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Abstract—During the software system’s maintenance and evo-
lution, finding and removing software bugs is a very important
part that consumes a large amount of money and effort. To
analyze different bugs’ character, it is very essential to know
how long or which period of versions does the bug live in.

In this study, we define version-based bug lifecycle and propose
a text features based classification model to predict the version-
length of bug lifecycle. We collect 57000+ bugs from 10 well-know
Apache Software Foundation projects to construct our dataset,
and use the tf-idf method to collect our text features from bug
report’s summary and description.

Our experimental results show that the text feature based
method performs better than other baseline methods on 10
projects. The text feature based Naive Bayes classifiers outper-
forms all other methods with different features and classifiers.

I. INTRODUCTION

Finding and removing Software bugs is a very important
part of software evolution and maintenance that consumes a
large amount of money and effort [|I]. An extensive body
of bug-related studies [2]-[6] have been proposed to help
programmers to predict, detect and fix bugs. In all bug-related
research areas, the bug lifecycle (the time difference between
bug introduced time and bug fixed time) is an important
time indicator, which is useful for many applications, such
as predicting fault-proneness of code region [7] or identifying
the origins of bugs [8]]. The recent empirical study shows that
some long-lifecycle bugs may remain alive for a very long
time and in multiple versions [9]], [10].

Some researchers have paid attention to bug lifecycle and
their studies could be divided into two parts: Fixing Period,
(the righthand side of bug lifecycle, from reported time to
fixed time) and Dormant Period (the lefthand side, from
introduced time to reported time). In Fixing Period part, the
lengths of Fixing Period are usually considered as the bug
fixing effort (BFE). To investigate which factor impacts the
BFE, the correlation analysis was conducted [11]. Zhang et
al. focused on the correlation of different factors and BFE
by logistic regression models [[12]]. Furthermore, based on
different datasets and classifiers, researchers have proposed
prediction models to predict the BFE when the bug was
reported. Song et al. proposed the association mining rules to
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build BFE prediction model on NASA’s data sets [13]. Zhang
et al. proposed k-Nearest Neighbors based method to construct
the BFE prediction model on commercial projects [14]. In
Dormant Period part, Chen et al. introduced affected version
as an indicator for bug introduced time, then calculated the
dormant period from introduced time to reported time [9].

Our work differs from existing studies in three important
ways. Firstly, we consider the bug lifecycle as a whole in
our study. Previous studies usually focus on the righthand or
lefthand side of lifecycle. Secondly, we define version-based
bug lifecycle and predict the version-length of bug lifecycle.
Previous studies are mainly based on real time interval. We
observe that in most projects, interval time between versions
are different, so we believe that version could be considered
an effect time units of measurement. Thirdly, we focus on
text features from the summary and description in bug reports
and construct the bug lifecycle prediction model. Our model
aims to help the project manages and bug fixers trace the bug
fixing back to the bug introducing commit.

Our main contribution consists of the following steps:

o We collect the datasets with 57000+ bugs on 10 Apache
Software Foundation Projects from Jira and Github. Each
projects have more than 2000 bugs.

o We use tf-idf [[15]], a statistic method to calculate a single
word’s importance, to construct our text features.

e Our evaluation results show that our text features sig-
nificantly improves the performance of the version-based
bug lifecycle prediction model.

The rest of this paper is organized as follows. Section
defines bug lifecycle. Section |LII| shows our prediction experi-
ment setups. Section [[V]evaluates the performance of our text
features and prediction models. Threats to validity is presented
in Section [Vl Section [Vl concludes our work.

II. VERSION-BASED BUG LIFECYCLE
This section describes our data collection approach, the
studied projects, and defines bug lifecycle.
A. Linking Jira and Github

Our study mainly focuses on data from two sources: bug
related data from Jira and code evolution data from Github.
What makes Jira becomes our bug reports database is not only



TABLE I: An Overview of 10 Studied Apache Projects.

Project Description All AV AV%

CXF Web services framework. 6431 1423 22.13%

Flink Stream processing framework. 6783 895 13.19%

Flume Service for efficiently dealing log data. 3167 834 26.33%

Groovy Object-oriented programming language 8100 3697 45.64%
for Java.

Hadoop Software framework for distributed s- 12723 6766 53.18%
torage.

