
A Software System is Greater than its Modules’ Sum:
Providers & Consumers’ Modularity Matrix (TSE)

Iaakov Exman and Harel Wallach
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il, harel.wallach@gmail.com

Abstract— Modularity Matrices and their Laplacians enable
finding software system modules by a rigorous algebraic
procedure. However, Modularity Matrices have up to now focused
mainly on structors as providers of functionals. This paper takes a
broader view at the software system as a whole. The Software
System Modularity Matrix, besides displaying provider
relationships, also describes which structors consume functionals
provided by other structors. This broader view improves software
system design in two ways. First, consumer relationships set
realistic expectations for consumer numbers and roles. Second, the
Software System Modularity Matrix generates standard design
criteria for interacting providers and consumers. This standard
System matrix obeys linear independence of its constituent vectors,
and block-diagonality of its recognizable modules. The novelty
consists of modules being composed into a whole working Software
System by means of a limited number of consumers playing the
role of module connectors. Modules and their connectors are
formally obtained by the same spectral method applied to the
respective Laplacian, which obtained provider matrices. This is
illustrated by case studies. 1

Keywords: Linear Software Models; Spectral Software Design;
Modularity Matrix; Laplacian Matrix; Providers; Consumers;
Modules; Connectors; Linear Independence; Block-Diagonality.

I. INTRODUCTION

Linear Software Models represent each abstraction level of a
given Software System by means of a Modularity Matrix [8],
[10] or its corresponding Laplacian Matrix [13], [14]. These
models enable rigorous software design of any given system:

• Standard Matrix – is defined as an exact criterion

to compare different proposed designs;
• Matrices highlight the need of redesign –

pinpointing eventual coupling problem locations.

A Modularity Matrix is made of column structors – a
generalization of classes in object-oriented programming
languages – and row functionals – a generalization of class
methods. A matrix element is 1-valued if its structor provides
the respective functional. Otherwise, the element is zero-valued.

DOI: 10.18293/SEKE2019-003

The meaning of a structor as a provider of a functional is e.g.
a class containing the declaration/definition of a method, usable
by other classes. Another structor using such a functional is
called a consumer (e.g. a class calls a method of another class).

This paper’s goal is to propose and deal with the broader
sense of Modularity Matrix, and its corresponding Laplacian,
displaying not only providers, but also matrix elements standing
for consumers. This extended Modularity Matrix is a more
complete representation of Software from the system
perspective and is of practical interest for software design.

This Introduction concisely reviews concepts of Modularity
and Laplacian matrices.

A. Software Modularity

A central problem to be solved by software engineering is
the hierarchical composition of a software system from sub-
systems, down to software architecture units, typically classes,
considered indivisible by the designer.

 Solving the software system composition problem involves
software modularity. Applying Linear Software Models, one
designs one or more Modularity Matrices, obtaining modules
by spectral methods. One then compares their quality with a
square and block-diagonal standard matrix, resolving eventual
coupling problems, highlighted by the matrices.

A simple example of a schematic Modularity Matrix with
providers only is shown in Fig. 1. It has five structors and five
functionals. It displays three modules, the blocks along the
diagonal. It is a standard Modularity Matrix as it does not have
any outlier, a 1-valued matrix element outside the modules.

B. Modularity Matrices and their Laplacians

A Laplacian Matrix is easily generated from a Modularity
Matrix in two steps:

• Extract a bipartite graph – with a structors’ vertex set
and a functionals’ vertex set having edges corresponding
to 1-valued matrix elements of the Modularity Matrix;

• Generate the Laplacian Matrix – from the bipartite
graph, according to equation (1):

L D A= − (1)

where L is the Laplacian matrix, D is the Degree matrix of the
graph vertices and A is the Adjacency matrix of vertex pairs.

Figure 1. Schematic Providers Modularity Matrix – It has 5 structors (S1 to S5),
5 functionals (F1 to F5) and three modules, the (blue) blocks along the diagonal:
upper-left and lower-right with 2*2 size and middle block of size 1*1. It is a
standard matrix as it does not have outliers (1-valued elements outside modules).
(All figures are in color online).

A bipartite graph, obtained from the Modularity Matrix in
Fig. 1, is shown in Fig. 2.

