A Software System is Greater than its Modules’ Sum
Providers & Consumers’ Modularity Matrix (TSE)

laakov Exman and Harel Wallach

Software Engineering Department
The Jerusalem College of Engineering — JCE - Azriel
Jerusalem, Israel
iaakov@jce.ac.jlharel.wallach@gmail.com

Abstract— Modularity Matrices and their Laplacians enable The meaning of a structor aprovider of a functional is e.g.
finding software system modules by a rigorous algebic a class containing the declaration/definition ofiethod, usable
procedure. However, Modularity Matrices have up tonow focused py other classes. Another structor using such atiomal is
mainly on structors as providers of functionals. Tiis paper takes a 3)ed aconsumel(e.g. a class calls a method of another class).

broader view at the software system as a whole. Th8oftware ;) : :
System Modularity Matrix, besides displaying provider This paper's goal is to propose and deal with treader

relationships, also describes which structoreonsumefunctionals sgnse ,Of Modularity Mz?ltrlx, and its Corre§p0nd|ngplaC|QH,
provided by other structors. This broader view improves software displaying not only providers, but also matrix etats standing
system design in two ways. First, consumer relatiships set for consumers. This extended Modularlty Matrix isneore
realistic expectations for consumer numbers and rels. Second, the complete representation of Software from the system
Software System Modularity Matrix generates standad design perspective and is of practical interest for sofendesign.

criteria for interacting providers and consumers. This standard This Introduction concisely reviews concepts of Miadity
System matrix obeys linear independence of its cditsient vectors, and Laplacian matrices.

and block-diagonality of its recognizable modulesThe novelty
consists of modules belng cpmposed into a whole Worg Sqftware A. Software Modularity
System by means of a limited number of consumers gyting the

role of module connectors Modules and their connectors are A central problem to be solved by software engimegis
formally obtained by the same spectral method appdid to the the hierarchical composition of a software systeomf sub-
respective Laplacian, which obtained provider matrees. This is systems, down to software architecture units, glpicclasses,
illustrated by case studies. considered indivisible by the designer.

Solving the software system composition problexvives
software modularity. Applying Linear Software Moslelone
designs one or more Modularity Matrices, obtainimgdules
by spectral methods. One then compares their guaith a
square and block-diagonal standard matrix, resghéwentual
coupling problems, highlighted by the matrices.

Linear Software Models represent each abstractieal lof a A simple example of a schematic Modularity Matriithw
given Software System by means of a Modularity Mai8], providers only is shown in Fig. 1. It has five stars and five
[10] or its corresponding Laplacian Matrix [13],4]1 These functionals. It displays three modules, the bloeksng the
models enable rigorous software design of any géystem: diagonal. It is a standard Modularity Matrix aslites not have

any outlier, a 1-valued matrix element outsiderttoalules.
(] -
'Ztacrc])(rj'r?gg rg"g}#g re rﬁ Sri]:)gii da?j eas?gﬁé?d criterion B Modqurlty Mf?ltnces and their Laplamans.
e Matrices highlight the need of redesign- A L_apIaC|an Matrix is easily generated from a Maity
pinpointing eventual coupling problem locations. Matrix in two steps:

e Extract a bipartite graph— with a structors’ vertex set
A MOdularity Matrix is made of columrstructors — a and a functionals’ vertex set having edges Corrrm"ng
generalization of classes in object-oriented pnwgning to 1-valued matrix elements of the Modularity Mtri
languages — and rodunctionals — a generalization of class o Generate the Laplacian Matrix— from the bipartite
methods. A matrix element is 1-valued if its stangprovides graph, according to equation (1):
the respective functional. Otherwise, the elemerero-valued. L_D-A a

Keywords: Linear Software Models; Spectral Softwai®esign;
Modularity Matrix; Laplacian Matrix; Providers; Corsumers;
Modules; Connectors; Linear Independence; Block-Rjanality.

. INTRODUCTION

DOI: 10.18293/SEKE2019-003

wherelL is the Laplacian matriXD is the Degree matrix of the C. Paper Organization

graph vertices ané is the Adjacency matrix of vertex pairs. The rest of the paper is organized as follows. iGedi

mentions related work. Section Il introduces Caonst
S1|S2|S3|S4|S5 Matrices to be included in the whole System Masjaghich is
Fil1 |1 done in Section IV. Section V illustrates the pdmri and

consumer matrices by means of a server case shadyion VI

2 SR Al zerop concludes the paper with a discussion.

F3 1
F4 | Alll zerok Ll Il. RELATED WORK
F5 0 1

Here one finds a concise review of the extensiterdiure
about Modularity approaches, by spectral and othethods.

