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Abstract— Modularity Matrices and their Laplacians enable 
finding software system modules by a rigorous algebraic 
procedure. However, Modularity Matrices have up to now focused 
mainly on structors as providers of functionals. This paper takes a 
broader view at the software system as a whole. The Software 
System Modularity Matrix, besides displaying provider 
relationships, also describes which structors consume functionals 
provided by other structors. This broader view improves software 
system design in two ways. First, consumer relationships set 
realistic expectations for consumer numbers and roles. Second, the 
Software System Modularity Matrix generates standard design 
criteria for interacting providers and consumers. This standard 
System matrix obeys linear independence of its constituent vectors, 
and block-diagonality of its recognizable modules. The novelty 
consists of modules being composed into a whole working Software 
System by means of a limited number of consumers playing the 
role of module connectors. Modules and their connectors are 
formally obtained by the same spectral method applied to the 
respective Laplacian, which obtained provider matrices. This is 
illustrated by case studies. 1 
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I.  INTRODUCTION 

Linear Software Models represent each abstraction level of a 
given Software System by means of a Modularity Matrix [8], 
[10] or its corresponding Laplacian Matrix [13], [14]. These 
models enable rigorous software design of any given system: 

  
• Standard Matrix – is defined as an exact criterion 

to compare different proposed designs; 
• Matrices highlight the need of redesign – 

pinpointing eventual coupling problem locations. 
  

A Modularity Matrix is made of column structors – a 
generalization of classes in object-oriented programming 
languages – and row functionals – a generalization of class 
methods. A matrix element is 1-valued if its structor provides 
the respective functional. Otherwise, the element is zero-valued. 
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The meaning of a structor as a provider of a functional is e.g. 
a class containing the declaration/definition of a method, usable 
by other classes. Another structor using such a functional is 
called a consumer (e.g. a class calls a method of another class). 

This paper’s goal is to propose and deal with the broader 
sense of Modularity Matrix, and its corresponding Laplacian, 
displaying not only providers, but also matrix elements standing 
for consumers. This extended Modularity Matrix is a more 
complete representation of Software from the system 
perspective and is of practical interest for software design. 

This Introduction concisely reviews concepts of Modularity 
and Laplacian matrices. 

A. Software Modularity 

A central problem to be solved by software engineering is 
the hierarchical composition of a software system from sub-
systems, down to software architecture units, typically classes, 
considered indivisible by the designer. 

 Solving the software system composition problem involves 
software modularity. Applying Linear Software Models, one 
designs one or more Modularity Matrices, obtaining modules 
by spectral methods. One then compares their quality with a 
square and block-diagonal standard matrix, resolving eventual 
coupling problems, highlighted by the matrices. 

A simple example of a schematic Modularity Matrix with 
providers only is shown in Fig. 1. It has five structors and five 
functionals. It displays three modules, the blocks along the 
diagonal. It is a standard Modularity Matrix as it does not have 
any outlier, a 1-valued matrix element outside the modules. 

B. Modularity Matrices and their Laplacians 

A Laplacian Matrix is easily generated from a Modularity 
Matrix in two steps: 

• Extract a bipartite graph – with a structors’ vertex set 
and a functionals’ vertex set having edges corresponding 
to 1-valued matrix elements of the Modularity Matrix; 

• Generate the Laplacian Matrix – from the bipartite 
graph, according to equation (1): 

L D A= −    (1) 



where L is the Laplacian matrix, D is the Degree matrix of the 
graph vertices and A is the Adjacency matrix of vertex pairs. 
 

 
 

Figure 1. Schematic Providers Modularity Matrix – It has 5 structors (S1 to S5), 
5 functionals (F1 to F5) and three modules, the (blue) blocks along the diagonal: 
upper-left and lower-right with 2*2 size and middle block of size 1*1. It is a 
standard matrix as it does not have outliers (1-valued elements outside modules). 
(All figures are in color online). 

A bipartite graph, obtained from the Modularity Matrix in 
Fig. 1, is shown in Fig. 2. 

 

 
 

Figure 2. Bipartite Graph from Modularity Matrix in Fig. 1 – It has two vertex 
sets: the upper set of structors (S1 to S5), and the lower set of functionals (F1 to 
F5). A bipartite graph only has edges linking vertices in different sets. Arrows 
pointing down mean that structors provide functionals. The (blue) rectangles 
separate vertices belonging to given connected components (the modules).  