NiFi Enables data flow between systems. 4446 959 21.57%

OpenJPA  Implementation of the Java Persistence 2718 1654 60.85%
API specification.

PDFBox  Pure-Java library. 2952 2055 69.61%

Tuscany  Developing and running software appli- 4,082 1420 34.79%
cations.

Wicket A lightweight component-based web 6458 2169  33.59%
application framework.

Totals 57860 21872 37.80%

the popular it is, but also it provides the affect-version field.
It is filled by the bug fixing developers and is an indicator of
bug introducing time estimated by the development team [[16].
Github is a web-based Git and Version Control System(VCS).
We can get several collaboration features such as bug tracking,
feature requests and task management from it [[17].

To synchronize the bug reports from Jira and commits from
Github, bug id with some key words such as “bug”, “fix”,
“defect” are regarded as the link between a bug reports and
commits [18]], [19]. Although there are many new technique
to link the bug reports with commits such as ReLink [20] and
MLink [21]], in this paper, a bug report can be linked with
a commit only when their bug id is same which ensured the
correctness of our data.

B. The Studied Projects

We choose 10 Apache Software Foundation (ASF) projects
as our studied projects. First, they are well-known ASF
projects available in Jira and Github. Second, these projects
have enough proportion and number of bug reports with affect
version. Third, these projects have the enough number of bug
reports matching from Jira to Github.

Table [I| summarizes these 10 ASF projects with their de-
scription and the numbers of bug reports. The third column
(ALL) is the number of all the bug reports recorded in Jira. The
forth column (AV) is the bug reports that have affect version
item filled in by developers and the last column (AV%) is the
percentage of them comparing to all bug reports.

C. Definition of bug lifetime
As discussed in Introduction, we define the version-based

life cycle LC(z) of bugs x, as the version sequence from the
introducing version V; to the fixing version V;:

LO(I) = ‘/iv‘/i-‘rla"' avf

and the version-length of life cycle LLC(x) as version differ-
ence from V; to Vy.

In our experiment, we use the affect version in Jira as
the the introducing version of bugs. Costa et al. [16] applied
the affect version on evaluating the approach of identifying
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Fig. 1: The boxplots of 10 Projects distribution of the version-
length from the affect version to the fixing version.

bug-introducing changes. If a bug has multiple affect versions
filled in, we use the earliest affect version as bug introducing
version. Jira also provides the fixing version in most bug
reports, thus we use the fixing version as the endpoint version
of bug lifecycle. Correspondingly, if a bug has multiple fixing
versions, we use the latest one.

The AV% column in Table [[] shows that about 38% bugs
have complete lifecycle information (affected version and
fixing version). We use these 38% bugs as the studied dataset
to construct and evaluate our prediction models. Figure
presents the bug’s lifetime statistic in the chosen 10 projects.
We observe that:

« in all projects, many bugs live in lifecycle with multiple
version-length (LLC(z) > 1).

« the boxplots have much difference from project to project,
and the quartile are also different which could be used to
define the cutoff points in sectionIl]

III. PREDICTION METHODOLOGY

In this section, we will discuss the approach and evaluation
metrics used in the following experiment.

A. Text Feature Extraction

It is three reasons that we use the text features in the bug
lifecycle prediction scenario. First, text features are included
in bug reports descriptions or summary and most of the bug
reports have these items filled in. Second, there are numerous
information that exists in bug report descriptions written by
developers. We can extracted features from it to build the
prediction model. Third, text feature based approaches have
been used in many former researches [22]-[24] in other
fields such as defect fixing effort prediction and software
constructive cost prediction. Kikas et al. used the number of
text comments or size of text comments as text features to
predict when a bug will be closed in the future [25]].

Text Feature. In our work, to generate text features from
text descriptions of historical defect reports. We utilize tf-idf
(short for term frequency-inverse document frequency) api of
Scikit-learn package in Python language to extract word tokens
from the textual descriptions.



The tf-idf method consists of two parts tf and idf. The full
name of tf is term frequency which is the number of times a
term appears in a document. The n word tokens we extract
from a text descriptions can be defined as w|0, ..., n], where
w; means the i-th word in the text. tf can be defined as:

N 5
tfz7] Zk nk’] )
where the n; ; means the number of the word w; appears in
document j. The ), ny ; means the summation of document
7’s words.