Figure 1. Schematic Providers Modularity Matrixt-has 5 structors (S1 to S5), .
5 functionals (F1 to F5) and three modules, thegbblocks along the diagonal.AISO shortly reviewed are some references to coessim

upper-left and lower-right with 2*2 size and middiock of size 1*1. It is a .
standard matrix as it does not have outliers (Lecielements outside modules). A. Linear Software Models
(Allfigures are in color online). Linear Software Models have been developed by Exman
and collaborators (e.g. [8], [9]) as a rigorousottyeto solve the
hierarchical software system composition probleomfrsub-
systems. Linear Software Models are based on lingabra
operations and theorems. One assumes that alt@swhould
be mutually linearly independent and also all fiorals are
@ @ @ @ @ linearly independent, an assumption motivated hyimization
of the number of structors and functionals neeaefuild the
system. Given this assumption, a linear algebreorém
demands that the Modularity Matrix be square. Tikisiot a
@ @ @ @ @ trivial result for software systems; it demands eoeffort to
understand the theorem’s rationale and implications
Figure 2. Bipartite Graph from Modularity Matrix Fig. 1 —It has two vertex Moreover, if sub-sets of structors/functionals digoint to

sets: the upper set of structors (S1 to S5), amdbtler set of functionals (F1 to _ bsge
F5). A bipartite graph only has edges linking \e&si in different sets. ArrowsOther sub-sets, a second theorem states that sh Is can

pointing down mean that structors provide functisndhe (blue) rectanglesPe rearranged intp a block-diagonal matrix- Theszgahal
separate vertices belonging to given connected onemns (the modules). blocks are recognized as the modules in that softwgstem

level (for detailed proofs and examples see thekwgrExman
A schematic Laplacian Matrix, generated from thegablite [10] and references therein).

A bipartite graph, obtained from the Modularity Matin
Fig. 1, is shown in Fig. 2.

graph in Fig. 2, is shown in Fig. 3. A given software system modularization may display
undesirable provider outliers coupling between nhesluA
ELY FE2) | P RE | REsT(F52 | FS20) | Fs38 NSAR (s> procedure to compare different designs of the saafevare

il 2 2 = system, and to improve design is given by speatethods as
described in [11]. The Perron-Frobenius theorene (sey.

£ 1 01 Gantmacher [17]) is central for the Modularity Mattheory.

5 1 P Exman and Sakhnini [13], [14] have shown how toagate
a Laplacian Matrix from the Modularity Matrix. THeaplacian

F4 2 1| a matrix obtains the same modules as the ModulariggriM, by
similar spectral methods. The Fiedler theorem [1F] is

= 1 0]-1 central for the Laplacian theory. The so-called diée

s1 (S 1 eigenvector fits the lowest non-zero eigenvaluthefLaplacian
Matrix. It allows locating outliers and splittingf @00 sparse

s2 [RETlNs %) software modules.

s3 9 1 B. Alternative Approaches to Modularity

< el B There exist a variety of techniques applying masridor
modaularity analysis. For instance, Baldwin and Kidescribe a

s5 | =il 2 Design Structure Matrix (DSM) in their “Design Rslebook

[2]. DSM has been applied to many systems, inclydioitware

Figure 3. Schematic Providers Laplacian Matrix -sTaplacian is generated€Ngineering, see e.g. Cai and Sullivan [5]
from the bipartite graph in Fig. 2. By equation i) diagonal i<D the Degree Conceptual lattices, another algebraic structulevaat to

matrix (in green) showing the degrees of each xetahe Bipartite graph. The software design, were introduced by Wille in 1982][as part
upper-right quadrant (and its reflection in the doveft quadrant) is the negative ’

of A the graph Adjacency matrix, which is identicattte Modularity Matrix. ~ ©f Formal Concept Analysis (FCA). They have beeadufor

software system design e.g. by Siff and Reps [18] By not display Functionals provided and consumed ey same