Figure 2. Bipartite Graph from Modularity Matrix in Fig. 1 – It has two vertex
sets: the upper set of structors (S1 to S5), and the lower set of functionals (F1 to
F5). A bipartite graph only has edges linking vertices in different sets. Arrows
pointing down mean that structors provide functionals. The (blue) rectangles
separate vertices belonging to given connected components (the modules).

A schematic Laplacian Matrix, generated from the bipartite
graph in Fig. 2, is shown in Fig. 3.

Figure 3. Schematic Providers Laplacian Matrix – This Laplacian is generated
from the bipartite graph in Fig. 2. By equation (1) its diagonal is D the Degree
matrix (in green) showing the degrees of each vertex of the Bipartite graph. The
upper-right quadrant (and its reflection in the lower-left quadrant) is the negative
of A the graph Adjacency matrix, which is identical to the Modularity Matrix.

C. Paper Organization

The rest of the paper is organized as follows. Section II
mentions related work. Section III introduces Consumer
Matrices to be included in the whole System Matrices, which is
done in Section IV. Section V illustrates the provider and
consumer matrices by means of a server case study. Section VI
concludes the paper with a discussion.

II. RELATED WORK

Here one finds a concise review of the extensive literature
about Modularity approaches, by spectral and other methods.
Also shortly reviewed are some references to consumers.

A. Linear Software Models

Linear Software Models have been developed by Exman
and collaborators (e.g. [8], [9]) as a rigorous theory to solve the
hierarchical software system composition problem from sub-
systems. Linear Software Models are based on linear algebra
operations and theorems. One assumes that all structors should
be mutually linearly independent and also all functionals are
linearly independent, an assumption motivated by minimization
of the number of structors and functionals needed to build the
system. Given this assumption, a linear algebra theorem
demands that the Modularity Matrix be square. This is not a
trivial result for software systems; it demands some effort to
understand the theorem’s rationale and implications.

Moreover, if sub-sets of structors/functionals are disjoint to
other sub-sets, a second theorem states that these sub-sets can
be rearranged into a block-diagonal matrix. These diagonal
blocks are recognized as the modules in that software system
level (for detailed proofs and examples see the work by Exman
[10] and references therein).

A given software system modularization may display
undesirable provider outliers coupling between modules. A
procedure to compare different designs of the same software
system, and to improve design is given by spectral methods as
described in [11]. The Perron-Frobenius theorem (see e.g.
Gantmacher [17]) is central for the Modularity Matrix theory.

Exman and Sakhnini [13], [14] have shown how to generate
a Laplacian Matrix from the Modularity Matrix. The Laplacian
matrix obtains the same modules as the Modularity Matrix, by
similar spectral methods. The Fiedler theorem [1], [15] is
central for the Laplacian theory. The so-called Fiedler
eigenvector fits the lowest non-zero eigenvalue of the Laplacian
Matrix. It allows locating outliers and splitting of too sparse
software modules.

B. Alternative Approaches to Modularity

There exist a variety of techniques applying matrices for
modularity analysis. For instance, Baldwin and Clark describe a
Design Structure Matrix (DSM) in their “Design Rules” book
[2]. DSM has been applied to many systems, including software
engineering, see e.g. Cai and Sullivan [5].

Conceptual lattices, another algebraic structure relevant to
software design, were introduced by Wille in 1982 [21] as part
of Formal Concept Analysis (FCA). They have been used for

software system design e.g. by Siff and Reps [19] and by
Exman and Speicher [12].

Alternative clustering techniques to obtain software modules
are found e.g. in Shtern and Tzerpos [18].

C. Theoretical Approaches to Consumers

There have been modelling systems in the literature
representing provider and consumer interactions. Yau and
Caglayan [22] use Petri Nets to design distributed software
systems. One of their examples is a producer-consumer system.

Clark et al. [6] describe experiences with PEPA
(Performance Evaluation Process Algebra) modelling tools. In
particular they refer to Producer-Consumer relations.

Browning [4] suggests that system modelers often build two
DSM matrices, one for information supplier and another for the
consumer, similar to our providers/consumers pairs of matrices.

III. THE NATURE OF CONSUMER MATRICES

Consumer matrices display Structors and Functionals
consumed by the referred Structors. This section describes
assumptions needed to generate Consumer matrices.

