
Generating Integration Tests Automatically Using
Frequent Patterns of Method Execution Sequences

Mark Grechanik
University of Illinois at Chicago

Email: drmark@uic.edu

Gurudev Devanla
University of Illinois at Chicago

Email: gdev2@uic.edu

Abstract—Integration testing is vitally important for ensuring
software quality, since many serious software defects are not
isolated in single components. Unfortunately, creating integration
tests is often a manual and laborious effort. A fundamental
problem of software testing is how to automatically create
effective integration tests with oracles that find bugs efficiently.

We created a novel approach forAutomatically SyntheSizing
Integration Software Tests (ASSIST)that automatically obtains
models that describe frequently interacting components in soft-
ware applications, thus reducing the number of synthesized
integration tests and increasing their bug-finding power. In
ASSIST, static and dynamic analyses are used along with carving
runtime states to obtain test input data as well as oracles for the
synthesized integration tests. We experimented with three Java
applications and show that integration tests that are synthesized
using ASSIST have comparable bug finding power with manually
created integration tests.

Index Terms—software testing, pattern mining, execution trace

I. I NTRODUCTION

Many companies have adopted agile development [20], in
particular continuous delivery where software is tested and
released frequently, at the end of each delivery iteration. In
continuous delivery, it is important to test integrated software
components at the end of each short-term (i.e., ten day)
iteration [21, pages 55-82]. In fact, integration testing has
emerged as a major testing approach for agile and distributed
software development [25], since the majority of serious
software defects are no longer isolated in single components
and many catastrophic problems occur in interactions among
different components [23].

In integration testing, integrated software modules or com-
ponents are evaluated as a whole to determine if they behave
correctly [2, page 6] [4, page 21]. For object-oriented soft-
ware, integration tests invoke methods that belong to different
classes, which exchange data as a result of these invocations
[11]. Acceptance testingis a kind of integration testing where
many components of the application are integrated to imple-
ment some requirements [4]. At an extreme,big bang testing
is an example of the coarsest granularity of the acceptance
testing, where the entire application is assembled and tested
in one step [33], however, its usefulness is limited, since a
single debugging task is impractical [37, Section 7.2].

DOI reference number: 10.18293/SEKE2019-001

Executing acceptance and big-bang tests takes significant
resources and time, since they require comprehensive and
laborious installation and configuration of theapplication
under test (AUT)on a testbed, and each run of these tests may
take tens of minutes or hours, depending on the functionality
of the AUT. Naturally, acceptance and big-bang tests are run
on testbeds during major software releases, however, it is
impractical to do so during and at the end of the short-term
agile iterations. Clearly, finer granularity integration tests are
required that are coarser thanunit tests, where implementations
of methods that belong to the same class are tested individually
[4], [26]). Combining two or more methods that belong to
different classes is an example of an integration test of a finer
granularity that are needed for agile iterations [27]. Given
that developers routinely make small incremental changes to
applications to fix bugs and modify their functionalities, finer
granularity tests are needed to verify that the AUT behaves as
desired during and at the end of the agile iterations.

The larger the project, the more important integration testing
is to find bugs efficiently in integrated components of an ap-
plication [37]. Unfortunately, it is expensive, since the average
cost per finding and fixing a defect is currently the highest for
integration and acceptance testing [23]. This cost increases
approximately by anywhere from five and up to twenty times
if a defect is missed during integration testing and found at
a later stage [15]. Creating effective integration tests requires
significant time and effort, since it is not feasible to test all
combinations of components in a software application, and
the number of these combinations is enormous for nontrivial
applications [5], [17]. Despite these difficulties, the demand
for integration tests is high, since they are reported to have
a higher defect removal efficiency when compared with other
forms of testing (e.g., unit) [5], [23].

Our key idea is to use a stable release of the AUT to
synthesize integration tests with oracles that will be used
to test the subsequent releases of this AUT as part of agile
iterative development. Creating integration tests be ASSISTed
with automatically obtained models that describe frequently
interacting components, and thus are viewed as strong candi-
dates for containing integration bugs. ASSIST combines in a
novel way static dataflow and dynamic analyses with pattern
mining to guide the synthesis of integration tests. Our tool
and experimental results are publicly available at https://www.
dropbox.com/s/k1mfuzfw6r7138a/assist-release.tar.gz?dl=0.



