to the
checked property:

∀ni . n j : di := min (branches (ni, n j))

In our approach, we use the all-pairs shortest path algorithm
to compute the lower bound on the number of CFG branches.
The complexity is cubic in the number of branches in the CFG.
We note that metrics other than number of branches can also
be used as a distance estimate, for example, the number of
bytecodes.

IV. Evaluation

We empirically evaluate the effectiveness of our approach
for parallel property checking. Our evaluation addresses the
following research questions:

◦ RQ1: How does the efficiency of our parallel property
checking compare with regular property checking?

◦ RQ2: How does the cost of our guided check compare with
regular check?

◦ RQ3: How does our prioritized check compare with regular
check in terms of providing feedback to the user?

A. Artifacts

In our evaluation, we use five subjects including median,
testLoop, trityp, WBS, and TCAS. All of them have been
used before for evaluating symbolic execution techniques [19],
[25], [27], [28].

The first subject median is shown in Figure 1. The second
subject testLoop is used to investigate how our approach
can help deal with loops, as they pose particular challenges
to symbolic execution and handling them efficiently is an
active area of research. The third subject is a Java version
of the classic triangle classification program by Ammann
and Offutt. The classification logic of the trityp program
seems deceptively simple, but are non-trivial to reason about.
We consider the correct version of assertions developed for
trityp in previous work [27].

For the two subject programs WBS and TCAS, we use
mechanically synthesized assertions. To synthesize assertions
for our experiments, we use the Daikon tool for invariant
discovery [9]. Specifically, we apply Daikon on each subject to

discover invariants and transform them to assertions. Daikon
requires a test suite to execute the program under analysis and
detect its likely invariants. TCAS had a test suite available in
the Software Infrastructure Repository [1], so we used this test
suite which contains 1608 tests. For WBS, we wrote a random
test generator to create a test suite with 1000 tests. We selected
all the eight Daikon invariants for TCAS and randomly selected
25 out of 35 invariants for synthesizing assertions.

B. Experiment Setup

In this work, we use Symbolic PathFinder (SPF) [18], an
open-source tool for symbolic execution of Java programs
built on top of the Java PathFinder (JPF) model checker [26]
to perform symbolic execution. We implemented guided and
prioritized check in SPF as a customized listeners, and we
built customized control flow graphs to compute estimated
distances and reachability information to guide and prioritize
property checking. We also conduct experiments using regular
symbolic execution as implemented in SPF for comparison.
Choco constraint solver [2] is used for solving path conditions
involved in symbolic execution.

To evaluate RQ1 and RQ2, symbolic execution is configured
to detect all assertion violations; while to evaluate RQ3,
symbolic execution is configured to stop when it detects the
first assertion violation, to check whether our prioritized check
could provide earlier feedback than regular check.

We assume that there are enough workers available for
performing the tasks in parallel. In practice, resources could be
limited, and we need design strategies for statically grouping
work before dispatching or for dynamically stealing work
among workers, which is left for future work.

We perform the experiments on the Lonestar cluster at
the Texas Advanced Computing Center (TACC) [3]. TACC
provides powerful computation nodes with reliable and fast
connectivity. The programs for each worker node are executed
on independent processors without memory sharing.

C. Results and Analysis

In this section, we present the results of our experiments,
and analyze the results with respect to our three research
questions.

RQ1: How does the efficiency of our parallel property
checking compare with regular property checking?

Table I shows the experimental results for checking all
assertions in the subject programs using our parallel property
checking approach and using regular non-parallel property
checking approach. It shows the number of detected assertion
violations, and three types of checking cost, i.e., time, number
of states explored, and the maximum memory cost, for each
approach. Since in the parallel property checking sub-checks
are analyzed in parallel among multiple workers, the table
shows cost ranges of values across all sub-checks, and it also
shows the overall time cost for the parallel property checking;
while for regular symbolic execution the cost is collected by
running regular symbolic execution on the original program
annotated with all assertions. We note that 0 in time cost means

less than 1 second. TO indicates that the corresponding check
timed out.

We find that there are no assertion violations for median
and trityp, while for the other three subjects, the parallel
approach detects more assertion violations than regular ap-
proach. This is because some expensive assertion checking
happens only in the parallel property checking. Since Sym-
bolic PathFinder backtracks as soon as it detects an assertion
violation, the inputs reaching deep assertions may be reduced
due to violations of the shallow assertions along the same
path, and thus may not detect the possible violations of the
deep assertions in regular property checking approach.