A. Consumer Matrices Shape and Size

Consumer matrices are not by themselves the aim of this
paper. The goal of consumer matrices, jointly with provider
matrices, is a more complete description of a software system,
showing the interactions between the given sets of Structors and
Functionals, from a system perspective.

Given this goal, we assume that Structors and Functionals of
the consumer matrices are identical to those of the provider
matrices. Thus, a consumer matrix fitting a standard providers’
matrix is also square. We emphasize that the reason for
consumer matrices being square is essentially different from the
provider matrices. As stated in section II standard provider
matrices are square by algebraic considerations. Consumer
matrices are square just to enable unification of providers and
consumers into a single system matrix, as described below.

We often refer to sub-systems, to allow for the possibility
that consumer matrices leave outside, e.g. service functionality,
obtained from external libraries. Alternatively, functionals
provided by our sub-system may be consumed by other sub-
systems, not included in our provider/consumer matrices.

Modularity and Laplacian matrices are tools to solve
software design problems resulting from coupling interactions
between different architectural units – structors and their
functionals – in a given hierarchical level. Functionals provided
and consumed by the same Structor do not appear in either of
the provider/consumer matrices, as these are not interactions
between different structors at that level.

B. Theoretical Properties of Consumer Matrices

Given the above assumptions on Consumer Matrices, we
state easily verifiable theoretical properties.

Property 1 – Complementarity to Provider Matrices.
Since Consumer Matrices have exactly the same Structors

and Functionals as the Provider Matrices, and the matrices do

not display Functionals provided and consumed by the same
Structor, consumer Matrices are complementary to Provider
matrices of the same sub-system. In other words, there is no
overlap of non-zero matrix elements of the consumer matrix
with non-zero matrix elements of the provider matrix.

Property 2 – Consumer Matrices may have empty (totally
zero-valued) columns or rows, while Provider matrices
cannot.

This may happen since the Sub-system Under Design (SUD)
may interact with other external sub-systems or libraries not
represented in the matrices of the SUD. For example, if an SUD
Structor in the Provider matrix provides a Functional consumed
only by external sub-systems, the respective SUD Consumer
matrix will have an empty row corresponding to the Functional
consumed externally. Another example, if an SUD Structor
appearing in the Provider matrix does not consume any
Functional, the respective SUD Consumer matrix will have an
empty column corresponding to the referred Structor. Provider
matrices cannot have empty columns or empty rows, since they
display only Structors actually providing Functionals.

Property 3 – Consumer Matrices per se generally neither
display linear independence of their Structors/Functionals,
nor have block-diagonal modules, in contrast with Provider
matrices.

This happens, since besides the empty columns/rows already
mentioned in the previous property, it may be that a single given
Structor consumes several Functionals originating identical
rows. In other words, the rank of a Consumer Matrix is
generally less than its size would permit. This does not occur
with Provider matrices as already mentioned in section II.

C. An Example of Consumer Matrix

Now we reveal that the provider modularity matrix in Fig.
1 refers to the Command Design Pattern code in CSharp found
in [7]. We use the same Structors and Functionals to show the
respective Consumer matrix (in Fig. 4). The Command Design
Pattern serves as an introductory running example, and as a
first case study, in this and in the next section.

Figure 4. Command Design Pattern, Consumers only Modularity Matrix – This
consumers matrix fits the Providers Modularity Matrix in Fig. 1. Both matrices
have the same Structors (S1,…,S5) and the same Functionals (F1,…,F5), and
both comply with the Properties enumerated in sub-section B. The consumers
matrix has just two 1-valued matrix elements (green hatched background),
respectively (S3, F1) and (S2,F4) and is much sparser than the providers matrix.

IV. SYSTEM MODULARITY MATRICES: PROVIDERS AND

CONSUMERS

This section finally deals with whole system modularity
matrices including providers and consumers. The same algebraic
techniques, previously used to identify provider-only matrix
modules, are applied for the whole system matrices. This is done
here for the Command Design Pattern Laplacian matrix.