The full name of idf is inverse document frequency, which
gives us the word’s frequency across the documents. The
formula of idf can be defined as:

Dl
{7 wi € ds}|”
where the | D| means the number of documents included in the
corpus. The |[{j: w; € d;}| means the number of documents

the w; appears in the corpus.
Finally, the value of tf-idf can be calculated as:

tf —idf = tfiJ X ldfZ

idf; = log

In information retrieval, tf-idf is a statistic method that is
intended to perform a single word’s importance of a certain
document in a corpus [[15]. It is also widely used in informa-
tion retrieval or text mining as a weighting factor.

Basic Feature. We also use the basic metrics from Jira’s
bug reports as our baseline prediction features. There are many
items that Jira provides for developers to fill in. But some of
the items most developers (over 99%) did not fill in when they
reported a bug, such as Components, Time Spent, Work Ratio,
and Security Level. And there are also some items that can
not be directly used as features, such as Assignee, Reporter,
Creator and Environment. Thus, from our investigation, there
are Priority, Votes and Watchers items that can be directly used
as features to build the basic feature prediction model.

B. Prediction Settings

Two Classification Problem Definition. Numerous re-
searchers have used the classification model in bug fixing
effort prediction [5[], [26], [27], which inspires us to build a
classification prediction model for verson-based bug lifecycle.

In the view of every project’s distribution of length of
bug lifecycle (LLC) in Figure [T} the boxplots have much
difference from project to project, and the three cutoff points
(25%,50%,75%) of boxplots are also different. By the cutoff
point, we transfer the bug lifecycle prediction to a two
classification problem. Figure [2] shows how the transformation
executes. In Figure[T] the boxplots of project CXF have three
cutoff points: 4(25%), 6(50%), 9(75%). For 4 as 25% cutoff
point, we group the bugs whose LLC less than 4 into a class
(< cutoff class) and greater equal than 4 into another class
(> cutoff class), then we do the two classification. For each
projects, we will do the two classification at different three
cutoff points (25%,50%,75%). There are two special cases in
Figure [I] that Flink and Tuscany’s cutoff points have some
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Fig. 2: An example of CXF Project’s two classification at 3
Cutoff Points: 75%(9), 50%(6) and 25%(4).
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Fig. 3: An example of dummy recent and dummy major
classifiers at CXF 25% cutoff point.

overlaps. Thus, if a project’s cutoff point 25% equals to 50%
or cutoff point 50% equals to 75%, we plus 1 LLC for the
latter cutoff point.

Cross Validation. Two-fold cross validation is used to train
and test the prediction model in the 10 studied projects. For a
certain project, we break its data into two folds, one for train
set and another for test set. In this experiment, we run two-
fold cross validation for 50 times and totally get 100 prediction
results for each cutoff point of each project.

Prediction Classifiers. To build our bug lifecycle pre-
diction model, we adopt the following four commonly-
used supervised classifiers: Naive Bayes(NB), Support Vec-
tor Machine(SVM), Logistic Regression(LR), and Random
Forest(RF). In our experiments. we use the implementations
of these classifiers in scikit-learn, a free software machine
learning library for the Python programming language [28]].

Dummy Classifiers. The dummy classifiers are used as
the baseline classifiers in this experiment. A dummy random
classifier is that all prediction classes are randomly guessed,
which can also achieve a certain prediction accuracy. Another
two dummy classifiers are the dummy recent classifier for
predicting all bug introduced in recent version class, and
the dummy major classifier for predicting all bug reports
introduced in the major class of train set. Figure [3] presents
an example of dummy recent and dummy major classifiers
at CXF 25% cutoff point. For the dummy recent classifier, it
predict all the test set as LLC<4 because the recent class is
LLC<4. For the major recent classifier, it predict all the test
set as LLC>4 because the major class of train set is LLC>4.
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Fig. 4: The boxplots of Weighted Average F-measure values of all studied combination of features and classifiers. Different
colors represents different ranks (red>yellow>green>blue>purple) calculated from double Scott-Knott Tests.