Moreover, for all subjects except for WBS, the parallel
approach is more efficient than regular approach in prop-
erty checking. Specifically, it achieves almost 3X speedup
for TCAS. For testLoop, while regular symbolic execution
timed out after executing for two hours, the parallel property
checking completed within 31 seconds. Without surprise, most
sub-checks explored only part of the state space. We also note
however for WBS our approach took more time, and explored
more states, which is because of the cost for detecting the 130
more violations.

In addition, we find that although the parallel approach takes
almost the same memory cost as regular symbolic execution
for most runs, it takes more memory for some sub-checks for
WBS and TCAS; we note however that the maximum memory
reported by SPF may vary a lot due to the underlying garbage
collection, and thus this comparison is not very meaningful.

RQ2: How does the cost of our guided check compare with
regular check?

Table II reports the experimental results for each sub-
check using guided check and prioritized check compared to
using regular check, i.e., regular symbolic execution. As we
explained before, the comparison in memory cost is not very
meaningful, thus here we only report the cost in terms of time
and explored states.

To evaluate RQ2, symbolic execution is configured to check
for all assertion violations. We observe that for 44 out of 50
versions, our guided check explored fewer states than regular
check, since guided check prunes state space exploration when
the checked property is not reachable. For example, for v1 of
testLoop, guided check explored 103 states while regular
check explored 154 states, which is about 1/3 reduction.
Accordingly, the guided check took less time than regular
check for most of these cases. For example, for v1 of trityp,
guided check took 18 seconds while regular check took 22
seconds. However, we note that for some cases, although there
was a reduction in states, the time cost of guided check was
even higher than regular check due to the overhead of static
analysis involved in guided check.

RQ3: How does our prioritized check compare with regular
check in terms of providing feedback to the user?

To evaluate RQ3, run symbolic execution is configured to
stop when it finds the first assertion violation. From Table II,
we observe that for 40 out of 50 versions, prioritized check

TABLE I
Results of parallel and regular property checking.

Subject
Parallel Property Checking Regular Property Checking

Detected Total Time Time # of Memory Detected Time # of Memory
Violations (s) (s) States (MB) Violations (s) States (MB)

median (5 assertions) 0 2 0-2 5-13 965-965 0 2 13 965
testLoop (2 assertions) 2 31 0-30 103-180 965-965 - TO - -
trityp (10 assertions) 0 49 18-48 33-49 965-965 0 103 81 965
WBS (8 assertions) 222 7 0-7 359-671 965-1178 92 2 533 965

TCAS (25 assertions) 251 680 27-679 679-935 965-1685 195 2025 2047 965

TABLE II
Property checking using guided and prioritized check and regular check.

Subject Ver
Check all violations Check first violation

Guided Check Regular Check Prioritized Check Regular Check
Time States Time States Time States Time States

median

v1 0 5 0 11 0 5 0 11
v2 0 7 1 11 0 7 1 11
v3 0 5 1 11 0 5 1 11
v4 1 5 0 11 0 5 1 11
v5 2 13 2 13 1 13 1 13

testLoop v1 0 103 0 154 0 103 0 154
v2 30 727 TO TO 0 180 TO TO

trityp

v1 18 33 22 40 18 33 22 40
v2 18 35 18 36 18 35 21 36
v3 33 49 40 57 34 49 35 57
v4 29 39 29 39 29 39 32 39
v5 48 35 53 36 45 35 55 36
v6 28 37 30 42 28 37 29 42
v7 26 37 27 40 26 37 29 40
v8 19 35 20 36 21 35 21 36
v9 22 39 19 42 22 39 20 39
v10 20 39 23 39 23 39 21 39

WBS

v1 0 451 0 455 0 163 0 255
v2 0 359 0 359 0 222 0 341
v3 0 527 1 530 0 527 0 530
v4 0 623 1 623 0 9 0 9
v5 0 535 1 535 0 535 0 561
v6 7 671 11 680 0 9 0 9
v7 0 487 1 500 0 48 0 117
v8 0 527 0 530 0 368 0 421

TCAS

v1 219 727 250 760 289 727 265 702
v2 27 727 27 760 37 727 43 702
v3 34 687 33 702 37 687 33 702
v4 149 687 156 702 125 687 137 702
v5 30 679 41 754 27 679 34 754
v6 35 679 40 754 33 679 37 754
v7 31 679 35 679 33 679 34 679
v8 28 679 33 679 33 679 34 679
v9 241 695 275 722 240 695 257 722
v10 251 695 270 722 222 695 318 722
v11 32 695 36 722 1 33 1 38
v12 31 695 33 722 1 33 1 38
v13 201 695 226 727 238 695 241 727
v14 130 695 132 727 134 695 146 727
v15 28 695 34 727 11 229 13 270
v16 28 695 35 727 9 229 12 270
v17 679 743 644 745 557 743 568 745
v18 31 743 32 745 31 743 32 745
v19 36 935 34 950 15 370 26 439
v20 33 935 36 950 8 247 14 323
v21 30 719 30 874 29 678 29 678
v22 34 719 35 874 11 167 18 214
v23 33 815 35 827 0 20 0 33
v24 28 815 39 827 10 191 20 331
v25 34 815 35 827 9 211 19 231