A. System Weighted Modularity Matrices

We obtain the System Modularity Matrix by straightforward
superposition of the provider matrix with the consumer matrix in
a single overall matrix. This is possible as, by Property 1 above,
there is no overlap between non-zero matrix elements of these
two matrices. But simple superposition would imply loss of
“direction” information, i.e. whether a Functional is provided or
consumed by a given Structor. To avoid this ambiguity one
assigns a different weight to each direction: a functional
provided by a structor is assigned a weight of “2” and a
functional consumed by a structor is assigned a weight of “1”.

In this context, it is important to state that Fiedler [15] has
extended the algebraic connectivity properties of Laplacians to
those for weighted edge graphs (see e.g. de Abreu [1]).

A System Weighted Modularity Matrix for the Command
Design Pattern is show in Fig. 5, combining the provider matrix
of Fig. 1 with the consumer matrix of Fig. 4.

Figure 5. Command Design Pattern, System Weighted Modularity Matrix –
This matrix is obtained by superposition of the Consumers Matrix in Fig. 4 with
weights of “1”, upon the Providers Matrix (blue modules) in Fig. 1 with
weights of “2”, to distinguish the consumers from the providers direction.

The weighted bipartite graph obtained from the System
Modularity Matrix in Fig. 5, is shown in Fig. 6.

Figure 6. Command Pattern Weighted Bipartite Graph from Modularity Matrix
in Fig. 5 – It has two vertex sets: the upper set of structors (S1 to S5), and the
lower set of functionals (F1 to F5). Structors providing functionals are shown
by (black) arrows pointing down with weight=2. Structors consuming
functionals are shown by (red) arrows pointing up with weight=1. The (blue)
rectangles denote providers’ connected components (within the providers’
modules). Consumer arrows are connectors between providers’ modules.

B. Generation of the Weighted Laplacian

In order to identify the whole system modules including
providers and consumers, we obtain from the Weighted Bipartite
Graph (Fig. 6), the Weighted Laplacian Matrix in Fig. 7.

C. Connector Discovery from the Weighted

Laplacian

As a last step towards the modules of the whole Command
Pattern system, including both providers and consumers, we
apply the same algebraic spectral method previously used (in
[14]) for the providers-only Laplacian. It consists of:

a) Calculate eigenvalues and eigenvectors – of the
Laplacian Matrix;

b) Obtain Modules from eigenvectors – whose
eigenvalues are zero-valued;

c) Discover Module connectors by splitting modules –
using the Fiedler eigenvector.

Figure 7. Command Pattern Weighted Laplacian Matrix from bipartite graph in
Fig. 6 – It weights (by 2) Laplacian providers in Fig. 3, and adds the consumer
elements, with negative weight=1 and a hatched (green) background. Diagonal
degrees are changed to guarantee that all rows and columns sum to zero.

Laplacian Matrix Eigenvalues

Eigenvalues are shown in Fig. 8. The only zero-valued
eigenvalue is the sixth one: it shows Modules in the Laplacian
by the fitting eigenvector. The lowest eigenvalue closer to zero
is the seventh one and is the Fiedler eigenvector, which allows
further splitting of the Module.

Figure 8. Command Pattern Weighted Laplacian Matrix eigenvalues – these are
shown in the middle row of the figure.

Laplacian Matrix Eigenvectors

Eigenvectors’ in Fig. 9 fit the Fig. 8 eigenvalues: the 2nd row
from the top Modules eigenvector has all equal elements,
implying one big whole system module; the 3rd row Fiedler
eigenvector splits the whole system into two modules, by its
element signs. Negative signs cluster (F1, F2, F3, S1, S2, S3)
into one module and positive signs the vertices (F4, F5, S4, S5)
into another module. In this first splitting iteration, the single
structor module (F3, S3) seen in Fig. 5 and in Fig. 6, is left
inside the 1st module. The 2nd Fiedler vector splitting iteration, in
the bottom row of Fig. 9, finally separates the smaller module
(F3, S3), obtaining all the three modules in this system.

Laplacian eigenvectors obtain only modules (either directly
or by Fiedler vector splitting), as modules are mathematically
“connected components” [20] of the graph.

Consumers, as external “connectors”, are the remaining
positive elements of the Modularity Matrix by exclusion, after
the modules were directly characterized. For instance, in the 1st
splitting iteration the consumer (F1,S3) is left inside the 1st
module, while the consumer (F4,S2) is outside both modules. In
the 2nd splitting iteration which obtains all modules, also obtains
by exclusion both external connectors.