II. T HE PROBLEM

Making integration testing cheaper and more effective is
very important and is equally very difficult. Constructing finely
granular integration tests is a laborious effort that requires
time and resources, which is difficult to justify especially
in continuous delivery where software is released in short-
term iterations. Combining different components blindly in
integration tests reduces their effectiveness, since the total
number of integration tests is exponential in the number of
components in a software application and many components
do not interact with one another. A fundamental problem
of software testing is how to automatically create effective
integration tests that have a high bug-finding power.

A main objective for software integration tests is to be
effective in finding bugs. An equally important objective is to
find bugs in a shorter time period without using significant
amount of resources, i.e., software integration tests should
also be efficient. A system that generates millions of random
integration tests is unlikely to be effective and efficient, since
running these tests will consume significant resources and time
without any guarantees that integration bugs will be found.
Thus, our main goal is to minimize the number of synthesized
integration tests and their execution time and to increase their
effectiveness of finding bugs at the same time.

III. O UR SOLUTION

The architecture and the workflow of ASSIST are shown
in Figure 1. The input to ASSIST(1) is the Application
Test Suite (ATS)that consists of the AUT, unit and acceptance
tests and input test data for these tests. The AUT(2) is run
using acceptance tests with the Profiler that collects Execution
Traces that are(3) analyzed by the Frequent Pattern Miner
that outputs(4) frequent patterns of method calls. The Model
Learner (5) learns the model that correlates properties of
test input data with frequently mined method calls and it
produces(6) the Model that is used to prioritize the synthesis
of integration tests, i.e., to produce more effective integration
tests efficiently. An important contribution of ASSIST is that
stakeholders concentrate on creating and improving unit and
acceptance tests as they do it now, and effective integration
tests will be synthesized automatically using models that are
learned using these acceptance and unit tests.

To execute synthesized integration tests, input test data is
required, i.e., all variables and fields of the objects should be
initialized that are used in the methods of these integration
tests. Moreover, since the first method of an integration test is
theNth method that is executed as part of some acceptance test,
this method uses the values of different objects and their fields,
which constitute thestate of the AUT. Our idea is to generate
test input data by carving the AUT state [39] before executing
theNth method in the acceptance test for the given integration
test. In fact, since the sequence of methods in an integration
test can be executed as part of two or more acceptance tests,
the carved states for these acceptance tests will serve as the set
of the input data for the same integration test. A rudimentary

state carving method is to traverse the heap starting from the
objects that are created in the main method.

The Model is used(7) as the input to the Execution State
Carver that reruns the AUT with specific acceptance tests in
order to carve(8) AUT States for the frequent patterns of
method calls. Independently from this step,(9) unit tests
from the ATS are inputted to the Unit Test Analyzer that uses
static analyses to obtain(10) complex Oracle Expressions
that include variables and AUT classes that are eventually used
in assertstatements in these unit tests. Next,(11) specific
Oracle Expressions are selected for carved AUT States and
then these selected Oracle Expressions are projected(12)
onto the carved AUT States using the State Projector to
obtain (13) the values of the oracles. As we discussed, unit
tests can contain complex expressions and control flows, and
its assertion statements contain variables whose values are
computed as results of executing these unit tests. To determine
what objects and their fields from the AUT are used in these
assertions, unit tests are analyzed using a combination of
backward slicing [38] and symbolic execution to obtain all
expressions that contribute to computing the values of oracle
expressions in assert statements. Then, these expressions are
re-evaluated given the carved states and new values for the
oracles for these expressions are obtained. These obtained
oracles, the source code of the AUT and the Model(14) are
used by the Integration State Synthesizer that(15) outputs
integration tests. This concludes the description of the ASSIST
architecture.

IV. EXPERIMENTAL EVALUATION

In this section, we pose research questions (RQs), describe
subject applications, explain our methodology and variables,
and discuss threats to validity.

A. Research Questions

As part of evaluation, we will answer the following research
questions (RQs) to assess how ASSIST meets the objectives
of effectiveness and efficiency.

RQ1: How effective are synthesized integrations tests in
finding bugs? The rationale for this research question
is to determine whether ASSIST synthesizes inte-
gration tests that can locate more integration bugs
in software when compared with certain baseline
approaches, e.g., manually created integration tests
and FUSION, an approach that composes integration
tests from unit tests [29].