A schematic Laplacian Matrix, generated from the bipartite 
graph in Fig. 2, is shown in Fig. 3. 

 
 

Figure 3. Schematic Providers Laplacian Matrix – This Laplacian is generated 
from the bipartite graph in Fig. 2. By equation (1) its diagonal is D the Degree 
matrix (in green) showing the degrees of each vertex of the Bipartite graph. The 
upper-right quadrant (and its reflection in the lower-left quadrant) is the negative 
of A the graph Adjacency matrix, which is identical to the Modularity Matrix. 

C. Paper Organization 

The rest of the paper is organized as follows. Section II 
mentions related work. Section III introduces Consumer 
Matrices to be included in the whole System Matrices, which is 
done in Section IV. Section V illustrates the provider and 
consumer matrices by means of a server case study. Section VI 
concludes the paper with a discussion. 

II. RELATED WORK 

Here one finds a concise review of the extensive literature 
about Modularity approaches, by spectral and other methods. 
Also shortly reviewed are some references to consumers. 

A. Linear Software Models 

Linear Software Models have been developed by Exman 
and collaborators (e.g. [8], [9]) as a rigorous theory to solve the 
hierarchical software system composition problem from sub-
systems. Linear Software Models are based on linear algebra 
operations and theorems. One assumes that all structors should 
be mutually linearly independent and also all functionals are 
linearly independent, an assumption motivated by minimization 
of the number of structors and functionals needed to build the 
system. Given this assumption, a linear algebra theorem 
demands that the Modularity Matrix be square. This is not a 
trivial result for software systems; it demands some effort to 
understand the theorem’s rationale and implications.  

Moreover, if sub-sets of structors/functionals are disjoint to 
other sub-sets, a second theorem states that these sub-sets can 
be rearranged into a block-diagonal matrix. These diagonal 
blocks are recognized as the modules in that software system 
level (for detailed proofs and examples see the work by Exman 
[10] and references therein). 

A given software system modularization may display 
undesirable provider outliers coupling between modules. A 
procedure to compare different designs of the same software 
system, and to improve design is given by spectral methods as 
described in [11]. The Perron-Frobenius theorem (see e.g. 
Gantmacher [17]) is central for the Modularity Matrix theory. 

Exman and Sakhnini [13], [14] have shown how to generate 
a Laplacian Matrix from the Modularity Matrix. The Laplacian 
matrix obtains the same modules as the Modularity Matrix, by 
similar spectral methods. The Fiedler theorem [1], [15] is 
central for the Laplacian theory. The so-called Fiedler 
eigenvector fits the lowest non-zero eigenvalue of the Laplacian 
Matrix. It allows locating outliers and splitting of too sparse 
software modules. 

B. Alternative Approaches to Modularity 

There exist a variety of techniques applying matrices for 
modularity analysis. For instance, Baldwin and Clark describe a 
Design Structure Matrix (DSM) in their “Design Rules” book 
[2]. DSM has been applied to many systems, including software 
engineering, see e.g.  Cai and Sullivan [5]. 

Conceptual lattices, another algebraic structure relevant to 
software design, were introduced by Wille in 1982 [21] as part 
of Formal Concept Analysis (FCA). They have been used for 



software system design e.g. by Siff and Reps [19] and by 
Exman and Speicher [12].  

Alternative clustering techniques to obtain software modules 
are found e.g. in Shtern and Tzerpos [18]. 

 

C. Theoretical Approaches to Consumers 

There have been modelling systems in the literature 
representing provider and consumer interactions. Yau and 
Caglayan [22] use Petri Nets to design distributed software 
systems. One of their examples is a producer-consumer system. 

Clark et al. [6] describe experiences with PEPA 
(Performance Evaluation Process Algebra) modelling tools. In 
particular they refer to Producer-Consumer relations. 

Browning [4] suggests that system modelers often build two 
DSM matrices, one for information supplier and another for the 
consumer, similar to our providers/consumers pairs of matrices. 
 

III.  THE NATURE OF CONSUMER MATRICES 

Consumer matrices display Structors and Functionals 
consumed by the referred Structors. This section describes 
assumptions needed to generate Consumer matrices. 

A. Consumer Matrices Shape and Size 

Consumer matrices are not by themselves the aim of this 
paper. The goal of consumer matrices, jointly with provider 
matrices, is a more complete description of a software system, 
showing the interactions between the given sets of Structors and 
Functionals, from a system perspective. 