Figure 9. Command Pattern Weighted Laplacian eigenvectors – the top row has
vertex indices; the 2nd row from top has all Modules vector elements equal 0.32;
the 3rd row Fiedler different sign elements split the system into two modules 3*3
(negative, blue) and 2*2 (positive, yellow); the bottom 2nd Fiedler iteration splits
the previous biggest module into 2*2 (positive, green) and 1*1 (negative).

Connectors Discovery by Splitting Modules

The final iteration from the Laplacian eigenvectors is
displayed in the System Modularity Matrix, with the referred
modules enclosed within dashed rectangles, as seen in Fig. 10.

Figure 10. Command Design Pattern, System Weighted Modularity Matrix with
Connectors – This matrix shows the provider modules as the result of the
Laplacian eigenvectors, seen as delimited by the dashed (black) rectangles.
These are the upper-left and lower-right modules of 2*2 size and the middle
1*1 module. The consumer (F1,S3) links the upper-left and middle modules.
The upper-left module is also linked to the lower-right module by the consumer
(F4,S2). Iterative splitting by the Fiedler vector obtains these two connectors.

The conclusion from this Command Pattern example is that
consumers are connectors linking provider modules. This is seen
in the bipartite graph (in Fig. 6), and corroborated by the
partition by the Laplacian eigenvectors (in Fig. 10).

V. CASE STUDY: AN ASYNCHRONOUS SERVER SYSTEM

This case study is a larger system from the Boost library
written in C++, viz. an Asynchronous Echo Server System [3].
The calculation steps were the same as in the Command Pattern
example. Here are shown only the important steps’ results.

A. Provider and Consumer Modularity Matrices

The Providers Modularity Matrix is strictly diagonal (Fig.
11). The Consumers’ Modularity Matrix in Fig. 12 is very
sparse and barely understood. Consumption is concentrated in
“control” structors, viz. Main, Server and Session.

Figure 11. Asynchronous Server System – Providers-only strictly diagonal
Modularity Matrix.

B. Spectral Approach to System Modules

In order to obtain System Modules, we apply the spectral
method as done previously with the Command Design Pattern.
One superposes the providers and consumers in a single
weighted Modularity Matrix, and obtains the bipartite graph.
Then one generates its Laplacian Matrix and calculate its
eigenvalues and eigenvectors, as shown in Fig. 13 and Fig.14.

Figure 12. Asynchronous Server System Consumers only Modularity Matrix –
– This consumers matrix fits the Providers Modularity Matrix in Fig. 11. Both
matrices have the same Structors (S1,…,S8) and the same Functionals
(F1,…,F8), and both comply with the Properties enumerated in sub-section III
B. The non-zero consumers’ matrix elements are marked (in green hatched
background).

Figure 13. Asynchronous Server System Laplacian Eigenvalues – The
eigenvalue #9 is the only one zero-valued, implying one Module in this system.
Eigenvalue #10 is the Fiedler vector allowing splitting of this overall module.

The Modules and the Fiedler eigenvectors are shown in Fig.
14. The Fiedler eigenvalue #10 splits the whole system into two
modules of 5*5 and 3*3 sizes. The next iteration Fiedler vector
(the lowest row) further splits the 5*5 module into two smaller
modules of sizes 2*2 and 3*3 sizes.

Figure 14. Asynchronous Server System Laplacian Eigenvectors – From top
row to bottom: the 1st row shows the vertices (on yellow); the 2nd row is the
eigenvector fitting the single module eigenvalue #9; the 3rd row is the Fiedler
#10 eigenvector splitting the 2nd row eigenvector into two modules according to
the positive and negative signs; the lowest row is the next iteration Fiedler
eigenvector, splitting the larger (green) module in the 3rd row eigenvector into
two smaller modules of sizes 2*2 and 3*3 (light blue and orange background).

C. Connector Discovery in the System Matrix

Modules are discovered by looking at the eigenvectors of
the Laplacian. These modules are the upper-left (F1,F2,S1,S2),
the middle (F3,F4,F5,S3,S4,S5) and the lower-right
(F6,F7,F8,S6,S7,S8) as shown in Fig. 15.