RQ2: How efficient is ASSIST in synthesizing integration
tests that can help find bugs without a significant
use of computing resources? The rationale for this
research question is to determine if ASSIST produces
fewer integration tests and their total execution time
is not prohibitive, while measuring their effectiveness
of finding bugs at the same time. Our goal is to
show that ASSIST can synthesize a much smaller
and manageable number of integration tests that have
good bug-finding power.



Fig. 1. The architecture and workflow of ASSIST.

TABLE I
CHARACTERISTICS OF SUBJECT APPLICATIONS.

AUT Size, Acc Unit Integration
KLOC Tests Tests Tests

ASSIST FUSION
NANOXML 7 36 92 48 75
SCRIBE 3.7 29 39 36 28
SHTUTXML 1.3 5 40 6 6

TABLE II
MAXIMUM VALUES OF ELAPSED EXECUTION TIME AND MEMORY

CONSUMPTION FORASSIST.

AUT
Instrum PatternMining Synthesis

State
Test Mem Test Mem Test Mem

SCR 16s 55K 0.01s 2.3KB 18s 70K 0.2GB
NAN 17s 55K 0.04s 2.4KB 7s 60K 1.5GB
SHT 10s 57K 0.18s 2.4KB 7s 52K 0.95GB

B. Subject Applications And Their Test Suites

The subject applications for evaluating ASSIST are open-
source Java applications that are widely used. Their charac-
teristics are given in Table I. SCRIBE is one of the subject
applications that serves as a OAuth module for Java appli-
cations. This application has close to 50 contributors and 22
releases. NanoXML is a Java-based non-validating parser. The
third subject application is ShtutXML, an XML to text mapper.
All subject applications have test suites that contain mixtures
of unit and acceptance tests. In addition, we used several
graduate students from UIC with prior software development
experience to study these applications and create additional
unit and acceptance tests.

C. Methodology And Variables

To address RQ1 and RQ2 we evaluate ASSIST using the
following two dependent variables: the number of synthesized
integration tests and their bug-finding power. The number of
synthesized integration tests is a function of the threshold value
for mining frequent method sequences. The smaller the value

is the more sequences can be mined, which is exponential
in the limit. The larger the threshold value is, the fewer more
frequent method sequences can be mined, however, the mining
process may take a very long time. Unfortunately, frequent
pattern mining algorithms are computationally intensive, and
increasing the threshold value closer to one may take weeks or
months even using powerful computers. Thus, as part of our
experimentation we show the sizes of mined method sequences
that we obtain for different threshold values and how they
affect sizes of synthesized integration test suites.

We measure the bug-finding power of test suites using
mutation testing, which is recognized as one of the strongest
approaches for evaluating the effectiveness of test suites [14],
[18]. The code of theapplication under test (AUT), P, is
modified by applyingmutation operatorsto the AUT’s code
to create a buggy but syntactically correct version of the AUT,
P′, i.e., amutant. Running the test suite forP on P′ should fail
some tests, i.e., the mutant is killed. Otherwise, the test suite
is deemed not adequate to find bugs and it should be enhanced
with new tests that can kill mutants that were not killed with
the previous version of the test suite. A key measurement
of the power of determining the adequacy of test suites is
mutant killing ratio, i.e., the ratio of the number of mutants
killed by a test suite to the total number of generated non-
equivalent mutants. That is, our goal is to apply a mutation
testing approach to the subject applications that generates
mutants for determining the adequacy of integration test suites
synthesized by ASSIST and the mutant killing ratio should be
approximately the same when comparing to test suites that are
manually created or generated using a competitive approach.

In our evaluation we compare the tests produced by our
approach with FUSION [29], a state of the art tool for
generating integration tests by combining unit tests using an
object-relational model that it re-engineers from the source
code of the application. The independent variables in our
evaluation included the two mutation testing tools, jMINT [16]
and JavaLanche [30], the set of subject applications, and the
threshold values used in the pattern mining tool called BIDE



TABLE III
WE DESCRIBE SELECTED PARAMETERS FOR MINED FREQUENT

SEQUENCES FOR SYNTHESIZING INTEGRATION TESTS USINGASSIST.

AUT Unq
Mth

Max
Len
Seq

BIDE
Inpt

Thresh BIDE
output

Seq
Used In
ASSIST

SCRIBE 81 60 134 0.01 129 87
NANOXML 101 602 121 0.05 180 42
SHTUTXML 28 48 298 0.002 27 15

to extract frequent method sequences from execution traces
that are obtained from the subject applications. The number
of integration tests that ASSIST synthesizes is also guided by
the number of tests that contain oracles that come with the
subject applications.