Exman and Speicher [12]. Structor, consumer Matrices are complementary toviBer
Alternative clustering techniques to obtain softsvarodules matrices of the same sub-system. In other wordsetis no
are found e.g. in Shtern and Tzerpos [18]. overlap of non-zero matrix elements of the consumatrix

with non-zero matrix elements of the provider matri

C. Theoretical Approaches to Consumers Property 2— Consumer Matrices may have empty (totally

There have been modelling systems in the literatgfg0-valued) columns or rows, while Provider matg
representing provider and consumer interactionsu ¥ad cannot . -
Caglayan [22] use Petri Nets to design distribuseftware This may happen since the Sub-system Under DeSigD)
systems. One of their examples is a producer-coessystem. May interact with other external sub-systems oralies not

Clark et al. [6] describe experiences with PEP&Presented in the matrices of the SUD. For exanifpde SUD
(Performance Evaluation Process Algebra) modeliouis. In Structor in the Provider matrix provides a FL_Jnanmnsumed
particular they refer to Producer-Consumer relaion only by external sub-systems, the respective SUDsGwmer

Browning [4] suggests that system modelers oftet two matrix will have arempty rowcorrespondmg_ to the Functional
DSM matrices, one for information supplier and &eotfor the cOnsumed externally. Another example, if an SUDu&or

consumer, similar to our providers/consumers pfirsatrices. a@Ppearing in the Provider matrix does not consumg a
Functional, the respective SUD Consumer matrix héle an

empty columncorresponding to the referred Structor. Provider
Ill. THE NATURE OFCONSUMERMATRICES matrices cannot have empty columns or empty roinsgeshey
Consumer matrices display Structors and Function@i@Play only Structors actually providing Functita
consumed by the referred Structors. This sectioscril®es Property 3— Consumer Matrices per se genera”y neither

assumptions needed to generate Consumer matrices. display linear independence of their Structors/Fuinals,
) _ nor have block-diagonal modules, in contrast withrd®ider
A. Consumer Matrices Shape and Size matrices.

Consumer matrices are not by themselves the aithisf Thig happens, since besides the empty columnsiatready

paper. The goal of cons?merd matrices, jc;intly wattovider - mantioned in the previous property, it may be thaingle given
matrices, is a more complete description of a SEWSYStem, gy ctor consumes several Functionals originatidgntical
showing the interactions between the given sestrfctors and (os |n other words. the rank of a Consumer Maigx

Functionals, from a system perspective. generally less than its size would permit. Thissdaet occur
Given this goal, We assume th%t Structors and leads of \yith Provider matrices as already mentioned inigedt.

the consumer matrices are identical to those of pitwider

matrices. Thus, a consumer matrix fitting a statigapviders’ .

matrix is also square. We emphasize that the redeon C. An Example of Consumer Matrix

consumer matrices being square is essentiallyrdiffdrom the ~ Now we reveal that the provider modularity matmxHig.

provider matrices. As stated in section Il standardvider 1 refers tothe Command Design Pattern code in @Sband

matrices are square by algebraic considerationsis@oer in [7]. We use the same Structors and Functiomesshow the

matrices are square just to enable unification rol/iders and respective Consumer matrix (in Fig. 4). The CommBedign

consumers into a single system matrix, as descbibkuv. Pattern serves as an introductory running exangid, as a
We often refer to sub-systems, to allow for thesjimility first case study, in this and in the next section.

that consumer matrices leave outside, e.g. sefuitationality,

obtained from external libraries. Alternatively, nfiionals

provided by our sub-system may be consumed by cthbr Structors —p Concrete | File IFile | Concrete
systems, not included in our provider/consumer icesr Functionals | TR | e | T | CApemaia Opf;;or
Modularity and Laplacian matrices are tools to eol = = = = =
software design problems resulting from couplintgriactions = = 7 " = =
between different architectural units — structonsd atheir Execute F1 /////
functionals — in a given hierarchical level. Fuontils provided | Create Command | F2
and consumed by the same Structor do not appesither of TnvokeAll 3
the provider/consumer matrices, as these are metaitions [. . .
. ile operations | 4
between different structors at that level.
Create Operator | FS

B. Theoretical Properties of Consumer Matrices

Gi th b fi c Matri Figure 4. Command Design Pattern, Consumers onlguldoity Matrix — This
Iven the above assumptons on Consumer MatriCes, (W,smers matri fits the Providers Modularity Ndatn Fig. 1. Both matrices

state easily verifiable theoretical properties. have the same Structors (S1,...,S5) and the samei6ais (F1,...,F5), and
. . . both comply with the Properties enumerated in sdiisn B. The consumers
Property 1- Complementarity to Provider Matrices. matrix has just two 1-valued matrix elements (gréatched background),