External consumers, the “connectors” between the three
referred modules, viz. (S1, F3) and (S3, F7) are discovered by
exclusion (i.e. outliers), as the remaining positive matrix
elements of the System Modularity Matrix outside the three
modules (Fig. 15). An interesting observation for this system is
the existence of consumers as “internal connectors”, inside the
three modules, where each consumer reasonably links a pair of
provider structors.

Figure 15. Asynchronous Server System Modules – The three modules enclose
the original Provider modules and respective internal connectors. The external
connectors are found in the elements (S1,F3) linking the upper-left and middle
modules, and (S3,F7) linking the middle and lower-right modules.

VI. DISCUSSION

A. Interpretation of System Matrix Results

A Consumer Matrix by itself is rather perplexing: it is very
sparse and not easily interpreted. Consumer Matrices do not
obey any apparent algebraic rules such as structors or
functionals linear independence, or module block-diagonality, as
for Provider Matrix. There are no obvious correctness criteria
for Consumer Matrices by themselves.

When one superposes a Consumer Matrix upon its Provider
Matrix the picture suddenly clarifies: consumers are
“connectors” between pairs of provider modules. One could say
that the Software System is greater than the sum of its modules,
due to the interactions of the external consumer connectors with
provider modules.

There are two slightly different situations with the case
studies in this paper. The Command Design Pattern of the
providers-only Modularity Matrix has the same number of three
modules (Fig. 1) as the System Modularity Matrix with
connectors (Fig. 10). The two connectors are external to the
three modules and actually connect pairs of modules.

In the Asynchronous Server case study the providers-only
Modularity Matrix (Fig. 11) is strictly diagonal and has 8 single-
structor modules. In the System Modularity Matrix with
connectors (Fig. 15) the providers-only modules were re-
configured into three larger modules internally linked by
connectors. In addition there are two external connectors. It is
still true that connectors – both internal and external – link pairs
of modules. The internal connectors link the original providers-
only modules. The external connectors link the re-configured
system modules (containing both providers and consumers,
playing the internal connectors role).

We are led to the following conjecture as a summary of our
currently empirical findings:

B. System Benefits for Software Design

First of all, it has been clear, before this work, that providers-
only Modularity Matrix, the corresponding bipartite graph and
its Laplacian Matrix, were incomplete descriptions of a software
system. The addition of the consumers certainly improves the
ability to judge the overall system design quality.

Once consumers are interpreted as “connectors” of provider
modules, there are clear expectations on consumers' quantity and
matrix element locations for their software system role.

Moreover, there are two System Matrix correctness criteria:
a- Algebraic – the providers and consumers joint modules,

excluding the external connectors, obey linear
independence and block-diagonality;

Conjecture: Software System Modularity Connectors

The Minimal Number of System Module Connectors is
equal to the number of System Provider Modules minus
one, i.e. each System module is connected to at least one
other System module by a consumer Connector.

b- Semantic – system modules are semantically sound (e.g.
the Fig. 15 lower-right module clusters read, write, and
stream belong to the same category of messaging
functionals).

C. Future Work

The paper’s results, in particular the Software System
Modularity Connectors conjecture, deserve formal proofs and
extensive verification for a variety of software systems. These
will be presented in an expanded version of this paper.

Although Fiedler (see e.g. [1]) extended the Laplacian
spectral properties validity to weighted graphs, we need to
investigate the specific weights’ influence on modules
calculations done with the Laplacian matrix.

D. Main Contribution

The main contribution of this paper is the introduction of
Consumers in the software System Overall Modularity Matrix,
and in the corresponding Laplacian Matrix, in the role of
connectors between provider modules.

We have thereby shown that the same Linear Software
Models that have been applied to providers-only matrices, is a
generic algebraic theory of software composition, applicable to
the overall system, including consumers.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for

incisive comments that helped to improve this version of the
paper.

REFERENCES
[1] N.M.M. de Abreu, “Old and new results on algebraic connectivity of

graphs”, Linear Algebra and its Applications, 423, pp. 53-73, 2007. DOI:
https://doi.org/10.1016/j.laa.2006.08.017.

[2] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of
Modularity, MIT Press, MA, USA, 2000.

