
CrashAwareDev: Supporting Software Development
based on Crash Report Mining and Analysis

Leandro Beserra*†, Roberta Coelho†
*Informatics Superintendence

†Department of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte

Natal, Brazil
ldbeserra@info.ufrn.br, roberta@dimap.ufrn.br

Abstract— Exception handling mechanisms are a com-
mon feature of mainstream programming languages to
deal with exceptional conditions. If on the one hand
they allow the programmer to prepare the code to deal
with exceptional conditions, on the other hand they can
become a source of bugs that threatens the application
robustness – studies have shown that uncaught exceptions
are the main cause of application crashes. To keep track
of crashes and enable an easier fault localization, several
applications, nowadays, use crash reporting tools. In
this work, we propose a tool named CrashAwareDev,
integrated with the Eclipse IDE, which mines the in-
formation available in crash reporting tools to support
programmers in their day-to-day activities. The proposed
tool alerts developers about the classes related to recent
crashes and warns about source code characteristics (bug
patterns) that can be related to future crashes (similar
to the ones that have happened). Doing so the tool aims
at bringing the development environment closer to crash
reporting tools, that are usually only used for bug fixing
or for extracting robustness metrics. A case study was
conducted and showed that the tool can support software
development by displaying bug pattern alerts directly in
the source code, signaling the classes involved in recent
faults, and speeding up the crash’s fault localization
within the development environment itself.

Index Terms— Exception handling, crash report,
Eclipse plug-in, uncaught exceptions

I. INTRODUCTION

Exception handling mechanisms [1] are a com-
mon feature of modern programming languages.
Exception handling structures are used to deal with
unexpected events that occur during the execution

DOI reference number: 10.18293/SEKE2019-002

of a program [2], allowing exceptions to be th-
rown, captured, and handled at different points
in the system. However, the exception handling
code designed to make a system more robust often
works the other way around and become a burden
programmers has to cope with, leading to bugs
such as the uncaught exceptions. The uncaught
exceptions are the main cause of crashes in Java
software systems [3]. A crash is an abnormal
behavior of a system that leads to the interruption
of its execution.

After a crash occurs, systems typically store
information related to the crash on crash report
systems. Such information usually contains the un-
caught exception that caused the crash and its stack
trace. The exception stack trace is a representation
of the method call stack and contains information
about classes and methods by which an exception
was propagated. Since the exception stack trace
is a source of information widely used by pro-
grammers while debugging they are often added on
crash reports [4]. Moreover, these reports may con-
tain other information such as the operating system
used at the time of the crash, the user login, the
browser/system version, the user’s IP address, and
other request parameters. In addition to facilitating
the fault localization, the information available on
crash report tools can assist in prioritizing bug
corrections (depending on the number of users
affected, for example) or understanding the impact
of system crashes [5]. The utility of crash report
systems may go beyond recording crash data and
supporting debugging. Some studies have shown



that such information can be used for various
purposes such as fault classification [6][7] and fault
localization [8][9][10]. None of the existing works,
however, extract data from crash reports to support
programmers during system coding.

In this paper, we propose a way to mine infor-
mation stored in crash reports and provide useful
information to the programmer within his/her pro-
gramming environment. We present a tool called
CrashAwareDev, an Eclipse1 IDE plug-in, which
supports the developer in coding time by (i) aler-
ting him/her about the classes related to recent
crashes; (ii) warning about source code characte-
ristics (bug patterns) that can be related to future
crashes (similar to the ones that have happened);
and (iii) providing direct access to crash reports
within the IDE. A case study was conducted on an
industrial web-based software system comprising
of 1300 KLOC of Java source code. Along the
evaluation period, a group of 5 developers used
the tool on a daily basis (during 4 days). Overall
the tool presented 95 warnings (i.e., 17 class alerts
and 78 bug pattern warnings).

II. BACKGROUND

The Java programming language provides an
exception handling mechanism to support error
handling [12]. When an error occurs during exe-
cution of code in a try block, the error is caught
and handled by an exception handler in one of the
subsequent catch blocks associated with it. If no
catch block can handle the error, the method is ter-
minated abnormally and the Java virtual machine
(JVM) searches backward through the call stack to
find an exception handler that can handle the error
[15].