Since Consumer Matrices have exactly the same tBteugespectively (S3, F1) and (S2,F4) and is much spainsn the providers matrix.
and Functionals as the Provider Matrices, and th&ioes do

IV. SYSTEMMODULARITY MATRICES. PROVIDERS AND B. Generation of the Weighted Laplacian

CONSUMERS In order to identify the whole system modules idahg

This section finally deals with whole system moditya providers and consumers, we obtain from the WeithBipartite
matrices including providers and consumers. Theesalgebraic Graph (Fig. 6), the Weighted Laplacian Matrix iy F7.
techniques, previously used to identify providelyomatrix
modules, are applied for the whole system matrithis is done
here for the Command Design Pattern Laplacian ratri C. Connector Discovery from the Weighted
A. System Weighted Modularity Matrices Laplacian

We obtain the System Modularity Matrix by straightfard
superposition of the provider matrix with the camgn matrix in
a single overall matrix. This is possible as,Rrgperty labove,
there is no overlap between non-zero matrix elemehthese

As a last step towards the modules of the whole iGana
Pattern system, including both providers and comssmwe
apply the same algebraic spectral method previoused (in
[14]) for the providers-only Laplacian. It consists

two matrices. But simple superposition would impbgs of a) Calculate eigenvalues and eigenvectersof the

“directior’” information, i.e. whether a Functional is prowider Laplacian Matrix;

consumed by a given Structor. To avoid this amhbygone b) Obtain Modules from eigenvectorss whose

assigns a different weight to each direction: acfiomal eigenvalues are zero-valued,

provided by a structor is assigned a weight of “2” and a c) Discover Module connectors by splitting modules
functionalconsumedy a structor is assigned a weight of “1”. using the Fiedler eigenvector.

In this context, it is important to state that Féed15] has

extended the algebraic connectivity properties aplacians to AT A i
those for weighted edge graphs (see e.g. de Aifeu [
A System Weighted Modularity Matrix for the Command F1| 5 2| -2
Desjgn Pa_ttern is show in Fig. 5., compining thevigler matrix = - o
of Fig. 1 with the consumer matrix of Fig. 4.
F3 2 =
F4 5 202
Structors —» Concrete File IFile Concrete
ICommand File Operation | Operator File F5 2 0 (-2
Functionalsl Command | Invoker Operator
s1 2 S3 S4 S5 51 2

Execute F1 P M 52 el <
Create Command | F2 2 %— 2 3
InvokeAll F3 2

s4 =
File operations | F4 2 2 2 (0 2
Create Operator | FS 0 2 S5 S| e 4
.) . . . Figure 7. Command Pattern Weighted Laplacian Mdtdm bipartite graph in
Figure 5. Command Design Pattern, System Weighteduldrity Matrix — Fig. 6 —It weights (by 2) Laplacian providers in Fig. 3daadds the consumer

This matrix is obtained by superposition of the Slamers Matrix in Fig. 4 with elements, with negative weight=1 and a hatchedefgrbackground. Diagonal

weights of 1", upon the Providers Matrix (blue nubes) in Fig. 1 with degrees are changed to guarantee that all rowscimains sum to zero.
weights of “2”, to distinguish the consumers frdme providerglirection

(=l

The weighted bipartite graph obtained from the &ystLaplacian Matrix Eigenvalues

Modularity Matrix in Fig. 5, is shown in Fig. 6. Eigenvalues are shown in Fig. 8. The only zeroealu

eigenvalue is the sixth one: it show®dulesin the Laplacian
@ @ by the fitting eigenvector. The lowest eigenvalleser to zero
is the seventh one and is thiedler eigenvector, which allows

further splitting of the Module.
g 2| 3| 4| s|[e|lal 8| 910
Figure 6. Command Pattern Weighted Bipartite Griapim Modularity Matrix

in Fig. 5 —It has two vertex sets: the upper set of strugtBisto S5), and the|8.15 | 7.11 | 5.00 | 4.27 | 4.00| 0.00 |0.24] 0.67 | 1.35 | 1.22
lower set of functionals (F1 to F5). Structors pdavy functionals are shown
by (black) arrows pointing down with weight=2. Strors consuming [Type| = Modules|Fiedler
functionals are shown by (red) arrows pointing ughwveight=1. The (blue)
rectangles denote providers’ connected componenithilf the providers’
modules). Consumer arrows annectordetween providers’ modules.

2 |2

Figure 8. Command Pattern Weighted Laplacian Ma&tigenvalues — these are
shown in the middle row of the figure.