[3] Boost libraries, asio c++11 examples, Christopher M. Kohlhoff. URL:
https://www.boost.org/doc/libs/1_66_0/doc/html/boost_asio/example/cpp
11/echo/async_tcp_echo_server.cpp

[4] T.Y. Browning, “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New
Directions”, IEEE Trans. Eng. Management, Vol. 48, pp. 292-306, 2001.

[5] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[6] G. Clark, S. Gilmore, J. Hillston and N. Thomas, “Experiences with the
PEPA performance modelling tools”, IEE Proceedings, Software, vol.
146, no. 1, pp. 11-19, 1999. DOI: https://doi.org/10.1049/ip-
sen:19990149

[7] CsharpDesignPatterns, by Jason de Oliveira, 2017. URL:
https://csharpdesignpatterns.codeplex.com/SourceControl/latest#DesignPa
tterns/DesignPatterns/DesignPatterns.csproj

[8] I. Exman, “Linear Software Models”, Extended Abstract, in I. Jacobson,
M. Goedicke and P. Johnson (eds.), GTSE 2012, SEMAT Workshop on
General Theory of Software Engineering, pp. 23-24, KTH Royal Institute
of Technology, Stockholm, Sweden, 2012. Video:
http://www.youtube.com/watch?v=EJfzArH8-ls

[9] I. Exman, “Linear Software Models are Theoretical Standards of
Modularity”, in J. Cordeiro, S. Hammoudi, and M. van Sinderen (eds.):
ICSOFT 2012, Revised selected papers, CCIS, Vol. 411, pp. 203–217,

Springer-Verlag, Berlin, Germany, 2013. DOI: 10.1007/978-3-642-
45404-2_14

[10] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal on Software Engineering and Knowledge
Engineering, vol. 24, pp. 183-210, March 2014. DOI:
10.1142/S0218194014500089

[11] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Eigenvectors”, Int. Journal on Software Engineering and
Knowledge Engineering, vol. 25, pp. 1395-1426, October 2015. DOI:
10.1142/S0218194015500308

[12] I. Exman and D. Speicher, “Linear Software Models: Equivalence of the
Modularity Matrix to its Modularity Lattice”, in Proc. 10th ICSOFT’2015
Int. Conference on Software Technology, pp. 109-116, ScitePress,
Portugal, 2015. DOI: 10.5220/0005557701090116

[13] I. Exman and R. Sakhnini, “Linear Software Models: Modularity Analysis
by the Laplacian Matrix”, in Proc. 11th ICSOFT’2016 Int. Conference on
Software Technology, Volume 2, pp. 100-108, ScitePress, Portugal, 2016.
DOI: 10.5220/0005985601000108

[14] I. Exman and R. Sakhnini, “Linear Software Models: Bipartite
Isomorphism between Laplacian Eigenvectors and Modularity Matrix
Eigenvectors”, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 28, No 7, pp. 897-935, 2018. DOI:
http://dx.doi.org/10.1142/S0218194018400107

[15] M. Fiedler, “Algebraic Connectivity of Graphs”, Czech. Math. J., Vol. 23,
(2) 298-305, 1973.

[16] E. Gamma, R. Helm, , R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
Boston, MA, 1995.

[17] F.R. Gantmacher, The Theory of Matrices, Volume Two, Chelsea
Publishing Co., New York, NY, USA, 1959. Chapter XIII, page 53,
Available in the Web (out of copyright):
https://archive.org/details/theoryofmatrices00gant.

[18] M. Shtern and V. Tzerpos, “Clustering Methodologies for Software
Engineering”, in Advances in Software Engineering, vol. 2012, Article ID
792024, 2012. DOI: 10.1155/2012/792024

[19] M. Siff and T. Reps, “Identifying modules via concept analysis”, IEEE
Trans. Software Engineering, Vol. 25, (6), pp. 749-768, 1999. DOI:
10.1109/32.824377

[20] R. Todd and E.W. Weisstein, “Connected Component”, Wolfram,
MathWorld.

[21] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts”. In: I. Rival (ed.): Ordered Sets, pp. 445–470, Reidel,
Dordrecht, Holland, 1982.

[22] S.S. Yau and M.U. Caglayan, Distributed software system design
representation using modified Petri Nets, IEEE Trans. Software
Engineering, Vol. SE-9, pp 733-745, 1983.