Given this goal, we assume that Structors and Functionals of 
the consumer matrices are identical to those of the provider 
matrices. Thus, a consumer matrix fitting a standard providers’ 
matrix is also square. We emphasize that the reason for 
consumer matrices being square is essentially different from the 
provider matrices. As stated in section II standard provider 
matrices are square by algebraic considerations. Consumer 
matrices are square just to enable unification of providers and 
consumers into a single system matrix, as described below. 

We often refer to sub-systems, to allow for the possibility 
that consumer matrices leave outside, e.g. service functionality, 
obtained from external libraries. Alternatively, functionals 
provided by our sub-system may be consumed by other sub-
systems, not included in our provider/consumer matrices. 

Modularity and Laplacian matrices are tools to solve 
software design problems resulting from coupling interactions 
between different architectural units – structors and their 
functionals – in a given hierarchical level. Functionals provided 
and consumed by the same Structor do not appear in either of 
the provider/consumer matrices, as these are not interactions 
between different structors at that level.  

B. Theoretical Properties of Consumer Matrices 

Given the above assumptions on Consumer Matrices, we 
state easily verifiable theoretical properties. 
  

Property 1 – Complementarity to Provider Matrices.  
Since Consumer Matrices have exactly the same Structors 

and Functionals as the Provider Matrices, and the matrices do 

not display Functionals provided and consumed by the same 
Structor, consumer Matrices are complementary to Provider 
matrices of the same sub-system. In other words, there is no 
overlap of non-zero matrix elements of the consumer matrix 
with non-zero matrix elements of the provider matrix. 
 

Property 2 – Consumer Matrices may have empty (totally 
zero-valued) columns or rows, while Provider matrices 
cannot.  

This may happen since the Sub-system Under Design (SUD) 
may interact with other external sub-systems or libraries not 
represented in the matrices of the SUD. For example, if an SUD 
Structor in the Provider matrix provides a Functional consumed 
only by external sub-systems, the respective SUD Consumer 
matrix will have an empty row corresponding to the Functional 
consumed externally. Another example, if an SUD Structor 
appearing in the Provider matrix does not consume any 
Functional, the respective SUD Consumer matrix will have an 
empty column corresponding to the referred Structor. Provider 
matrices cannot have empty columns or empty rows, since they 
display only Structors actually providing Functionals. 
 

Property 3 – Consumer Matrices per se generally neither 
display linear independence of their Structors/Functionals, 
nor have block-diagonal modules, in contrast with Provider 
matrices.  

This happens, since besides the empty columns/rows already 
mentioned in the previous property, it may be that a single given 
Structor consumes several Functionals originating identical 
rows. In other words, the rank of a Consumer Matrix is 
generally less than its size would permit. This does not occur 
with Provider matrices as already mentioned in section II. 

C. An Example of Consumer Matrix 

Now we reveal that the provider modularity matrix in Fig. 
1 refers to the Command Design Pattern code in CSharp found 
in [7]. We use the same Structors and Functionals to show the 
respective Consumer matrix (in Fig. 4). The Command Design 
Pattern serves as an introductory running example, and as a 
first case study, in this and in the next section. 

 
 

 
 

 
Figure 4. Command Design Pattern, Consumers only Modularity Matrix – This 
consumers matrix fits the Providers Modularity Matrix in Fig. 1. Both matrices 
have the same Structors (S1,…,S5) and the same Functionals (F1,…,F5), and 
both comply with the Properties enumerated in sub-section B. The consumers 
matrix has just two 1-valued matrix elements (green hatched background), 
respectively (S3, F1) and (S2,F4) and is much sparser than the providers matrix.  
 



IV.  SYSTEM MODULARITY MATRICES: PROVIDERS AND 

CONSUMERS 

This section finally deals with whole system modularity 
matrices including providers and consumers. The same algebraic 
techniques, previously used to identify provider-only matrix 
modules, are applied for the whole system matrices. This is done 
here for the Command Design Pattern Laplacian matrix. 