For frequent pattern mining, we use an closed sequence
frequent pattern mining tool called BIDE [34]. This tool
implements a very efficient algorithm for determining closed
frequent sequences. We note that ASSIST is not tied to these
specific tools. Any frequent pattern mining tool that identifies
closed frequent sequences can be used in place of this tool.

D. Threats to Validity

One threat to external validity is the nature of applications
that we used to evaluate ASSIST – they are small and
may not be good representatives of the overall population
of applications. We plan to conduct more experiments with
many more applications to generalize these results. Subject
applications were chosen based on the availability of large
and diverse tests suites that we used as acceptance tests and to
extract test oracles. In addition, we are also constrained by the
limitations of FUSION, since it does not produce oracles. The
counter argument to this threat to validity is that the subject
applications are popular and have many tests and they may
be viewed as good representative of the applications that are
built in industry.

Another threat to validity is that we do not address the
problem of storing transient state components, such as pointers
to external resources (e.g., sockets and files). Since we show
that our approach works for non-transient data structures, we
hope to address the challenges with transient states as the next
logical step in our future work. This technical challenge does
not pose a threat to the core of ASSIST.

Finally, a threat to validity is that we evaluate the mutants
against the integration tests generated by only one tool,
namely, FUSION. Ideally, we need more tools on generating
integration mutants that contain meaningful oracles, unfortu-
nately, little research is done in this area that resulted in tools
that can be used in our evaluation. The very purpose of our
research is to address this limitation.

V. RESULTS

In this section, we report the results of the experiments and
state how they address our RQs. We carried out experiments
using Mac OSX 10.8, 64-bit CPU 2.4 GHz Intel Core i7, 8GB
of RAM, 256KB L2 Cache(per core) and 6MB L3 Cache.

Performance-related measurements are shown in Table II.
Clearly, the biggest space-related expense is the the carved
state that requires approximately 1.5GB for NanoXML. Instru-
menting the applications and synthesizing data takes less than
20 seconds, which is a reasonable expense. We can conclude
that with respect to time and memory consumption, ASSIST
is a practical approach that can be used for reasonably sized
software applications to generate integration tests.

We evaluate the results of our approach and compare its
effectiveness compared to manually generated tests and the
tests generated by FUSION. Results of our experiments are
shown in Table IV. For the AUT SCRIBE the strong mutant
killing ratio is the same that is achieved with manually created
tests. This result shows that it is possible to achieve the same
result with ASSIST as it is achieved with manually created
tests. Even though the ratio for SHTUTXML is smaller with
ASSIST-based integration tests when compared to manually
created tests, we view it as an impressive result, since ASSIST
is fully automatic.

The application NANOXML is a source of concern, since its
mutant killing ratio is very low with ASSIST-based integration
tests. Our investigation revealed the following. When we
run the acceptance tests, that are 101 unique methods in
NANOXML that are invoked and are written in execution
traces. Of these, there are 27 unique methods that are mined as
frequent sequential patterns. Unfortunately, there are unit tests
only for five methods. For the remaining methods there are no
assertions in any of the manually created tests. Moreover, those
methods that are used in unit tests and are part of the mined
frequent sequences are loosely integrated with other methods
in these sequences, so that the tightness of integration is very
poor. ASSIST is based on the assumption, that unit tests and
acceptance tests are adequate to produce integration tests that
can be used as the software evolves. This also exposes the
characteristics of the test suite and the lack of adequate tests
for methods that were identified in the set of frequently used
methods. As a result, ASSIST could not synthesize enough
effective integration tests.

The case with NANOXML highlights the results of conse-
quences of deficiencies that result in poorly built tests rather
than limitations of ASSIST. Indeed, if acceptance and unit tests
are abundant and if they are constructed properly, ASSIST
automates a difficult and laborious tasks of creating effective
integration tests. Moreover, for SCRIBE, ASSIST achieve
the same mutant killing ratio with fewer synthesized tests,
i.e., 36 when compared with 100 manually created tests. For
SHTUTXML, the mutant killing ratio is achieved with only
six synthesized tests.

We also see that using weak mutation ASSIST produces
a weak mutation killing ratio that is equal to the manually
created tests for two applications, SCRIBE and NANOXML.
In addition, our approach performs equally well compared to
FUSION for both these applications. In both these cases, our
approach also provides mutant killing ratios that is at least
50% of mutant killing ratio of manually created tests.