explored fewer states than regular check, and for 8 versions,
both techniques explored the same number of states. For
instance, for v24 of TCAS, prioritized check explored 191
states, while regular check explored 331 states. However, for
the other 2 versions (i.e., v1 and v2 of TCAS, prioritized check
explored slightly more states than regular check. This is not
surprising as the shortest path selected by our heuristics is
based on number of branches in CFG, and may result in more
states to explore in symbolic execution. Similar to previous
experiments, prioritized check usually took less time when
it explored fewer states, as the time cost is correlated with
states exploration. For example, for v10 of TCAS, prioritized

check took 222 seconds, while regular check took 318 seconds,
which is about 1.5X speedup. Moreover, for v2 of testLoop,
prioritized check completes in less than one second; in con-
trast, regular check timed out after running for two hours. Only
for few versions, prioritized check took slightly more time than
regular check.

V. RelatedWork

Several research projects have proposed techniques for
parallel symbolic execution [5], [23], [25]. Static partition-
ing [25] leverages an initial shallow symbolic execution run
to minimize the communication overhead during parallel sym-
bolic execution. It creates pre-conditions using conjunctions
of clauses on path conditions encountered during the shallow
run, and restricts symbolic execution by each worker to
explore only paths that satisfy the pre-condition. ParSym [23]
parallelizes symbolic execution dynamically by taking each
path exploration as one unit of work and using a central
server to distribute work between parallel workers. Cloud9 [5]
utilizes load balancing that initially assigns the whole program
analysis to a worker, and whenever an idle worker becomes
available, the load balancer instructs the busy worker to
suspend exploration and breaks off some of its unexplored sub-
tree to send to the idle worker to balance the work load. While
these techniques use parallelization to speed up symbolic
execution in general and check the whole bounded state space,
our work is focused on checking side-effect-free properties
and ignores path exploration that is irrelevant to the checked
properties.

Much work has been done for guiding symbolic execu-
tion [16], [19], [21]. Directed symbolic execution [19] uses a
def-use analysis to compute change affected locations and then
uses this information to guide symbolic execution to explore
only program paths that are affected by the changes. Santelices
and Harrold [21] use control and data dependencies to sym-
bolically execute groups of paths, rather than individual paths.
Ma et al. [16] propose a call chain backward search heuristic to
find a feasible path to the target location. Our work leverages
reachability of properties to guide symbolic execution to only
explore paths relevant to the checked properties.

Some recent projects [11], [27], [29] have explored more
efficient checking of properties. Guo et al. [11] introduce
assertion guided symbolic execution for eliminating redundant
executions in multi-threaded programs to reduce the overall
computational cost. An execution is considered redundant
when it shares the same reason why it cannot reach the bad
state with previous executions, and thus can be eliminated

for the purpose of checking assertions. While it focuses on
eliminating redundant executions for multi-threaded programs,
our guided check focuses on eliminating irrelevant executions
for single-threaded programs. iProperty [27] computes differ-
ences between assertions of related programs in a manner that
facilitates more efficient incremental checking of conformance
of programs to properties. Our approach is orthogonal and
can use iProperty to compute differences between assertion
versions when the checked assertion is changed, thus speed-
ing up the assertion checking carried out by each worker.
iDiscovery [29] uses assertion separation to focus symbolic
execution on checking one assertion at a time, and violation
restriction to generate at most one violation of each assertion.
While our work shares some insight with assertion separation
on checking assertions separately, the guided and prioritized
check in our work has potential to more efficiently check each
assertion.

This work is different from property-based slicing and
property-aware testing and verification [4], [6], [8], since here
we simply check the reachability of properties and apply this
for guiding symbolic execution rather than other testing or
verification techniques.

We have presented the high-level ideas of this work in
Java PathFinder workshop 2015 to get early feedback,with
no formal proceedings for the paper. In this paper we have
developed the ideas further, and we have also provided more
evaluation of the work.