A. System Weighted Modularity Matrices 

We obtain the System Modularity Matrix by straightforward 
superposition of the provider matrix with the consumer matrix in 
a single overall matrix. This is possible as, by Property 1 above, 
there is no overlap between non-zero matrix elements of these 
two matrices. But simple superposition would imply loss of 
“direction” information, i.e. whether a Functional is provided or 
consumed by a given Structor. To avoid this ambiguity one 
assigns a different weight to each direction: a functional 
provided by a structor is assigned a weight of “2” and a 
functional consumed by a structor is assigned a weight of “1”. 

In this context, it is important to state that Fiedler [15] has 
extended the algebraic connectivity properties of Laplacians to 
those for weighted edge graphs (see e.g. de Abreu [1]). 

A System Weighted Modularity Matrix for the Command 
Design Pattern is show in Fig. 5, combining the provider matrix 
of Fig. 1 with the consumer matrix of Fig. 4. 

 

 

Figure 5. Command Design Pattern, System Weighted Modularity Matrix – 
This matrix is obtained by superposition of the Consumers Matrix in Fig. 4 with 
weights of “1”, upon the Providers Matrix (blue modules) in Fig. 1 with 
weights of “2”, to distinguish the consumers from the providers direction. 

The weighted bipartite graph obtained from the System 
Modularity Matrix in Fig. 5, is shown in Fig. 6. 
 

 

Figure 6. Command Pattern Weighted Bipartite Graph from Modularity Matrix 
in Fig. 5 – It has two vertex sets: the upper set of structors (S1 to S5), and the 
lower set of functionals (F1 to F5). Structors providing functionals are shown 
by (black) arrows pointing down with weight=2. Structors consuming 
functionals are shown by (red) arrows pointing up with weight=1. The (blue) 
rectangles denote providers’ connected components (within the providers’ 
modules). Consumer arrows are connectors between providers’ modules. 
 

B. Generation of the Weighted Laplacian 

In order to identify the whole system modules including 
providers and consumers, we obtain from the Weighted Bipartite 
Graph (Fig. 6), the Weighted Laplacian Matrix in Fig. 7. 

 
C. Connector Discovery from the Weighted 

Laplacian 

As a last step towards the modules of the whole Command 
Pattern system, including both providers and consumers, we 
apply the same algebraic spectral method previously used (in 
[14]) for the providers-only Laplacian. It consists of: 
 

a) Calculate eigenvalues and eigenvectors – of the 
Laplacian Matrix; 

b) Obtain Modules from eigenvectors – whose 
eigenvalues are zero-valued; 

c) Discover Module connectors by splitting modules – 
using the Fiedler eigenvector. 

 

 
 

Figure 7. Command Pattern Weighted Laplacian Matrix from bipartite graph in 
Fig. 6 – It weights (by 2) Laplacian providers in Fig. 3, and adds the consumer 
elements, with negative weight=1 and a hatched (green) background. Diagonal 
degrees are changed to guarantee that all rows and columns sum to zero. 
 

 
Laplacian Matrix Eigenvalues 
 

Eigenvalues are shown in Fig. 8. The only zero-valued 
eigenvalue is the sixth one: it shows Modules in the Laplacian 
by the fitting eigenvector. The lowest eigenvalue closer to zero 
is the seventh one and is the Fiedler eigenvector, which allows 
further splitting of the Module. 

 
 

 
 
Figure 8. Command Pattern Weighted Laplacian Matrix eigenvalues – these are 
shown in the middle row of the figure. 



Laplacian Matrix Eigenvectors 
 

Eigenvectors’ in Fig. 9 fit the Fig. 8 eigenvalues: the 2nd row 
from the top Modules eigenvector has all equal elements, 
implying one big whole system module; the 3rd row Fiedler 
eigenvector splits the whole system into two modules, by its 
element signs. Negative signs cluster (F1, F2, F3, S1, S2, S3) 
into one module and positive signs the vertices (F4, F5, S4, S5) 
into another module. In this first splitting iteration, the single 
structor module (F3, S3) seen in Fig. 5 and in Fig. 6, is left 
inside the 1st module. The 2nd Fiedler vector splitting iteration, in 
the bottom row of Fig. 9, finally separates the smaller module 
(F3, S3), obtaining all the three modules in this system. 

Laplacian eigenvectors obtain only modules (either directly 
or by Fiedler vector splitting), as modules are mathematically 
“connected components” [20] of the graph. 

Consumers, as external “connectors”, are the remaining 
positive elements of the Modularity Matrix by exclusion, after 
the modules were directly characterized. For instance, in the 1st 
splitting iteration the consumer (F1,S3) is left inside the 1st 
module, while the consumer (F4,S2) is outside both modules. In 
the 2nd splitting iteration which obtains all modules, also obtains 
by exclusion both external connectors. 
  
