

Service Language Model:
New Ecology for Service Development

Ying Li
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

cnliying@zju.edu.cn

Meng Xi
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

ximeng@zju.edu.cn

Hui Chen
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

chchenhui@zju.edu.cn

*Jianwei Yin
College of Computer Science and

Technology
Zhejiang University
Hangzhou, China

zjuyjw@zju.edu.cn

Abstract—With rapid development of the Internet, all walks
of life are engaged in the tide of Internet. In the era of
"Internet+", traditional industries are widely developed and
expand plenty of emerging business, such as online transactions,
Internet finance and so on. However, various problems arise at
the same time in this revolution. On one hand, business processes
become increasingly intricate, and different fields may have
difficulty in communication. On the other hand, developers are
hard to understand the real demands from users and the rate of
code reuse is not high. In order to solve these problems, we
propose a middle-end and project manager (PM) oriented service
language model, which could help decouple software
development and user requirements, improve work efficiency
and reduce development costs.

Keywords-service language model, ontology, business process

I. INTRODUCTION
Nowadays, modern service industry has grown up rapidly

and play an important role in our daily life. As service
scenarios become increasingly complicated and user demands
change quickly, traditional business process modeling methods
can hardly meet the current business requirements.

The problem could be serious in the field of E-commerce.
Different from offline sales, business processes in E-commerce
develop rapidly. To cope with this situation, enterprises need to
invest a lot of resources to improve their original business
processes. Therefore, it is necessary to design a process
modeling method that can quickly and accurately respond to
requirements. And in recent years, data-centric Artifact model
has emerged. Different from traditional activity-centric
modeling approaches, the construction of Artifact model
begins with data, and then business processes are built around
the data entities. By using data-centric approach, the business
process could be flexible and adaptable. However, the data-
centric life cycle could be difficult to reuse and easily lead to
code redundancy. On the other hand, the existing demand
analysis method is usually activity-centered, which makes it
difficult to put Artifact modeling into practice.

In this paper, we design a service language model (SLM).
SLM consists of Service Concept Model (SCM) that can
describe the requirements of services and Service Design
Model (SDM) that can construct and manage service processes.
Within SDM, there is an entity feature model for data, an

ability feature model for functions and interfaces and a refined
life cycle model for business processes.

The main contributions of SLM are as follows. First, a
concept model of service is designed to conceptualize
requirements and describe them in a formal way. Secondly, a
method was provided to manage and deploy data and data
entities in services. Thirdly, Business abilities can be reused
and their range can be cleared easily by using SLM. Finally, a
process model which could help stratify the business and
clarify the business structure was proposed.

The rest of this article is organized as follows. Section
Two is the motivation case. Section Three introduces SLM
systematically. Section Four illustrates an application instance
where the model is verified. Finally, the related works and
conclusions are given.

II. MOTIVATION CASE
In order to have more in-depth research and better

understanding of the problem, we have worked with Alibaba
company. Here, we take buying basketball shoes and virtual
coupons as an example. One is physical goods trading which is
one of the earliest services of Alibaba, and the other is virtual
goods trading which is emerging these years. The former one
involves goods delivery, while the latter only needs to send
some verification codes. Since the physical properties of these
two commodities are different, their service processes should
be differentiated. Moreover, when modeling, we may
encounter the following questions.

Problem 1. Business logic is coupled with platform logic,
and process activity code is difficult to strip and reuse. This
makes the platform code difficult to analyze and organize.
With the business becoming more complex, platform codes
may have redundancy;

Problem 2. Long implementation cycle. A simple need
also requires steps such as program evaluation, requirement
analysis, process design, process development, and regression
testing;

Problem 3. Internal business units lack knowledge of
business uniformity, communication between departments can
cost a lot of time.

*: corresponding author
DOI reference number: 10.18293/SEKE2018-214

III. SERVICE LANGUAGE MODEL
In this chapter, we will introduce our service language

model systematically. The main concepts in service concept
model include entity rules and routing rules, and the main
concepts in service design model include entity, ability,
essence process, and service process. For a better
understanding of the definitions below, we expect the existence
of the following pairwise disjoint countably infinite sets: Tp of
primitive types, C of (artifact) classes (names), A of attributes
(names), S of artifact states, and IDC of (artifact) identifiers for
each class C. A type is an element in the union T = Tp ∪ C.