Laplacian Matrix Eigenvectors The conclusion from this Command Pattern examptbds

Eigenvectors’ in Fig. 9 fit the Fig. 8 eigenvalutiee 2%row consumers areonnectordinking provider modules. This is seen
from the top Modules eigenvector has all equal elements) the bipartite graph (in Fig. 6), and corrobodatey the
implying one big whole system module; the 8w Fiedler partition by the Laplacian eigenvectors (in Fig).10
eigenvector splits the whole system into two masiuley its
element signs. Negative signs cluster (F1, F2,933,S2, S3) V. CASESTUDY: AN ASYNCHRONOUSSERVERSYSTEM
into one module and positive signs the vertices 4 S4, S5) This case study is a larger system from the Babsary
into another module. In this first splitting iteat, the single written in C++, viz. an Asynchronous Echo Servestém [3].
structor module (F3, S3) seen in Fig. 5 and in Bigis left The calculation steps were the same as in the CowhiRattern
inside the 1 module. The ¥ Fiedler vector splitting iteration, inexample. Here are shown only the important stegssllts.
the bottom row of Fig. 9, finally separates the kenanodule
(F3, S3), obtaining all the three modules in tlyistam. A. Provider and Consumer Modularity Matrices

Laplacian eigenvectors obtain only modules (eitfiezctly The Providers Modularity Matrix is strictly diagdn@rig.
or by Fiedler vector splitting), as modules are hmaatatically 11). The Consumers’ Modularity Matrix in Fig. 12 \ery
“connected components” [20] of the graph. sparse and barely understood. Consumption is ctnated in

Consumers, as external “connectors”, are the rangpirfcontrol” structors, viz. Main, Server and Session.
positive elements of the Modularity Matrby exclusion after
the modules were directly characterized. For instaim the T

Spllttlng |terat|0n the consumer (Fl'SS) IS IefSIde the i StruCtors_’ Main [lo-context|Server |Acceptor| Endpoint | Socket | Session | Buffer
module, while the consumer (F4,S2) is outside Inatidlules. In Functionals |
the 29 splitting iteration which obtains all modules,atsbtains S1| S2 |S3| S4 | S5 | S6 | S7 | S8
by exclusion both external connectors. main E; I "
server-constructor F3 1
async-accept F4 1
F1 | F2 | F3 | F4 | FS | S1 | S2 | S3 | S4 | S§ v4Q, port F5 1
032 0.32] 0.32 | 0.32 | 0.32 |0.32|0.32(0.32 | 0.32 | 0.32 rend, wrie,is-open, close | F6 .
start, do-read, do-write F7 1

to-stream F8 1

-0.20(-0.06|-0.47 [+0.28 [+0.43-0.23|-0.05(-0.41 |+-0.32 [-0.38

’ ; Figure 11. Asynchronous Server System — Providehg-strictly diagonal
0.12 | 0.47-0.64 | 0.00 | 0.00 |0.17| 0.34(-0.47 [0.00 | 0.00 Modularity Matrix.

Figure 9. Command Pattern Weighted Laplacian eigetvs — the top row has
vertex indices; the™ row from top has alModulesvector elements equal 0.32; B. Sp(.ectral Approach to System Modules
the 3 row Fiedler different sign elements split the system into madules 3*3 In order to obtain System Modules, we apply thecspé

(negative, blue) and 2*2 (positive, yellow); thetbm ¢ Fiedler iteration splits method as done previously with the Command Desijte.

the previous biggest module into 2*2 (positive ggneand 1*1 (negative). One superposes the providers and consumers in gle sin

weighted Modularity Matrix, and obtains the biptigraph.

Then one generates its Laplacian Matrix and caleults
The final iteration from the Laplacian eigenvectdss eigenvalues and eigenvectors, as shown in Figni3-&y.14.

displayed in the System Modularity Matrix, with theferred

modules enclosed within dashed rectangles, asiséég. 10.