Combination of Features and Classifiers. Here we
make a brief conclusion of different features and classifiers
mentioned above: there are 11 combinations of features and
classifiers we will use in the following experiment. First, 3
dummy prediction models: Dummy_Random for randomly
guess predict class, Dummy_Recent for guess all predict class
as recent class, Dummy_Major for guess all predict class
as major class. Moreover, using basic metrics as prediction
features, there are 4 basic feature based prediction models:
Basic_NB, Basic_SVM, Basic_LR, Basic_RF. Finally, using
textual metrics as prediction features, there are 4 text based
prediction models: Text_NB, Text_SVM, Text_LR, Text_RF.

C. Evaluation

F-measure. To evaluate the performance, we use the macro-
average measurement [[14f], [29]. It is also commonly known
as the metric weighted average F-measure. The F-measure can
be calculated by the Precision and the Recall. For project j,
the F-measure of m-th class F,, ; can be defined as:

Precision,, j X reccally, ;
Fm,j =

Precision,, ; + reccally, ;-

Considering the class size, the weighted average F-measure
of project j can be calculated as:

>om Fm jXMmJ
2om M,

where M, ; is the whole number of bug reports in m-th class
and the m equals to the class number.

Scott-Knott Test. To compare the performance of dummy,
basic feature and text feature bug lifecycle prediction models,
we use the Scott-Knott test [30]. The Scott-Knott test uses
hierarchical cluster analysis to recursively group classification
techniques into statistically distinct ranks. In this paper, we
use weighted F-measure as the performance measure. If two

Fy =

groups have statistically significant difference of weighted F-
measure, the Scott-Knott will execute again to further divide
the ranks. The test terminates when there is no statistically
distinct groups can be created [30].

Cliffs Delta §. To quantify the improvement of performance
on our textual feature bug lifecycle prediction model compared
with the baseline models (dummy model and basic feature
model), we introduce Cliff’s delta 6 [31]. The improvement
magnitude is usually assessed by the thresholds: |§| < 0.147
negligible, 0.147 < |4] < 0.330 small, 0.330 < |J] < 0.474
medium,

IV. PREDICTION RESULT

This section gives the result of our proposed textual feature
based bug lifecycle prediction model comparing with the basic
feature prediction model and dummy prediction model. First,
we do a Scott-Knott test to show the performance of different
prediction models in 3 cutoff points 25%, 50% and 75%.
Moreover, we give the detail table of the result and calculate
the Cliffs delta § to compare the performance of the best
method (from SK test it is text Naive Bayes method) with
the others in each run of 50 times cross-validation.

Scott-Knott Test Result. To address our prediction result,
Figure [] presents an overview of our Scott-Knott test ap-
proach in dummy, basic feature and text feature bug lifecycle
prediction models in 3 cutoff points 25%, 50% and 75%.
We performed a double Scott-Knott test [32] to achieve the
goal of generating statistically distinct groups. In the first run,
the Scott-Knott test is run over each project and get a rank
value for each project of 50 times cross-validation runs. In the
second run, we put the Scott-Knott ranks of each project into
another Scott-Knott test to get the final statistically distinct
ranks of different prediction models.

Figure [] shows that in each cutoff point, our proposed
4 text feature prediction models (Text_NB, Text_SVM, Tex-
t_LR, Text_RF) performs better than other baseline models.



TABLE II: F-measure means and Effect Sizes for each cutoff point in different projects. Numbers without parentheses are
means and those with parentheses are Cliff’s Delta § comparative to Text Naive Bayes Method.