The results of evaluating ASSIST with the mutation tool



TABLE IV
EVALUATING THE EFFECTIVENESS OFASSISTBY COMPARING IT WITH FUSION. MUTANTS ARE GENERATED USING JMINT.

AUT Name Type oftests TestsCreated MutantsGenerated Mutants Triggered MutantsKilled Trigger Ratio Killed Ratio

SCRIBE
DEFAULT 100 115 15 6 13.04 5.21
ASSIST 36 115 15 6 13.04 5.21
FUSION 28 115 15 - 13.04

NANOXML
DEFAULT 116 104 95 34 91.34 32.69
ASSIST 48 104 5 2 4.80 1.92
FUSION 75 104 40 - 38.46

SHTUTXML
DEFAULT 43 12 7 7 58.3 58.3
ASSIST 6 12 2 2 16.66 16.66
FUSION 6 12 2 - 16.66

TABLE V
EVALUATING THE EFFECTIVENESS OFASSISTBY COMPARING IT WITH FUSION. MUTANTS ARE GENERATED USINGJAVALANCHE .

Description of theStep
SCRIBE NANOXML SHTUTXML

FUSION ASSIST FUSION ASSIST FUSION ASSIST
Total mutations 356 2634 1442 7330 193 719

Covered Mutations in ScanStep 105 29.49% 2111 80.14% 731 50.69% 6957 94.91% 0 0 403 56.05%
CoveredMutations 100 28.09% 100 3.80% 99 6.87% 99 1.35% 0 0 100 13.91%

Not CoveredMutations 256 71.91% 2534 96.20% 1343 93.13% 7231 98.65% 193 0 619 86.09%
Killed Mutants 36 10.11% 80 3.04% 47 3.26% 66 0.90% 0 0 49 6.82%

Surviving Mutants 320 89.89% 2554 96.96% 1395 96.74% 7264 99.10% 193 0 670 93.18%
MutationsScore 10.11% 3.04% 3.26% 0.90% 0.0% 6.82%

Mutation Score for coveredmutants 36.00% 80% 47.47% 66.67% 0 49%

called Javalanche are shown in Table V. ASSIST-based syn-
thesized integration tests are richer than ones created by FU-
SION, resulting in more mutants generated by Javalanche for
ASSIST. As a result, ASSIST-based tests cover more mutated
statements when compared to ones generates by FUSION.
ASSIST-based tests kill many more mutants when compared
with FUSION-generated tests. The mutation score for covered
mutants is much higher for all applications for ASSIST. Based
on this evidence we can conclude thatwe positively answer
RQ1, i.e., synthesized integrations tests are effective in
finding bugs.

To address RQ2, we will need to evaluate the results of
our approach in terms of performance of the frequent mining
algorithm which is dependent on the initial sequences gener-
ated during the execution of acceptance tests and the number
of tests ASSIST generates. Table III provides information on
the number of unique methods for each subject application,
maximal sequence of method calls that was traced during
execution of acceptance tests. The last three columns state
the threshold values that were used to identify the frequent
sequences, and the actual number of sequences that were used
by ASSIST. For each of the subject applications, we note that
it did not take more than a couple of seconds to identify these
frequent sequences. The other result we need to evaluate to
address RQ2 would be the number of integration tests ASSIST
produces. Table I provides details on the number of tests we
produce. It can be observed that the number of tests generated
by ASSIST is close to the number of tests that were created
manually or by FUSION. Ihis shows that even though there
is a potential of execution trace producing a large number
of sequences, using a combination frequent mining and static
analysis techniques ASSIST is able to produce tests that can

be executed as efficiently as manually produced tests and the
tests produced by FUSION. Based on this evidence we can
conclude thatwe positively answer RQ2, i.e., ASSIST is
efficient in synthesizing integration tests that can help find
bugs without a significant use of computing resources.