A. Service Concept Model
As we all know, requirement analysis has always been

extremely important in software engineering, as its quality
directly affects the effectiveness of the later system design. In
order to make requirement analysis more concise and efficient,
we build the concept of service model.

Definition 1. An service concept model instance is a triple (sc,
Rk, Rr), where sc is the identifier, Rk is the entity concept
model involved and Rr is the routing concept model.

The entity concept model is mainly used to specify the
terms involved in the service. It can express the domain
terminology, attributes of each term, and links among different
terms. In addition, the entity concept model can generate the
entity feature model by semi-automatic methods.

Definition 2. An entity concept class is a four-tuple (rkc, k, d,
re), where rkc is the identifier, k is the set of term names, d is
the set of term descriptions and re is the set of relationships
among terms.

Definition 3. An instance of an entity concept is a 3-tuple (rk,
kd, krk) where rk is an identifier, kd is a partial mapping from
k to d, and krk is a set of relations mapping between terms by
means of "k-re-k".

Example 1. In the motivation case, business side needs to
provide the requirement of data that may be used in their
service, like receiving information which consists of name,
phone and address. They could describe this requirement in the
format of service language model as shown in Table I.

TABLE I. ENTITY CONCEPT EXAMPLE: RECEIVING INFORMATION
ENTITY CONCEPT

ID Entity & Description Relation
721019 receiving information: data

set
name: string, length<10
phone: number, length=11
address: string

basic(receiving
information, name)
basic(receiving
information, phone)
basic(receiving
information, address)

On the other hand, routing rules are mainly used to
express the system through a simple logic involved in the
activities of the process. The conceptual model of routing
mainly guides the construction of the refinement process
model, and gives guidance on the construction of the life cycle
model.

Definition 4. A routing concept class is a four-tuple (rrc, S, c,
E), where rrc is the identifier, S is the state in the route, C is
the set of judgement conditions, and E is the set of posterior
effects.

Definition 5. A routing concept instance is a pair (rr, sce),
where rr is the identifier, and sce indicates that the entity e
satisfies the condition c under state s.

Example 2. In the motivation case, there are requirements
about process itself like how to place an order. The business
side needs to arrange the process and describe it in the format
of routing concept like Table II.

TABLE II. ROUTING CONCEPT EXAMPLE: PLACE AN ORDER ROUTING
CONCEPT

ID sce

217210 (no_order, place an order success, state=to_pay)
(to_pay, payoff, balance reduce & state=to_deliver)
...

B. Entity Feature Model
The entity feature model is mainly used to model the data

entities in the service. A feature model is composed of a set of
characteristics and their relationships, and it also has certain
constraints.

Definition 6. An entity feature class is a 7-tuple (Cε, AT, τ, Q,
s, F, Opt), where Cε is the identifier, AT is the attribute in the
entity or the characteristic in the entity, τ is the type of the
attribute or the constraint relation of the class or feature, Q is
the set of states of the entity, s is the initial state of the entity, F
is the end state, and Opt is the optionality of the state.

Definition 7. An entity feature instance is a triple (e, µ, q)
where e is the identifier, µ is partial mapping that assigns each
AT in T (mentioned at the begging of section three), q is
current state when e is an full entity or Opt when e is a feature
of an entity.

Example 3. In the motivation case, order is an important
entity. The process of a transaction is the lifecycle of an order
which is from generation to extinction. Its instance is presented
in Table III.

TABLE III. ENTITY CONCEPT EXAMPLE: RECEIVING INFORMATION
ENTITY CONCEPT

ID µ state

171701 receiving information: data
set
name: string, length<10
phone: number, length=11
address: string

basic(receiving
information, name)
basic(receiving
information, phone)
basic(receiving
information, address)

When analyzing the transaction process, we find that there
are entities involve in a process with no state, which are called
participants.

Definition 8. A participant class is a triplet (Cp, RE, τ) where
Cp is the identifier, RE is the resource of the participant, and τ
is the main type of the resource.

Definition 9. A participant instance is a binary (p, µ), P is the
identifier, µ is the partial mapping that assigns each RE in T.

C. Ability Feature Model
The modeling method of ability feature model is the same

as that of the entity model, which is used to describe the
configurable services and functions of Artifact.

Through the construction of the ability model, we can use
functional units in the system as configurable atomic services.
Through the call to the service, data in entities can be
processed and their state may transfer as well.

Definition 10. The instance of the ability is a six-tuple (ab, D,
VEr, VEw, VPr, VPw), ab is the identifier, d is description of
this ability, VEr is variable of entity to read, VEw is variable of
entity to write, VPr is variable of participant to read, VPw is
variable of participant to write.