Project Dummy SVM LR RF NB
) Random Recent Major Basic Text Basic Text Basic Text Basic Text
CXF 0.688(-1.00) | 0.063(-1.00) | 0.721(-1.00) [| 0.714(-1.00) | 0.735(-1.00) [[ 0.714(-1.00) | 0.722(-1.00) || 0.714(-1.00) | 0.753(-0.95) [ 0.714(-1.00) | 0.779
Flink 0.535(-1.00) | 0.199(-1.00) | 0.483(-1.00) || 0.450(-1.00) | 0.626(-0.93) || 0.497(-1.00) | 0.569(-0.99) || 0.544(-1.00) | 0.602(-1.00) || 0.453(-1.00) | 0.674
Flume 0.539(-1.00) | 0.499(-1.00) | 0.499(-1.00) || 0.630(-0.98) | 0.655(-0.93) || 0.651(-0.97) | 0.581(-1.00) || 0.615(-1.00) | 0.622(-0.99) || 0.610(-0.99) | 0.722
Groovy 0.560(-1.00) | 0.161(-1.00) | 0.542(-1.00) || 0.542(-1.00) | 0.653(-1.00) || 0.560(-1.00) | 0.648(-1.00) || 0.584(-1.00) | 0.664(-1.00) || 0.558(-1.00) | 0.696
Hadoop 0.572(-1.00) | 0.147(-1.00) | 0.563(-1.00) || 0.480(-1.00) | 0.644(-0.88) || 0.597(-0.99) | 0.594(-1.00) || 0.624(-0.99) | 0.634(-0.97) || 0.618(-0.99) | 0.693
25% NiFi 0.690(-1.00) | 0.062(-1.00) | 0.723(-0.99) || 0.635(-1.00) | 0.740(-0.88) || 0.643(-1.00) | 0.723(-0.99) || 0.652(-1.00) | 0.754(-0.63) || 0.635(-1.00) | 0.773
OpenJPA || 0.626(-1.00) | 0.100(-1.00) | 0.644(-1.00) || 0.527(-1.00) | 0.691(-1.00) || 0.529(-1.00) | 0.656(-1.00) || 0.542(-1.00) | 0.700(-1.00) || 0.533(-1.00) | 0.753
PDFBox 0.507(-1.00) | 0.272(-1.00) | 0.399(-1.00) || 0.607(-0.98) | 0.625(-0.92) || 0.614(-0.97) | 0.616(-0.96) || 0.597(-1.00) | 0.580(-1.00) || 0.570(-1.00) | 0.650
Tuscany 0.616(-1.00) | 0.107(-1.00) | 0.631(-1.00) || 0.496(-1.00) | 0.728(-0.98) || 0.541(-1.00) | 0.681(-1.00) || 0.556(-1.00) | 0.723(-0.99) || 0.485(-1.00) | 0.778
Wicket 0.633(-1.00) | 0.095(-1.00) | 0.653(-1.00) || 0.565(-1.00) | 0.675(-0.99) || 0.570(-1.00) | 0.662(-1.00) || 0.585(-1.00) | 0.689(-0.97) || 0.565(-1.00) | 0.722
Ave. 0.597 0.170 0.586 0.565 0.677 0.592 0.645 0.601 0.672 0.574 0.724
CXF 0.542(-1.00) | 0.186(-1.00) | 0.506(-1.00) || 0.490(-1.00) | 0.607(-1.00) || 0.490(-1.00) | 0.578(-1.00) [| 0.545(-1.00) | 0.597(-1.00) || 0.491(-1.00) | 0.661
Flink 0.523(-1.00) | 0.223(-1.00) | 0.457(-1.00) || 0.452(-1.00) | 0.610(-0.91) || 0.503(-1.00) | 0.566(-0.99) || 0.550(-1.00) | 0.587(-1.00) || 0.455(-1.00) | 0.655
Flume 0.672(-1.00) | 0.701(-0.99) | 0.701(-0.99) || 0.673(-1.00) | 0.728(-0.90) || 0.712(-0.95) | 0.702(-0.99) || 0.704(-0.98) | 0.732(-0.89) || 0.705(-0.99) | 0.787
Groovy 0.501(-1.00) | 0.357(-1.00) | 0.357(-1.00) || 0.547(-1.00) | 0.610(-1.00) || 0.586(-1.00) | 0.607(-1.00) || 0.572(-1.00) | 0.574(-1.00) || 0.553(-1.00) | 0.643
Hadoop 0.507(-1.00) | 0.274(-1.00) | 0.397(-1.00) || 0.585(-0.99) | 0.618(-0.84) || 0.593(-0.99) | 0.595(-0.94) || 0.577(-1.00) | 0.565(-1.00) || 0.580(-1.00) | 0.653