VI. RELATED WORK

Related work on automatic generation of integration tests
has many branches. Different model-based approaches exist
for generating integration tests using different types of formal
models [9], [19], [28] and using modeling approaches for
creating integration tests for distributed applications [6], [35].
Some approaches learn models and class dependencies for
integration testing from application code and behavior [3]
or from previous versions of the same application [7], [8].
Opposite to these approaches, ASSIST does not require models
for generating integration tests, since models may be outdated,
incomplete, or they may not exist at all. In addition, it is not
clear how oracles are defined for these approaches. ASSIST is
different from these approaches and complementary to them
in that ASSIST synthesizes integration tests using models of
method invocations. Unlike ASSIST, these approaches do not
have explicit mechanisms to control the number of generated
tests while increasing their effectiveness, and it is a question
how efficiently it is achieved.

Class Integration and Test Order (CITO)approaches de-
termine orders in which classes are composed in integration
tests using graph-based and search-based solutions [1], [10],
[12], [13], [22], [36]. However, the determination of a cost
function, which is able to generate the best solutions, is not
always a trivial task. In contrast, ASSIST does not require
cost functions, and it extracts oracles from tests, while CITO



does not address the oracle problem. Unlike ASSIST, CITO
approaches do not reflect the frequency of executions of
integrated components, and therefore it is not clear how it can
increase the effectiveness of the composed integration tests.

Approaches that compose integration tests from unit tests
and some software modules [24], [29], [31], [32] address
a different angle of the problem than ASSIST – the latter
concentrate on producing effective integration tests efficiently,
while it is unclear how the former approach addresses a
problem of reducing the large number of combinations of unit
tests into integration tests.

VII. C ONCLUSION

We created a novel approach forAutomatically SyntheSizing
Integration Software Tests (ASSIST)that automatically obtains
models that describe frequently interacting components in
software applications, thus reducing the number of synthesized
integration tests and increasing their bug-finding power. In
ASSIST, static and dynamic analyses are used along with
carving runtime states to obtain test input data as well as
oracles for the synthesized integration tests. We experimented
with three Java applications and show that integration tests that
are synthesized using ASSIST have comparable bug finding
power with manually created integration tests.

REFERENCES

[1] A. Abdurazik and J. Offutt. Coupling-based class integration and test
order. AST ’06, pages 50–56, New York, NY, USA, 2006. ACM.

[2] P. Ammann and J. Offutt.Introduction to Software Testing. Cambridge
University Press, New York, NY, USA, 2008.

[3] L. Badri, M. Badri, and V. S. Ble. A method level based approach for
oo integration testing: An experimental study. SNPD-SAWN ’05, pages
102–109, Washington, DC, USA, 2005. IEEE Computer Society.

[4] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New
York, 2nd edition, 1990.

[5] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti. An approach
to integration testing based on architectural descriptions. ICECCS ’97,
pages 77–, Washington, DC, USA, 1997. IEEE Computer Society.

[6] A. Bertolino and A. Polini. Soa test governance: Enabling service
integration testing across organization and technology borders. ICSTW
’09, pages 277–286, Washington, DC, USA, 2009. IEEE Computer
Society.

[7] L. Borner and B. Paech. Using dependency information to select the
test focus in the integration testing process. TAIC-PART ’09, pages
135–143, Washington, DC, USA, 2009. IEEE Computer Society.

[8] L. Borner and B. Paech. Using dependency information to select the
test focus in the integration testing process. TAIC-PART ’09, pages
135–143, Washington, DC, USA, 2009. IEEE Computer Society.

[9] L. Briand, Y. Labiche, and Y. Liu. Combining uml sequence and state
machine diagrams for data-flow based integration testing. ECMFA’12,
pages 74–89, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] L. C. Briand, Y. Labiche, and Y. Wang. An investigation of graph-
based class integration test order strategies.IEEE Trans. Softw. Eng.,
29(7):594–607, July 2003.

[11] P. J. Clarke.A taxonomy of classes to support integration testing and
the mapping of implementation-based testing techniques to classes. PhD
thesis, Clemson, SC, USA, 2003. AAI3098273.

[12] R. Da Veiga Cabral, A. Pozo, and S. R. Vergilio. A pareto ant
colony algorithm applied to the class integration and test order problem.
ICTSS’10, pages 16–29, Berlin, Heidelberg, 2010. Springer-Verlag.

[13] R. Delamare and N. A. Kraft. A genetic algorithm for computing class
integration test orders for aspect-oriented systems. ICST ’12, pages
804–813, Washington, DC, USA, 2012. IEEE Computer Society.

[14] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer.Computer, 11(4):34–41,
Apr. 1978.

[15] Gartner. It key metrics data 2008: Key ap-
plications measures: Current year: Defect rates.
http://www.gartner.com/DisplayDocument?ref=g search&id=557525,
Dec. 2007.