VI. Conclusions and FutureWork
This paper introduced a novel approach for partitioning the

problem of property checking using symbolic execution into
simpler sub-checks where each check is focused on checking
one single property. All sub-checks are performed by multiple
workers in parallel for better scalability. The parallelized prop-
erty checking enabled us to further optimize each sub-check
by pruning irrelevant paths regarding the checked property.
Moreover, check is prioritized to explore shorter paths towards
properties so that earlier feedback on the checked property
can be provided to the user. Experiments using five subject
programs with assertions that are manually written as well
as automatically synthesized, showed that our approach for
parallel property checking reduced the overall analysis time
compared with regular non-parallel property checking; and
in sub-checks which focus on checking one single assertion,
our guided check pruned state space exploration and thus
reduced the time cost, and our prioritized check provided
earlier feedback compared to regular check.

As for future work, we plan to conduct more extensive eval-
uation of our approach using more complex subjects, such as
open source programs. We would also like to investigate how
to parallelize property checking when not enough resources
are available, for example, the number of available workers is
fewer than the number of checked properties in the program.

Acknowledgments
This work is partially supported by the National Science

Foundation under Grant No. CCF-1464123.

References
[1] SIR Repository. http://sir.unl.edu.
[2] Choco solver. http://www.emn.fr/z-info/choco-solver.
[3] Lonestar cluster. https://www.tacc.utexas.edu/systems/lonestar.
[4] R. H. Bordini, M. Fisher, M. Wooldridge, and W. Visser. Property-based

slicing for agent verification. J. Log. and Comput., 19(6):1385–1425,
Dec. 2009.

[5] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In EuroSys, pages
183–198, 2011.

[6] G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned program slicing.
Information & Software Technology, pages 595–607, 1998.

[7] L. A. Clarke and D. S. Rosenblum. A historical perspective on
runtime assertion checking in software development. SIGSOFT Software
Engineering Notes, 2006.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Bandera: a source-
level interface for model checking java programs. In ICSE, pages 762–
765, 2000.

[9] M. D. Ernst. Dynamically Discovering Likely Program Invariants. PhD
thesis, University of Washington Department of Computer Science and
Engineering, Seattle, Washington, Aug. 2000.

[10] P. Godefroid, S. K. Lahiri, and C. Rubio-González. Statically validating
must summaries for incremental compositional dynamic test generation.
In SAS, pages 112–128, 2011.

[11] S. Guo, M. Kusano, C. Wang, Z. Yang, and A. Gupta. Assertion guided
symbolic execution of multithreaded programs. In ESEC/FSE, pages
854–865, 2015.

[12] J. A. Jones. Semi-Automatic Fault Localization. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, 2008.

[13] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In TACAS, pages 553–568,
2003.

[14] J. C. King. Symbolic execution and program testing. Communications
of the ACM, pages 385–394, 1976.

[15] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of jml accommodates both runtime assertion checking and
formal verification. Sci. Comput. Program., pages 185–208, 2005.

[16] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic
execution. In SAS, pages 95–111, 2011.

[17] B. Meyer, J.-M. Nerson, and M. Matsuo. Eiffel: Object-oriented design
for software engineering. In ESEC, pages 221–229, 1987.

[18] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta. Symbolic Pathfinder: integrating symbolic execution
with model checking for Java bytecode analysis. Automated Software
Engineering, pages 391–425, 2013.

[19] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental
symbolic execution. In PLDI, pages 504–515, 2011.

[20] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic exe-
cution and system-level concrete execution for testing NASA software.
In ISSTA, pages 15–26, 2008.

[21] R. Santelices and M. J. Harrold. Exploiting program dependencies for
scalable multiple-path symbolic execution. In ISSTA, pages 195–206,
2010.

[22] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit
path model-checking tools. In CAV, pages 419–423, 2006.

[23] J. H. Siddiqui and S. Khurshid. ParSym: Parallel symbolic execution.
In ICSE, pages V1–405 – V1–409, 2010.

[24] J. H. Siddiqui and S. Khurshid. Scaling symbolic execution using ranged
analysis. In OOPSLA, pages 523–536, 2012.

[25] M. Staats and C. Pǎsǎreanu. Parallel symbolic execution for structural
test generation. In ISSTA, pages 183–194, 2010.

[26] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engg., pages 203–232, 2003.

[27] G. Yang, S. Khurshid, S. Person, and N. Rungta. Property differencing
for incremental checking. In ICSE, pages 1059–1070, 2014.

[28] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized symbolic
execution. In ISSTA, pages 144–154, 2012.

[29] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-
driven dynamic invariant discovery. In ISSTA, pages 362–372, 2014.

	Introduction
	Motivating Example
	Approach
	Evaluation
	Artifacts
	Experiment Setup
	Results and Analysis

	Related Work
	Conclusions and Future Work
	References