In Java, exceptions are represented according
to a class hierarchy, on which every exception is
an instance of the Throwable class, and can be
of three kinds: the checked exceptions (extends
Exception), the runtime exceptions (extends Run-
timeException) and errors (extends Error) [12].

Checked exceptions represent conditions that,
although exceptional, can reasonably be expected
to occur, and if they do occur must be dealt
with in some way. Unchecked runtime exceptions

1https://www.eclipse.org/

represent conditions that, generally speaking, re-
flect errors in your program’s logic and cannot
be reasonably recovered from at run time [13].
By convention, instances of Error represent un-
recoverable conditions which usually result from
failures detected by the Java Virtual Machine due
to resource limitations, such as OutOfMemoryEr-
ror. Normally these cannot be handled inside the
application [13].

III. ANALYZING CRASH REPORTS

A. Methodology
Before implementing the CrashAwareDev tool,

we conducted a study whose goal was to identify
the characteristics of most frequent crashes of an
industrial Web-based system, and based on such
characteristics, check wether or not existing static
analysis tools could alert about them. Figure 1
illustrates the main steps taken in this study. The
target system used in this study was an industrial
Web-based system, named SIPAC, comprising of
1300 KLOC of Java source code ans designed
to automate business processes for universities
focusing on different and complementary aspects,
such as administration, planning and management
– SIPAC is used in approximatelly 55 Brazilian
universities.

Fig. 1. Methodology overview.

Step 1: Analysis of Crash Reports. We analy-
zed the most frequent exceptions that caused
crashes over a period of one month.

Step 2: Code Inspection and Identification of
Bug Patterns. We manually inspected the code
related to the most frequent kinds system crashes
to identify common characteristics among them.



Step 3: Analysis of Existing Static Analysis
Tools. We analyzed whether or not existing static
analysis tools could be able to detect and therefore
prevent such causes of crashes identified on the
previous step.

Step 4: Survey. Finally, we conducted a study
on which we surveyed a group of developers
(working on the target system) to evaluate how
they used.

B. Crash Analysis

In order to investigate the main causes of crashes
reported for the target system, we analyzed the
crash reports of one month (June 2018). In this
period (2018-06-01 to 2018-06-30), approximately
1933617 accesses were made to the system, from
this set 680 accesses were faulty (0.0035% of the
accesses) - on which the user faced one or more
crashes. We observed that approximately 1966
crashes were recorded in the period, affecting 347
distinct users.

We extracted the types of most frequent un-
caught exceptions (leading to crashes). The top 5
types of uncaught exceptions raised shown in Table
I. We can observe that approximately 63.9% (1241
errors of 1966) of the crashes of the analyzed
period was caused by five types of exceptions.

Root Cause Ocurr. % Analyzed
NullPointerException 749 38,09 10
LazyInitializationException 171 8,69 2
JspException 166 8,44 21
IllegalArgumentException 102 5,18 1
PSQLException 53 2,69 5
Total 1241 63,9 39

TABLE I

THE TOP 5 TYPES OF UNCAUGHT EXCEPTIONS RAISED IN

JUNE/2018.

We then manually inspected the source code
related to a subset of such crashes (we randomly
selected a subset of each of the top 5 uncaught
exceptions – as shown in the last column of Table
I). The purpose of this analysis was to identify
common characteristics related to the causes of the
most frequent uncaught exceptions.

Overall we inspected the source code related
to 39 crashes. We could observe common charac-
teristics among some of them, which led to the

definition of four specific bug patterns listed in
Table II.

Tag Description Ocurr.
BP01 Unchecked database query return 3
BP02 Unchecked classes methods parameters 2
BP03 Unchecked request parameters 2
BP04 Controllers do not implement get/set

methods
4

TABLE II

BUG PATTERNS DETECTED DURING ANALYSIS.

Each bug pattern found in this study is described
as follows:

• BP01: When querying any data in a database,
it is recommended to check if the value is
not null, to prevent a possible null pointer
exception.