Example 4. In the motivation case, we need an ability of
creating an order. This ability need to generate an order and
transfer the customer's money to third party platform. We need
the order's id and whether the transfer succeed. The ability is
presented in Table IV.

TABLE IV. ABILITY EXAMPLE: ABILITY OF CREATING AN ORDER

order_create
id
description

entity
participant
entity read

entity write
participant read

participant write

344323
create an order and transfer the customer’s
money
order
customer
order.merchandise, order.destination,
order.message, order.seller
order.id
customer.user_id, customer.cash,
customer.method
customer.payment_result

D. Refined Lifecycle Model
The refined lifecycle model is mainly used to represent

the changes in state and the activities used during the execution
of the service. Refinement lifecycle model can stratify the
processes in the lifecycle process, decouple the processes in
different areas and reduce the complexity of each process while
improving the process complexity.

Condition is essentially a discriminant expression, and
finally return Boolean values, which could complete some
simple calculations and judgments.

Definition 11. A condition is a Boolean expression, which
could be connected and calculated by logical operators.

L1 process describes the core functions of the business
and is used for service classification and location.

Definition 12. An L1 process is a triple (m, d, RP2), m is the
identifier, d is the model description and RP2 is the L2 process
inherited from this L1.

L2 inherits from the L1 process and represents all the
states that an entity will experience in a life cycle.

Definition 13. An L2 and a process is a five-tuple (tr, d, q, r,
RP3), tr is identifier of transition, d is description, q is states
and r is relation between states.

The L3 process inherits from L2 and adds activities and
gateway nodes on the basis of L2, which can represent all the
activities and states that an entity experiences in a process. At
the same time in the L3 process we will complete the ability to
assemble. We specify each activity to assemble an ability.

Definition 14. An L3 process is a six-tuple (re, d, q, a, g, r), re
is identifier, d is description, q is the states, a is activities, g is
gateways and r is relations connecting q, a and g.

Definition 15. Activity instance is a four-tuple (a, ab, P, E), a
is identifier, ab is identifier of ability, P is pre-condition
(atom), and E is effect.

Definition 16. Gateway instance is pair (g, type), g is identifier
of gateway and type could be one of the four: Exclusive,
Inclusive, Complex and Parallel.

Definition 17. relation is a four-tuple (r, from, to, c), r is
identifier of relation, from / to is state / activity / gateway, and
c is a condition.

Then we can add the activities of the preconditions and
configuration items to generate L4 process on the basic of L3
process. And a runnable process is complete.

IV. APPLICATION INSTANCE
Here we take the physical transaction service as an

example to explain how to use the service model to construct
it. Due to the space limitation, we only make a brief
explanation.

A. Constructing service concept model
The physical transaction process is mainly around the

order, which has a clear state in each stage of the process. The
data in the entity can be described as "entity data name +
relationship + limit value". For instance, if the entity "order"
contains "delivery method", its value should be one of "general
delivery", "free shipping", "cash on delivery" and "self-
pickup". All the requirements for the entities in the process can
be described by the entity concept model.

The process may involve other participating entities as
well, like goods and members. In this process, the participating
entities do not own state, but the data involved in the
implementation of the process. Then we could describe the
business process and routing rules through a set of combination
of state, condition and effect, such as "unpaid, payment
executed, state change to unshipped".

B. Constructing service design model
The service design model is a system implementation of

the service concept model. From the service concept model to
the service design model there is a mapping relationship, and
these two models can manually transform into each other semi-
automatically.

By reorganizing and rearranging entity concept models,
we can construct entity feature models. That is, modeling the

entity through feature modeling. We modeled three entities in
the physical transaction process respectively including "Order",
"Goods" and "Customer".

Then, we encapsulate functions and interfaces that may be
used in the process and list the abilities. According to the
classification criteria of the e-commerce domain
characteristics, the classification of abilities could be
performed. An ability feature model is similar to entity feature
model. In this way, we can quickly query the ability to operate
on the entity data involved in the process and assemble it.

The refined process model is used finally. Firstly, we need
to determine which trading domain the business belongs to,
and that is L1 process. Then we further determine the states of
the order, which could be "unpaid", "unshipped", "assessed"
and etc. L2 process is constructed by these states and their
transition relationship. L3 need to add activities and gateways
which may cause the transition of states. For instance, the
transition from "unpaid" to "unshipped" needs to go through
activity "payment". The L4 level process is the configuration of
the preconditions, transition conditions between activities and
other configuration items. Through these operations, a physical
transaction business is completed.