[16] M. Grechanik and G. Devanla. Mutation integration testing. In2016
IEEE International Conference on Software Quality, Reliability and
Security, QRS 2016, Vienna, Austria, August 1-3, 2016, pages 353–364,
2016.

[17] M. Greiler, A. v. Deursen, and M.-A. Storey. Test confessions: a study
of testing practices for plug-in systems. ICSE 2012, pages 244–254,
Piscataway, NJ, USA, 2012. IEEE Press.

[18] R. G. Hamlet. Testing programs with the aid of a compiler.IEEE Trans.
Softw. Eng., 3(4):279–290, July 1977.

[19] J. Hartmann, C. Imoberdorf, and M. Meisinger. Uml-based integration
testing. ISSTA ’00, pages 60–70, New York, NY, USA, 2000. ACM.

[20] J. Highsmith and A. Cockburn. Agile software development: The
business of innovation.IEEE Computer, 34(9):120–122, 2001.

[21] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 1st edition, 2010.

[22] Z. Jin and A. J. Offutt. Coupling-based integration testing. ICECCS
’96, pages 10–, Washington, DC, USA, 1996. IEEE Computer Society.

[23] C. Jones and O. Bonsignour.The Economics of Software Quality.
Addison-Wesley Professional, Aug. 2011.

[24] M. Jorde, S. Elbaum, and M. B. Dwyer. Increasing test granularity by
aggregating unit tests. ASE ’08, pages 9–18, Washington, DC, USA,
2008. IEEE Computer Society.

[25] M. Luke. How early integration testing enables agile devel-
opment. http://www.ibm.com/developerworks/rational/library/early-
integration-testing-enables-agile-development, June 2012.

[26] A. P. Mathur. Foundations of Software Testing. Addison-Wesley
Professional, 1st edition, 2008.

[27] A. J. Offutt. Unit testing versus integration testing. pages 1108–1109,
Washington, DC, USA, 1991. IEEE Computer Society.

[28] S. Ogata and S. Matsuura. A method of automatic integration test case
generation from uml-based scenario.WSEAS Trans. Info. Sci. and App.,
7(4):598–607, Apr. 2010.

[29] M. Pezz̀e, K. Rubinov, and J. Wuttke. Generating effective integration
test cases from unit ones. InProc. of 6th IEEE ICST, 2013.

[30] D. Schuler and A. Zeller. Javalanche: efficient mutation testing for java.
ESEC/FSE ’09, pages 297–298, New York, NY, USA, 2009. ACM.

[31] S.-H. Shin, S.-K. Park, K.-H. Choi, and K.-H. Jung. Normalized adaptive
random test for integration tests. COMPSACW ’10, pages 335–340,
Washington, DC, USA, 2010. IEEE Computer Society.

[32] Y. Shin, Y. Choi, and W. J. Lee. Integration testing through reusing
representative unit test cases for high-confidence medical software.
Comput. Biol. Med., 43(5):434–443, June 2013.

[33] J. A. Solheim and J. H. Rowland. An empirical study of testing and
integration strategies using artificial software systems.IEEE Trans.
Softw. Eng., 19(10):941–949, Oct. 1993.

[34] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences.
ICDE ’04, pages 79–, Washington, DC, USA, 2004. IEEE Computer
Society.

[35] S. Wang, Y. Ji, W. Dong, and S. Yang. A new formal test method
for networked software integration testing. ICCSA’10, pages 463–474,
Berlin, Heidelberg, 2010. Springer-Verlag.

[36] Z. Wang, B. Li, L. Wang, and Q. Li. An effective approach for automatic
generation of class integration test order. COMPSAC ’11, pages 680–
681, Washington, DC, USA, 2011. IEEE Computer Society.

[37] A. H. Watson and T. J. McCabe. Structured testing: A
testing methodology using the cyclomatic complexity metric.
NIST Special Publication 500-235, NIST: National Institute
of Standards and Technology, Gaithersburg, MD, 1996. See
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/235/title.htm.

[38] M. Weiser. Program slicing. ICSE ’81, pages 439–449, Piscataway, NJ,
USA, 1981. IEEE Press.

[39] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpointing of java
software using context-sensitive capture and replay. ESEC-FSE ’07,
pages 85–94, New York, NY, USA, 2007. ACM.