• BP02: Static methods of utility classes should
check if their arguments are not null.

• BP03: Like BP01, objects retrieved from the
HTTP session must be checked.

• BP04: Private attributes of view controllers
must most often have the get and set methods
implemented. Otherwise, a JspException may
be thrown while rendering the Web page.

C. Analysis of Existing Static Analysis Tools

We then investigated whether some of the exis-
ting static analysis tools could alert about some of
the 39 crash causes identified during the manual
inspection. We used SonarLint2 and SpotBugs3,
both in its Eclipse’s plug-in version and observed
that none of the 39 defects were detected by the
tools.

D. Survey

We applied a survey the developers working on
the target system to investigate how they use the
crash report information during development. The
survey was sent to 25 developers, and we obtained
14 responses, from which: 5 respondents mentio-
ned that never used the crash report; 8 respondents
mentioned that only used for debugging purposes;
and only one mentioned that used the crash report
on a daily basis for monitoring of errors. Moreover,

2https://www.sonarlint.org/
3https://spotbugs.github.io



7 respondents mentioned that they had difficulties
in using the features of the crash report system
used.

IV. THE CRASHAWAREDEV TOOL

Based on the steps described previously we
implemented a tool – called CrashAwareDev.
CrashAwareDev’s main purpose is to present in-
formation mined from crash reports and identified
bug patterns on the developer’s IDE, at coding
time. One of the motivations of this research was
the perception that, in the context of target system
development (SIPAC), crash report information is
basically used for debugging failures and was not
used to alert the developer of potential crash causes
or classes frequently related to crashes. Figure 2
represents an overview of the main features of
CrashAwareDev and described next.

Fig. 2. CrashAwareDev’s Components diagram.

Warning about Classes related to Recent
Crashes. The tool alerts whether the class being
changed was associated with at least one recent
system crash (i.g., the period considered is confi-
gurable). We have adopted the following heuristic:
if the class appears in the exception stack trace
of one crash, then it will be associated with the
crash, as this means that the exception at some
point was propagated within a method of this class.
However, this is not to say that the defect is located
in that class, but can information help to identify
the fault’s origin. The tool generates warnings that
are displayed in source code during development
as illustrated in Figure 3.

Find Bug-Patterns Ocurrences. On the study
described previously, we identified source code

Fig. 3. Warning about classes related to recent crashes.

characteristics (bug patterns) that lead to crashes in
SIPAC. Hence, at each compilation, the tool stati-
cally analyzes of the changed artifacts looking for
bug patterns (described in Table II) and warnings
that are displayed directly in IDE as illustrated in
Figure 4.

Fig. 4. Bug-Pattern Violation Alert.

Enable Queries on Crash Reports. This fea-
ture aims to bring the programmer closer to the
crash report during coding. The goal is to enable
the developer to query for recent system crashes,
filtering them by class name. Summarized crash
information is displayed in an Eclipse view with
a link to display the complete information directly
in the crash reporter (in an external browser).

Present Most Frequent Crash Causes. This
feature basically displays the most common types
of uncaught exceptions that have occurred in a



given period of time (e.g., one month). The data
displayed are similar to those shown in Table I.

V. EVALUATION

To evaluate CrashAwareDev tool we performed
a case study on which a group of developers
used the tool for a given period of time and
quantitative and qualitative data regarding the tool
usage was collected. We invited SIPAC developers
to participate in the study and a group of 5 de-
velopers volunteered to participate. They received
brief training on the features of CrashAwareDev,
and used the tool for 4 consecutive days, for
approximately 8 hours daily. Table III presents the
metrics collected in this study.

Metric Count
M1: Number of classes changed 105
M2: Number of classes with some alert 61
M3: Number of alerts per bug pattern 78

BP01 - Check values when querying in a database 47
BP02 - Check auxiliary methods arguments 15
BP03 - Check values carried by request 16
BP04 - Implement private attributes’ get/set N/A

M4: Class alerts associated with a crash 17

TABLE III

METRICS COLLECTED DURING EVALUATION

During the execution period, we collected in the
logs that 105 different classes were changed (M1).
In 61 of these, some problem was detected by the
tool and at least one warning was shown to the
developer (M2). A total of 78 bug pattern alerts
were displayed. They were distributed among the
patterns listed in Table III (M3).