Connectors Discovery by Splitting Modules

Structors—,
Main |lo-context| Server |Acceptor| Endpoint | Socket | Session | Buffer
Structors —» Concrete File IFile Concrete Functionals l
ICommand File Operation | Operator File S1 S2 S3 S4 SS S6 S7 S8
Functionals ‘ Command | Invoker Operator .
main F1
S1 S2 S3 S4 S5 un F2
Execute F1 2 24 server-constructor F3 /
Create Command | F2 0 2 s vitceaccent F4
v4(), port F5
TnvokeAll F3 2 read, write, is-open, close Fé W
File operations | F4 2 2 start, do-read, do-write | F7
Create Operator | IS 0 2 to-stream k8

Figure 10. Command Design Pattern, System Weighitedlularity Matrix with

Connectors — This matrix shows the provider modwaesthe result of the
Laplacian eigenvectors, seen as delimited by theheth (black) rectangles.
These are the upper-left and lower-right module2*® size and the middle
1*1 module. The consumer (F1,S3) links the uppfirded middle modules.
The upper-left module is also linked to the lowight module by the consumer,
(F4,S2). lterative splitting by the Fiedler vectirtains these two connectors.

Figure 12. Asynchronous Server System ConsumessMatiularity Matrix —
— This consumers matrix fits the Providers Modtyakilatrix in Fig. 11. Both
matrices have the same Structors (S1,...,S8) ands#me Functionals
(F1,...,F8), and both comply with the Properties eerated in sub-section IlI
B. The non-zero consumers’ matrix elements are ethifin green hatched
background).

#| 2| 3| 4 VI. DISCUSSION

[4/]
(=}
-
=)

16

[4/]

9 [[0] 11 | 12| 13] 14]1

A. Interpretation of System Matrix Results

A Consumer Matrix by itself is rather perplexingid very
sparse and not easily interpreted. Consumer Matrilze not

Figure 13. Asynchronous Server System Laplacianerbiglues — The Obey. any 'appa.rent algebraic rules such as . St.rucmrs

eigenvalue #9 is the only one zero-valued, implyangModulein this system. functionals linear independence, or module blocgdnality, as

Eigenvalue #10 is thEiedler vector allowing splitting of this overall module. for Provider Matrix. There are no obvious corresteriteria
for Consumer Matrices by themselves.

The Modules and the Fiedler eigenvectors are showv#g. When one superposes a Consumer Matrix upon itsid&nov
14. The Fiedler eigenvalue #10 splits the wholéesysnto two Matrix the picture suddenly clarifies:consumers are
modules of 5*5 and 3*3 sizes. The next iteratioadfér vector “connectors between pairs of provider modules. One could say
(the lowest row) further splits the 5*5 module irteo smaller that the Software System is greater than the suits afiodules,
modules of sizes 2*2 and 3*3 sizes. due to the interactions of the external consucoanectorswith
provider modules.

There are two slightly different situations withetttase
studies in this paper. The Command Design Pattérthe
providers-only Modularity Matrix has the same numbkthree
I modules (Fig. 1) as the System Modularity Matrixthwi
0.28 0.38(0.040.06] 0.06 0.29]0.36] 0.12| 0.05 | 0.05 connectors (Fig. 10). The two connectors are eatetm the

' 7 7 three modules and actually connect pairs of modules

In the Asynchronous Server case study the providels
Figure 14. Asynchronous Server System Laplaciarerigctors — From top Modularity Matrix (Fig. 11) is strictly diagonal e!mas 8 s[n_gle-
row to bottom: the < row shows the vertices (on yellow); th® gow is the Structor modules. In the System Modularity Matrixithw
eigenvector fitting the single module eigenvalue #@ 3° row is the Fiedler connectors (Fig_ 15) the providers-only modules evee-

#10 eiggnvector splitting thé“_’a’ow eigenvector into t_wo modules_acco_rding t€onfigured into three larger modules internallykéd by

the positive and negative signs; the lowest rowhis next iteration Fiedler . :

eigenvector, splitting the larger (green) moduléhie ¥ row eigenvector into anneCtorS' In addition there a_re two externahectprs. lt. 1S
two smaller modules of sizes 2*2 and 3*3 (lightdlind orange background). Still true that connectors — both internal and exe— link pairs
of modules. The internal connectors link the ordjiproviders-
only modules. The external connectors link the aefigured
system modules (containing both providers and aoess,

Modules are discovered by looking at the eigenwsctd playing the internal connectors role).
the Laplacian. These modules are the upper-lefFE$1,S2), We are led to the following conjecture as a sumnodrgur
the middle (F3,F4,F5,S3,54,S5) and the lower-rightrrently empirical findings:

(F6,F7,F8,56,57,S8) as shown in Fig. 15.