50% NiFi 0.650(-1.00) | 0.084(-1.00) | 0.675(-0.99) || 0.635(-1.00) | 0.696(-0.89) || 0.641(-1.00) | 0.675(-0.99) || 0.650(-1.00) | 0.709(-0.75) || 0.635(-1.00) | 0.737
OpenJPA || 0.548(-1.00) | 0.177(-1.00) | 0.519(-1.00) || 0.447(-1.00) | 0.622(-1.00) || 0.544(-1.00) | 0.576(-1.00) || 0.560(-1.00) | 0.617(-1.00) || 0.546(-1.00) | 0.694
PDFBox 0.501(-1.00) | 0.312(-1.00) | 0.355(-1.00) || 0.628(-0.74) | 0.631(-0.84) || 0.634(-0.69) | 0.628(-0.89) || 0.609(-0.98) | 0.576(-1.00) || 0.572(-1.00) | 0.649
Tuscany 0.565(-1.00) | 0.156(-1.00) | 0.550(-1.00) || 0.486(-1.00) | 0.699(-0.98) || 0.536(-1.00) | 0.655(-1.00) || 0.552(-1.00) | 0.677(-1.00) || 0.478(-1.00) | 0.747
Wicket 0.504(-1.00) | 0.286(-1.00) | 0.383(-1.00) || 0.428(-1.00) | 0.601(-0.99) || 0.482(-1.00) | 0.590(-1.00) || 0.540(-1.00) | 0.557(-1.00) || 0.442(-1.00) | 0.637
Ave. 0.551 0.276 0.490 0.537 0.642 0.572 0.617 0.586 0.619 0.546 0.686
CXF 0.502(-1.00) | 0.303(-1.00) | 0.365(-1.00) || 0.380(-1.00) | 0.591(-1.00) || 0.424(-1.00) | 0.587(-1.00) || 0.587(-1.00) | 0.550(-1.00) || 0.394(-1.00) | 0.633
Flink 0.501(-1.00) | 0.349(-1.00) | 0.350(-1.00) || 0.443(-1.00) | 0.604(-0.90) || 0.498(-1.00) | 0.593(-0.93) || 0.508(-1.00) | 0.549(-1.00) || 0.419(-1.00) | 0.641
Flume 0.721(-1.00) | 0.756(-0.96) | 0.756(-0.96) || 0.751(-0.96) | 0.767(-0.90) || 0.760(-0.94) | 0.756(-0.96) || 0.753(-0.96) | 0.775(-0.85) || 0.772(-0.90) | 0.825
Groovy 0.612(-1.00) | 0.624(-1.00) | 0.624(-1.00) || 0.655(-1.00) | 0.648(-1.00) || 0.675(-0.98) | 0.639(-1.00) || 0.683(-0.96) | 0.683(-1.00) || 0.707(-0.19) | 0.710
Hadoop 0.513(-1.00) | 0.426(-1.00) | 0.426(-1.00) || 0.444(-1.00) | 0.592(-0.98) || 0.497(-1.00) | 0.549(-1.00) || 0.564(-1.00) | 0.562(-1.00) || 0.515(-1.00) | 0.652
75% NiFi 0.554(-1.00) | 0.169(-1.00) | 0.530(-1.00) || 0.457(-1.00) | 0.624(-0.99) || 0.474(-1.00) | 0.563(-1.00) || 0.523(-1.00) | 0.613(-1.00) || 0.457(-1.00) | 0.687
OpenJPA || 0.530(-1.00) | 0.477(-1.00) | 0.477(-1.00) || 0.530(-1.00) | 0.623(-0.99) || 0.543(-1.00) | 0.586(-1.00) || 0.565(-1.00) | 0.602(-1.00) || 0.579(-1.00) | 0.677
PDFBox || 0.512(-1.00) | 0.423(-1.00) | 0.423(-1.00) || 0.539(-0.99) | 0.623(-0.94) || 0.601(-0.99) | 0.603(-1.00) || 0.595(-0.99) | 0.576(-1.00) || 0.564(-1.00) | 0.652
Tuscany 0.553(-1.00) | 0.170(-1.00) | 0.529(-1.00) || 0.440(-1.00) | 0.693(-0.99) || 0.482(-1.00) | 0.656(-1.00) || 0.495(-1.00) | 0.668(-1.00) || 0.423(-1.00) | 0.747
Wicket 0.605(-1.00) | 0.615(-1.00) | 0.615(-1.00) || 0.674(-0.70) | 0.640(-1.00) || 0.690(-0.29) | 0.628(-1.00) || 0.686(-0.41) | 0.664(-0.95) || 0.692(-0.19) | 0.697
Ave. 0.560 0.431 0.509 0.531 0.641 0.564 0.616 0.596 0.624 0.552 0.692