The BP04 pattern was removed during the exe-
cution of the study because the participants repor-
ted that most warnings would be false positives,
as not every private method of controllers should
necessarily be referenced in JSP pages. Therefore,
we disabled the checking of this pattern during the
study. As described earlier, the Class Checker fea-
ture analyzes whether the changed class is present
in some recent crash stack trace. We collected 17
warnings on this check (M4).

Moreover, we also counted how many times
each CrashAwareDev feature was used during the
study (Q5). The Query Crashes from Crash Re-
porter function was used four times by the partici-
pants. We observed that this query was performed

after an alert was displayed in the class (during
the Class Checker execution) and the developer
was interested in checking the crashes in which
the class was involved. Of these four queries, in
two times the participant used the link to see
the complete information of the crash. The Query
Top Root Causes feature was not used during this
study. This information did not prove useful to
programmers during the study, but we believe that
it is of greater interest to leader developers (who
did not participate in the study).

We also questioned participants about the use-
fulness of the tool. All of them mentioned that the
tool warnings were useful. One of the participants
also mentioned that more bug-checking rules could
have been implemented as they could indeed help
in preventing crashes in the long run. Two other
developers also suggested that in some cases the
tool might also support the fault localization in the
production environment in a future version.

VI. RELATED WORK

Information mining on crash reporters
and/or stack traces. Some studies were carried
out with the objective of extracting data from
crash reports and using them for various purposes.
Among them are those who used the data to find
bug hazards in exception handling code [14], to
classify the types of failures [6][7] and to facilitate
their location [8][9][10]. In this article, we use
a grouping of crashes per type of exception. We
sought to identify error patterns associated with
these types through manual analysis of crashes.
Our research did not propose any mechanism
for locating defects, but we tried to approach
the programmer’s development environment to the
crash reporter, which may help at coding time the
identification of classes associated to recent faults.

Bug Detection Tools. Several static analysis
tools have been proposed to detect bug patterns
in the source code from predefined rules. These
patterns are categorized into various types such
as correctness, code smells, vulnerability, security,
performance, etc. PMD [17] is an open-source
application and is based on bug patterns to find
errors in the Java source code. It allows new
patterns to be written in Java or XPath. Another
tool proposed was the FindBugs [18] which also



examines the source code and bytecode of Java
programs. In this paper a subset of the FindBugs
rules was described and compared to the PMD
with respect to the number of alerts generated,
showing that the number of FindBugs alerts is
lower in all experiments done. In 2016 FindBugs
was discontinued and succeeded by SpotBugs,
which we use in this work. Another existing static
analysis tool is SonarQube [19] which presented
a proposal for analysis along with continuous
integration systems. We used in this work your
Eclipse version, called SonarLint. CrashAwareDev
has a static analysis feature, as well as the tools
mentioned. However, we seek to define rules based
on real crashes, in order to reduce the known false
positives in the existing tools.

VII. CONCLUDING REMARKS

In this work, we presented a way to use data
from crash reports to support programmers during
software development. To promote this support,
we have developed a plug-in tool for the Eclipse
IDE, CrashAwareDev. Before proposing the tool,
we performed a detailed study of crashes stored
in a real crash reporter in order to identify the
main causes of crashes. A set of common causes
of crashes were defined as bug patterns which
could be identified in the static analysis performed
by CrashAwareDev. Moreover, the tool also alerts
the developer about classes frequently involved in
crashes and enabled them to access information of
crash reports within the IDE. A case study in a
real development context was performed and the
results revealed that the tool could indeed alert the
developers about several application-specific bug
patterns.

Acknowledgments. This research has been sup-
ported by CAPES-BRAZIL.

REFERENCES

[1] Goodenough J. B. Exception handling: Issues and a proposed
notation.Commun.ACM, ACM, New York, NY, USA, v. 18,
n. 12, p. 683–696, dez. 1975. ISSN 0001-0782.