External consumers, the “connectors” between threeth
referred modules, viz. (S1, F3) and (S3, F7) asealiered by| Conjecture: Software System Modularity Connectors
exclusion (i.e. outliers), as the remaining positimatrix
elements of the System Modularity Matrix outside tiree | The Minimal Number of System Modulgonnectorsis
modules (Fig. 15). An interesting observation fus tsystem is| equal to the number of System Provider Modules sinu
the existence of consumers as ‘“internal connegtinside the | one, i.e. each System module is connected to at teze
three modules, where each consumer reasonablydiqier of | other System module by a consumer Connector.
provider structors.

7.106.09|5.734.00|4.24|4.38 [1.30 0.81\ 0.00 [0.11 0.234.56|2.00(0.43| 4.56/0.43

Type | = PModule] Fiedler|

w
[¥8]

S4| S5| S6| S7

wn
=]

F1| F2|F3|F4| F5| F6 | F7|F8| S1| S2

0.2510.25[0.250.25 | 0.25 | 0.25 | 0.25]0.25|0.25]0.25] 0.25]0.25 {0.25|0.25 | 0.25 [0.25

-0.25 -0-43| 0.170.33] 0.33| 0.00|0.00 | 0.00}-0.28]-0.43| 0.03] 0.29{ 029 | 0.00] 0.00 |0.00

C. Connector Discovery in the System Matrix

PUEHELRS Main [lo-context| Server|Acceptor| Endpoint |Socket| Session | Buffer B. System Benefits for Software Design

Dt e L e First of all, it has been clear, before this wahat providers-
main Fi} 2 only Modularity Matrix, the corresponding bipartiggaph and
run F2 2 its Laplacian Matrix, were incomplete descriptiafis software
“‘::“;‘t‘f::‘c“"t"’" 11:2 > = system. The addition of the consumers certainlyravgs the

MO,W? Fs 2 ability to judge the overall system design quality.
read, write, is-open, close | F6 2 Once consumers are interpreted esnhectors of provider
start, do-read, do-write 11::; % % 5 modules, there are clear expectationg@msumersguantity and

to-siream

matrix element locations for their software systefs.
Figure 15. Asynchronous Server System Modules —tfitee modules enclose Moreover, there are two System Matrix correctnessra:

the original Provider modules and respective irdeoonnectors. The external 5. Algebraic— the providers and consumers joint modules

connectors are found in the elemef84,F3)linking the upper-left and middle . . '

modules, angS3,F7)linking the middle and lower-right modules. .eXCIUdmg the external . Conn?Ctors’ obey linear
independence and block-diagonality;

b- Semantic— system modules are semantically sound (e.g. Springer-Verlag, Berlin, Germany, 201DOl: 10.1007/978-3-642-
the Fig. 15 lower-right module clustersad, write,and 45404-2 14

] . Exman, “Linear Software Models: Standard ModityaHighlights
stream belong to the same category of messang Residual Coupling”, Int. Journal on Software Engirieg and Knowledge

functionals). Engineering, vol. 24, pp. 183210, March 2014. DOI
C. Future Work 10.1142/S0218194014500089
’] . [11] I. Exman, “Linear Software Models: Decoupled Moduldrom
The paper's results, in particular the Software t8ys Modularity Eigenvectors”, Int. Journal on SoftwaEngineering and

Modularity Connectors conjecture, deserve formalofs and Tgﬁvilfg/%%zlzlg%fgggéo\%é 25, pp. 1395-1426, @eto2015. DOL:
extensive verification for a variety of softwaresigms. These :

. . . . [12] I. Exman and D. Speicher, “Linear Software Mod&gquivalence of the
will be presented in an expanded version of thizepa Modularity Matrix to its Modularity Lattice”, in Ric. 10" ICSOFT’2015

Although Fiedler (see e.g. [1]) extended the Laplac Int. Conference on Software Technology, pp. 109-18&itePress,

spectral properties validity to weighted graphs, meed to Portugal, 2015. DO[L0.5220/0005557701090116
investigate the specific weights’ influence on miedu [13] I. Exman and R. Sakhnini, “Linear %oftware Mod&mdularity Analysis
; i i i by the Laplacian Matrix”, in Proc. fIICSOFT’2016 Int. Conference on
calculations done with the Laplacian matrix. Software Technology, Volume 2, pp. 100-108, ScisBrPortugal, 2016.
D. Main Contribution DOI: 10.5220/0005985601000108
. I [14] I. Exman and R. Sakhnini, “Linear Software ModelBipartite
The ma'r.‘ contribution of this paper is the '”trm.Of Isomorphism between Laplacian Eigenvectors and Néoityr Matrix
Consumers in the software System Overall Modulavigtrix, Eigenvectors”, Int. Journal of Software Engineeriagd Knowledge
and in the corresponding Laplacian Matrix, in traer of Engineering, Vol. 28, No 7, pp. 897-935 2018. DOl

connectors between provider modules. http://dx.doi.org/10.1142/S0218194018400107

We have thereby shown that the same Linear SOftV\:IéP M. Fiedler, “Algebraic Connectivity of GraphsCzech. Math. .J Vol. 23,