 

 
 
Figure 9. Command Pattern Weighted Laplacian eigenvectors – the top row has 
vertex indices; the 2nd row from top has all Modules vector elements equal 0.32; 
the 3rd row Fiedler different sign elements split the system into two modules 3*3 
(negative, blue) and 2*2 (positive, yellow); the bottom 2nd Fiedler iteration splits 
the previous biggest module into 2*2 (positive, green) and 1*1 (negative). 

 
Connectors Discovery by Splitting Modules 
 

The final iteration from the Laplacian eigenvectors is 
displayed in the System Modularity Matrix, with the referred 
modules enclosed within dashed rectangles, as seen in Fig. 10. 

 
 

 
 

Figure 10. Command Design Pattern, System Weighted Modularity Matrix with 
Connectors – This matrix shows the provider modules as the result of the 
Laplacian eigenvectors, seen as delimited by the dashed (black) rectangles. 
These are the upper-left and lower-right modules of 2*2 size and the middle 
1*1 module. The consumer (F1,S3) links the upper-left and middle modules. 
The upper-left module is also linked to the lower-right module by the consumer 
(F4,S2). Iterative splitting by the Fiedler vector obtains these two connectors. 

 

The conclusion from this Command Pattern example is that 
consumers are connectors linking provider modules. This is seen 
in the bipartite graph (in Fig. 6), and corroborated by the 
partition by the Laplacian eigenvectors (in Fig. 10).  

V. CASE STUDY: AN ASYNCHRONOUS SERVER SYSTEM 

This case study is a larger system from the Boost library 
written in C++, viz. an Asynchronous Echo Server System [3]. 
The calculation steps were the same as in the Command Pattern 
example. Here are shown only the important steps’ results.  

A. Provider and Consumer Modularity Matrices 

The Providers Modularity Matrix is strictly diagonal (Fig. 
11). The Consumers’ Modularity Matrix in Fig. 12 is very 
sparse and barely understood. Consumption is concentrated in 
“control” structors, viz. Main, Server and Session. 

 
 
 

 
 

Figure 11. Asynchronous Server System – Providers-only strictly diagonal 
Modularity Matrix. 
 

B. Spectral Approach to System Modules 

In order to obtain System Modules, we apply the spectral 
method as done previously with the Command Design Pattern. 
One superposes the providers and consumers in a single 
weighted Modularity Matrix, and obtains the bipartite graph. 
Then one generates its Laplacian Matrix and calculate its 
eigenvalues and eigenvectors, as shown in Fig. 13 and Fig.14. 
 
 

 
 

 
Figure 12. Asynchronous Server System Consumers only Modularity Matrix – 
– This consumers matrix fits the Providers Modularity Matrix in Fig. 11. Both 
matrices have the same Structors (S1,…,S8) and the same Functionals 
(F1,…,F8), and both comply with the Properties enumerated in sub-section III 
B. The non-zero consumers’ matrix elements are marked (in green hatched 
background). 
 



 
 

Figure 13. Asynchronous Server System Laplacian Eigenvalues – The 
eigenvalue #9 is the only one zero-valued, implying one Module in this system. 
Eigenvalue #10 is the Fiedler vector allowing splitting of this overall module. 
 

The Modules and the Fiedler eigenvectors are shown in Fig. 
14. The Fiedler eigenvalue #10 splits the whole system into two 
modules of 5*5 and 3*3 sizes. The next iteration Fiedler vector 
(the lowest row) further splits the 5*5 module into two smaller 
modules of sizes 2*2 and 3*3 sizes. 

 
 

 
 

Figure 14. Asynchronous Server System Laplacian Eigenvectors – From top 
row to bottom: the 1st row shows the vertices (on yellow); the 2nd row is the 
eigenvector fitting the single module eigenvalue #9; the 3rd row is the Fiedler 
#10 eigenvector splitting the 2nd row eigenvector into two modules according to 
the positive and negative signs; the lowest row is the next iteration Fiedler 
eigenvector, splitting  the larger (green) module in the 3rd row eigenvector into 
two smaller modules of sizes 2*2 and 3*3 (light blue and orange background). 
 