[2] Sawadpong P.; Allen E. B. Software defect prediction using
exception handling call graphs: A case study. In:2016 IEEE
17th International Symposium on High Assurance Systems
Engineering (HASE). [S.l.: s.n.], 2016. p. 55–62. ISSN 1530-
2059.

[3] Jo J.-W. et al. An uncaught exception analysis for java. Journal
of Systems and Software, v. 72, n. 1, p. 59 – 69, 2004. ISSN
0164-1212.

[4] Schroter A. et al. Do stack traces help developers fix bugs?
In:2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). [S.l.: s.n.], 2010. p.118–121. ISSN
2160-1852.

[5] An L.; Khomh F. Challenges and issues of mining crash
reports. In:2015 IEEE 1st International Workshop on Software
Analytics (SWAN). [S.l.: s.n.], 2015. p. 5–8.

[6] Kim S.; Zimmermann T.; Nagappan N. Crash graphs: An
aggregated view of multiple crashes to improve crash triage.
In:Proceedings of the 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems&Networks. Washington, DC,
USA: IEEE Computer Society, 2011. (DSN ’11), p. 486–493.
ISBN 978-1-4244-9232-9.

[7] Dhaliwal T.; Khomh F.; Zou Y. Classifying field crash
reports for fixing bugs: A case study of mozilla firefox.
In:Proceedings of the 2011 27th IEEE International Confe-
rence on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 2011. (ICSM ’11), p. 333–342. ISBN 978-
1-4577-0663-9

[8] Sinha S. et al. Fault localization and repair for java runtime
exceptions. In:Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis. New York,NY,
USA: ACM, 2009. (ISSTA ’09), p. 153–164. ISBN 978-1-
60558-338-9.

[9] Wang S.; Khomh F.; Zou Y. Improving bug localization using
correlations in crashreports. In:2013 10th Working Confe-
rence on Mining Software Repositories (MSR). [S.l.:s.n.],
2013. p. 247–256. ISSN 2160-1852.

[10] Wu R. et al. Crashlocator: Locating crashing faults based
on crash stacks. In:Proceedings of the 2014 International
Symposium on Software Testing and Analysis. New York,
NY,USA: ACM, 2014. (ISSTA 2014), p. 204–214. ISBN 978-
1-4503-2645-2.

[11] Cabral B., Marques P. (2007) Exception Handling: A Field
Study in Java and .NET. In: Ernst E. (eds) ECOOP 2007 –
Object-Oriented Programming. ECOOP 2007. Lecture Notes
in Computer Science, vol 4609. Springer, Berlin, Heidelberg

[12] Gosling J, Joy B, Steele G. The Java Language Specification
(The Java Series). Addison-Wesley: Reading, MA, 1997.

[13] Arnold K., Gosling J., Holmes D., The Java Program-
ming Language, Fourth Edition, Addison-Wesley Professio-
nal, 2005.

[14] Coelho R. et al. Unveiling exception handling bug ha-
zards in android based on github and google code issues.
In:Proceedings of the 12th Working Conference on Mining
Software Repositories. Piscataway, NJ, USA: IEEE Press,
2015. (MSR ’15), p. 134–145.

[15] Lee, S. , Yang, B. and Moon, S. (2004), Efficient Java
exception handling in just-in-time compilation. Softw: Pract.
Exper., 34: 1463-1480. doi:10.1002/spe.622

[16] Basili V. R.; Caldiera G.; Rombach D. The goal question
metric approach. Encyclopedia of Software Engineering, v. 1,
01 1994.

[17] PMD: An extensible cross-language static code analyzer.
2018. https://pmd.github.io/ [June 2018].

[18] Hovemeyer D.; Pugh W. Finding bugs is easy. SIGPLAN Not.,
ACM, NewYork, NY, USA, v. 39, n. 12, p. 92–106, dez. 2004.
ISSN 0362-1340.

[19] Sonarsource. SonarLint. 2019. https://www.sonarlint.org/ [Ja-
nuary 2019].