Moreover, the text Naive Bayes classifier performs the best
across every cutoff point. In cutoff points 25% and 75%, text
Naive Bayes method has been divided into a single class (the
best class) by double Scott-Knott test. Although in 50% cutoff
point, text Naive Bayes method is not grouped into a class
individually, but it also performs best comparing to the other
methods. Thus, in the following table, we use text Naive Bayes
method as the chosen method in Cliffs delta § calculation.

Detail Result with Cliffs Delta §. The detail result of
weighted F-measure is presented in table [lI} which is calcu-
lated by 50 times 2-fold cross-validation. The first column is
the class cutoff point. The second column is the 10 projects
we used in this experiment. The rest columns present the
performance of the bug lifecycle prediction model in 3 dummy
classifiers and 4 traditional classifiers (text and basic features).

In general, all text feature based classifiers can lead a
weighted F-measure higher than 0.6. The text Naive Bayes
method outperforms the related methods in every project and
average value. For example, for predicting if the bug lifecycle
is greater or less than 25% cutoff point of CXF’s LLC, our
text based Naive Bayes method achieves the weighted F-
measure 0.779, which is higher than the other methods’ results.
In the view of all average results of 3 cutoff points, text
based methods are all better than correlated basic methods
and dummy methods. Although the basic feature methods
perform better than other classifiers with text features in some
projects, they can not exceed the text Naive Bayes method.
In the view of Cliffs delta §, most of the methods performs
large magnitude (|| > 0.474) compared to text Naive Bayes
method, which means the text Naive Bayes method performs

significantly better than other methods in each run of 50 times
cross-validation of each project.

We observe that the text based methods perform better
than basic methods and dummy methods in average of 10
studied projects. The text based Naive Bayes bug lifecycle
prediction model outperforms all other prediction models.

V. THREATS TO VALIDITY

This study provides a text feature based prediction model
to predict the bug lifecycle. However, there are some threats
to validity that should be taken into consideration.

Internal validity. All the ten data sets used in our ex-
periments are well-known open source projects of Apache
Software Foundation in Jira. The performance of bug lifecycle
prediction in commercial projects may be different from the
open source projects. Moreover, the ten open source projects
are all Java projects where other programming language may
have some differences in the character of text feature. We will
study more projects in the future, including the commercial
projects and the projects in other languages.

External validity. Our bug lifecycle prediction model re-
quires that the projects have sufficient historical bug reports
with affect version to train the prediction model. However,
these information could be limited in some projects. Another
external validity of our experiment is that the bug reports
provide is the affect version not the exact bug introducing
time. The commercial data sets may be more accurate in this
bug introducing time compared to the open source projects.

Reliability validity. All the ten projects are publicly avail-
able in Apache Software Foundation of Jira. Any researchers
who intend to replicate this study can get the data sets in



Apache Software Foundation of Jira. Moreover, the python
implementation of our experiment will be provided online.

VI. CONCLUSION

Bug lifecycle prediction aims to know how long does a
bug exists in software during it first be introduced and finally
be fixed. It can help developers to efficiently revisit the bug
introducing code. The former work mainly focus on fixing
period or dormant period, and use features obtained from
defect ranking, source code and CVS log to do the analysis.
In this study, we consider the bug lifecycle as a whole and
focus on text features (summary and description of bugs) in
bug reports to construct prediction model.

Our evaluation on 10 well-know Apache Software Founda-
tion projects with 57000+ bugs shows that our model achieves
a good performance in predicting the bug lifecycle. We ex-
amine the results with 3 evaluation measurements: Weighted
F-measure, Scott-Knott test, and Cliffs Delta 6. The Scott-
Knott test and Cliffs Delta § present that the text Naive Bayes
method outperforms all the rest methods. In general, all text
feature based classifiers can lead a weighted F-measure higher
than 0.6. In the future, we intend to extend our text feature
based model to more projects in bug lifecycle prediction and
introduce more methods to train the prediction model.
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