C. Connector Discovery in the System Matrix 

Modules are discovered by looking at the eigenvectors of 
the Laplacian. These modules are the upper-left (F1,F2,S1,S2), 
the middle (F3,F4,F5,S3,S4,S5) and the lower-right 
(F6,F7,F8,S6,S7,S8) as shown in Fig. 15. 

External consumers, the “connectors” between the three 
referred modules, viz. (S1, F3) and (S3, F7) are discovered by 
exclusion (i.e. outliers), as the remaining positive matrix 
elements of the System Modularity Matrix outside the three 
modules (Fig. 15). An interesting observation for this system is 
the existence of consumers as “internal connectors”, inside the 
three modules, where each consumer reasonably links a pair of 
provider structors.  
 

 
 

Figure 15. Asynchronous Server System Modules – The three modules enclose 
the original Provider modules and respective internal connectors. The external 
connectors are found in the elements (S1,F3) linking the upper-left and middle 
modules, and (S3,F7) linking the middle and lower-right modules. 

VI. DISCUSSION 

A. Interpretation of System Matrix Results  

A Consumer Matrix by itself is rather perplexing: it is very 
sparse and not easily interpreted. Consumer Matrices do not 
obey any apparent algebraic rules such as structors or 
functionals linear independence, or module block-diagonality, as 
for Provider Matrix. There are no obvious correctness criteria 
for Consumer Matrices by themselves. 

When one superposes a Consumer Matrix upon its Provider 
Matrix the picture suddenly clarifies: consumers are 
“connectors” between pairs of provider modules. One could say 
that the Software System is greater than the sum of its modules, 
due to the interactions of the external consumer connectors with 
provider modules. 

There are two slightly different situations with the case 
studies in this paper. The Command Design Pattern of the 
providers-only Modularity Matrix has the same number of three 
modules (Fig. 1) as the System Modularity Matrix with 
connectors (Fig. 10). The two connectors are external to the 
three modules and actually connect pairs of modules. 

In the Asynchronous Server case study the providers-only 
Modularity Matrix (Fig. 11) is strictly diagonal and has 8 single-
structor modules. In the System Modularity Matrix with 
connectors (Fig. 15) the providers-only modules were re-
configured into three larger modules internally linked by 
connectors.  In addition there are two external connectors. It is 
still true that connectors – both internal and external – link pairs 
of modules. The internal connectors link the original providers- 
only modules. The external connectors link the re-configured 
system modules (containing both providers and consumers, 
playing the internal connectors role). 

We are led to the following conjecture as a summary of our 
currently empirical findings: 

 
 
 
 
 
 
 

 
 
 

B. System Benefits for Software Design 

First of all, it has been clear, before this work, that providers-
only Modularity Matrix, the corresponding bipartite graph and 
its Laplacian Matrix, were incomplete descriptions of a software 
system. The addition of the consumers certainly improves the 
ability to judge the overall system design quality. 

Once consumers are interpreted as “connectors” of provider 
modules, there are clear expectations on consumers' quantity and 
matrix element locations for their software system role. 

Moreover, there are two System Matrix correctness criteria: 
a- Algebraic – the providers and consumers joint modules, 

excluding the external connectors, obey linear 
independence and block-diagonality; 

Conjecture: Software System Modularity Connectors 
 
The Minimal Number of System Module Connectors is 
equal to the number of System Provider Modules minus 
one, i.e. each System module is connected to at least one 
other System module by a consumer Connector. 



b- Semantic – system modules are semantically sound (e.g. 
the Fig. 15 lower-right module clusters read, write, and 
stream belong to the same category of messaging 
functionals). 

C. Future Work 

The paper’s results, in particular the Software System 
Modularity Connectors conjecture, deserve formal proofs and 
extensive verification for a variety of software systems. These 
will be presented in an expanded version of this paper. 

Although Fiedler (see e.g. [1]) extended the Laplacian 
spectral properties validity to weighted graphs, we need to 
investigate the specific weights’ influence on modules 
calculations done with the Laplacian matrix. 

D. Main Contribution 

The main contribution of this paper is the introduction of 
Consumers in the software System Overall Modularity Matrix, 
and in the corresponding Laplacian Matrix, in the role of 
connectors between provider modules.  

We have thereby shown that the same Linear Software 
Models that have been applied to providers-only matrices, is a 
generic algebraic theory of software composition, applicable to 
the overall system, including consumers. 
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