V. RELATED WORK
The service language model is based on previous research.

We mainly refer to research results of ontology, domain-
specific language (DSL), variability modeling and business
process modeling (BPM).

The concept of ontology originated from the field of
philosophy and later has been given a new definition with the
development of computer science. Ontology web language
(OWL) is a representative application of ontology in computer
science. Different from traditional knowledge-based methods
that are represented by formal normative language, OWL is
more suitable for regulating demands and domain knowledge
[1]. In addition, it has the ability of automatic verification and
consistency checks [2]. Nevertheless, OWL only stays in the
concept level, which means it is unable to implement a system.

DSL has been recognized as a normative executable
language that is highly expressive in specific areas, where
domain contents are abstracted [3]. Domain experts can easily
design models with the help of DSL. Thus, it is applied to a
number of fields. For example, Matlab [4] in the mathematical
field can help people deal with vector, matrix and other
mathematical operations conveniently. On the other hand, the
IBM Sharable Code project also uses DSL to prepare services
[5]. However, DSL is only applicable to certain areas, which
means it has difficulty in solving cross-domain problems.

Variability modeling is the key technology for variability
management in software product lines. In our project, we
mainly refer to the feature-based variability modeling method
to construct our entity feature model. This method was first
introduced in 1990 by Kang KC et al. [6]. In recent years, since
feature modeling technique can greatly improve the flexibility
and reusability of system, it has been widely used to describe
relevant characteristics of software product lines and to
manage reusable assets in systems.

There are many business process modeling methods.
Business process modeling notation (BPMN) is a basic and
practical standard in web service field[7] since it can intuitively
express business processes. It defines a variety of elements that
may be used in business process modeling, including activities,
gateways, events and so on. Business process execution
language (BPEL) is an abstract high-level language that can
clearly describe functions and services provided by each web,
as well as protocols among different activities [8]. However,
these methods cannot eliminate the redundancy of large
complex systems, since they always focus on business process
implementation level.

VI. CONCLUSION
On the basis of artifact centric process modeling, this

research improves the modeling method of data entities to
make it more adaptable to the operating environment of large
and complex systems. We construct a hierarchical lifecycle
model that can help organize and manage the process. Ability
feature model is proposed to manage and reuse the code
resources more effectively and efficiently. We also modeled
requirements into SCM which could help build a domain
knowledge and describe requirements in a formal way. At
present, we have been able to realize semi-automatic
conversion between requirements and design under artificial
operation. As for future work, we will introduce natural
language processing and machine learning methods to achieve
automatic conversion from requirements to code.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China under Grant No.61772459, the National
Key Research and Development Program of China under Grant
No.2017YFB1401202 and the Key Research and Development
Program of Zhejiang Province under Grant No.2017C01013.

REFERENCES
[1] Wouters B, Deridder D, Van Paesschen E. The use of ontologies as a

backbone for use case management[C]//European Conference on
Object-Oriented Programming (ECOOP 2000), Workshop: Objects and
Classifications, a natural convergence. 2000, 182.

[2] Happel H J, Seedorf S. Applications of ontologies in software
engineering[C]//Proc. of Workshop on Sematic Web Enabled Software
Engineering"(SWESE) on the ISWC. 2006: 5-9.

[3] Van Deursen A, Klint P, Visser J. Domain-specific languages: An
annotated bibliography[J]. ACM Sigplan Notices, 2000, 35(6): 26-36.

[4] Hanselman D, Littlefield B. Mastering MATLAB 6: a comprehensive
tutorial and reference[M]. Pearson, 2001.

[5] Maximilien E M, Ranabahu A, Gomadam K. An online platform for
web apis and service mashups[J]. IEEE Internet Computing, 2008,
12(5).

[6] Kang K C, Cohen S G, Hess J A, et al. Feature-oriented domain analysis
(FODA) feasibility study[R]. Carnegie-Mellon Univ Pittsburgh Pa
Software Engineering Inst, 1990.

[7] White S A. Introduction to BPMN[J]. IBM Cooperation, 2004, 2(0): 0.
[8] Fu X, Bultan T, Su J. Analysis of interacting BPEL web

services[C]//Proceedings of the 13th international conference on World
Wide Web. ACM, 2004: 621-630.