. . . - (2) 298-305, 1973.
Madels that have been applied to providers-onlyri 1S a [16] E. Gamma, R. Helm, , R. Johnson and J. VlissifeEsign Patterns:

generic algebraic theory of software compositigrpligable to Elements of Reusable Object-Oriented Softwareldison-Wesley,

the overall system, including consumers. Boston, MA, 1995.

[17] F.R. Gantmacher, The Theory of Matrices, Volufivo, Chelsea
Publishing Co., New York, NY, USA, 1959. ChapterliXlpage 53,
Available in the Web (out of copyright):
https://archive.org/details/theoryofmatricesO0gant.

. [18] M. Shtern and V. Tzerpos, “Clustering Methodologies Software
The authors are grateful to the anonymous revied@rs Engineering”, inAdvances in Software Engineerjngl. 2012, Article ID

ACKNOWLEDGMENT

incisive comments that helped to improve this \arsdf the 792024, 2012. DOIL0.1155/2012/792024
paper. [19] M. Siff and T. Reps, “Identifying modules via coptenalysis”, IEEE
Trans. Software Engineering, Vol. 25, (6), pp. 748, 1999. DOI:
REFERENCES 10.1109/32.824377
[1] N.M.M. de Abreu, “Old and new results on algebraannectivity of [20] sét;\?vdoc:mand EW. Weisstein, “Connected Componetolfram,
graphs”, Linear Algebra and its Applications, 4B, 53-73, 2007. DOI: . :
https://doi.org/10.1016/i.laa.2006.08.017 [21] R. Wille, “Restructuring lattice theory: an apprbatased on hierarchies
. . of concepts”. In: I. Rival (ed.)Ordered Setspp. 445-470, Reidel,
[2] C.Y. Baldwin and K.B. ClarkDesign RulesVol. I. The Power of Dordrecht, Holland, 1982.

Modularity, MIT Press, MA, USA, 2000. [22] S.S. Yau and M.U. Caglayan, Distributed softwarestey design
[3] Boost libraries, asio c++11 examples, ChristopherKdhihoff. URL: representation using modified Petri NetEEE Trans. Software
https://www.boost.org/doc/libs/1_66_0/doc/html/bo@sio/example/cpp Engineering Vol. SE-9, pp 733-745, 1983.

11/echo/async_tcp_echo_server.cpp

[4] T.Y. Browning, “Applying the Design Structure Matrito System
Decomposition and Integration Problems: A Reviewd aiNew
Directions”, IEEE Trans. Eng. Management, Vol. g8, 292-306, 2001.

[5] Y. Cai and K.J. Sullivan, “Modularity Analysis of ogical Design
Models”, in Proc. 2F' IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06 pp. 91-102, Tokyo, Japan, 2006.

[6] G. Clark, S. Gilmore, J. Hillston and N. ThomasxpEriences with the
PEPA performance modelling tools”, IEE Proceedin§sftware, vol.
146, no. 1, pp. 11-19, 1999. DOlnttps://doi.org/10.1049/ip-
sen:19990149

[7] CsharpDesignPatterns, by Jason de Oliveira, 2017RL:U
https://csharpdesignpatterns.codeplex.com/Sourde@ietest#DesignPa
tterns/DesignPatterns/DesignPatterns.csproj

[8] I. Exman, “Linear Software Models”, Extended Abstran I. Jacobson,
M. Goedicke and P. Johnson (edS)[SE 2012, SEMAT Workshop on
General Theory of Software Engineerimgp. 23-24, KTH Royal Institute
of Technology, Stockholm, Sweden, 2012. Video:
http://www.youtube.com/watch?v=EJfzArH8-Is

[9] I. Exman, “Linear Software Models are Theoreticarflards of

Modularity”, in J. Cordeiro, S. Hammoudi, and M.nv&inderen (eds.):
ICSOFT 2012, Revised selected papers, CE®8. 411, pp. 203-217,

