
Software Defect Prediction Model Based on
Improved Deep Forest and AutoEncoder by Forest

Wenbo Zheng†?B, Shaocong Mo§?B, Xin Jin¶, Yili Qu‖, Zefeng Xie†† and Jia Shuai‖
†School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

§College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
¶School of Management, Huazhong University of Science and Technology, Wuhan 430074, China

‖School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
††School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, China

Abstract—Software defect prediction is an important way to
make full use of software test resources and improve software
performance. To deal with the problem that of the shallow
machine learning based software defect prediction model can not
deeply mine the software tool data, we propose software defect
prediction model based on improved deep forest and autoencoder
by forest. Firstly, the original input features are transformed
by the data augmentation method to enhance the ability of
feature expression, and the autoencoder by forest performs the
data of dimensionality reduction on the features. Then, we use
the improved deep forest algorithm and autoencoder by forest
to build software defect prediction model. The experimental
results show that the proposed algorithm has higher performance
than the original deep forest (gcForest) algorithm and other
existing start-of-art algorithms, and has higher performance and
efficiency than other deep learning algorithms.

Keywords—Software defect prediction, Deep forest, AutoEn-
coder by forest, Data augmentation.

I. INTRODUCTION

As software systems continue playing a key role in all areas
of our society, defects arisen from these software have had a
major impact on businesses and the lives of people. However,
due to the significant increase in the size and complexity of
software code libraries, it has become increasingly difficult to
identify defects in software code [1], [2]. The importance and
challenges of defect prediction make it an active research area
in software engineering [3], [4]. Extensive research has been
used to develop predictive models and tools to help software
engineers and testers quickly narrow down the most likely
defective parts of the software code base [5], [6]. Early defect
prediction helps prioritize and optimize the effort and cost of
inspections and testing, especially when faced with cost and
deadline pressures [7], [8].

Machine learning techniques have been widely used to
build defect prediction models [9], [10]. Those techniques
derive a number of features (i.e. predictors) from software
code and feed them to common classifiers such as Naive
Bayes [11], Support Vector Machine [12] and Random Forests
[13]. But these methods are all shallow machine learning, and

?Wenbo Zheng and Shaocong Mo contribute equally to this study. They
are both the corresponding author.

BE-mail: zwb2017@stu.xjtu.edu.cn, mosc@zju.edu.cn
DOI reference number: 10.18293/SEKE2019-008

can not perfectly express the complex relationship between
unstructured data. When the amount of data reaches a certain
level, the learning ability of shallow algorithm is not as good
as the deep learning algorithm.

Due to the huge computational hardware requirements of
deep neural networks and the dependence of deep neural
networks on a large number of hyper parameters, the software
defect prediction methods based on deep neural networks are
difficult to train to the optimal degree. Zhi-Hua Zhou [14]
put forward a deep forest, make up the blank of the decision
tree in the field of deep learning. Deep forests have much
less parameters than deep neural network and the advantages
of higher classification accuracy. Further, Zhi-Hua Zhou [15]
put forward EncoderForest (eForest), a kind of auto-encoder,
to do data reduction or feature extraction for training model.
Therefore, why not use deep forest and eForest to build
sofeware defect prediction model?

In this paper, we present software defect prediction model
based on improved deep forest and autoencoder by forest.
First of all, we propose an improved deep forest algorithm
for the lack of multi-grained scanning in deep forests through
data augmentation. Then, the improved deep forest algorithm
and eForest are applied to software defect prediction problem.
Finally, we use this model to experiment with the Eclipse bug
dataset [16]. The experimental results show that the proposed
algorithm is better than existing start-of-art algorithms and less
time than the deep neural network algorithm. The contributions
of our paper are as below.

(1) We apply the deep forest and eForest to software defect
prediction problem and get better results.

(2) In our prediction system, the features are automatically
learned through the forests model, thus eliminating the
need for manual feature engineering which occupies most
of the effort in traditional approaches.

(3) An extensive evaluation using real open source data
provided by Eclipse repository demonstrates the empirical
strengths of our model for defect prediction.

The outline of this paper is as follows. Section II reviews
the works of defect prediction, deep forest and autoencoder
by forest. Section III describes how our prediction model is



built. We report our experiments to evaluate our approach in
Section IV. In Section V, we conclude the paper and outline
future work.

II. RELATED WORK

A. Defect Prediction

In the field of software engineering, it is impossible to detect
and eliminate all software defects by any means of detection
and verification. It is impossible to develop a software system
without any defects in an actual engineering project. Even if
the developer is careful and refined, it cannot be ruled out
that there are still some errors or unexpected defects in the
software system. Software defect prediction is an important
way to rationally use software testing resources and improve
software performance. Software detect prediction technology
can be used to predict more defects that may also exist as
early as possible according to the metrics information and
defects found in a software product, then testing and validation
resources are allocated based on the result appropriately.

The machine learning based defect prediction technology
can comprehensively and automatically learn the model to find
defects in the software, which has become the main method of
defect prediction. For constructing software detect prediction
models, many algorithms such as KNN, neural networks [17],
SVM [18], Nave Bayes [19], random forest [20] and ensemble
learning method [21] can be used. Moreover, there are mainly
three techniques are used for implementing the software detect
prediction models, as classification, regression and clustering.
However, none of these algorithms can perfectly express the
complex relationship between unstructured data. When the
amount of data reaches a certain level, the learning ability
of shallow structure algorithms is not as good as that of deep
structure algorithms.

B. Deep Forest

Zhi-Hua Zhou and Ji Feng [14] propose gcForest (multi-
Grained Cascade Forest) shown in Fig. 1(a), a novel deci-
sion tree ensemble method. This method generates a deep
forest(DF) ensemble, with a cascade structure which enables
gcForest to do representation learning. Its representational
learning ability can be further enhanced by multi-grained scan-
ning when the inputs are with high dimensionality, potentially
enabling gcForest to be contextual or structural aware. The
number of cascade levels can be adaptively determined such
that the model complexity can be automatically set, enabling
gcForest to perform excellently even on small-scale data,
which makes it possible to control training costs according
to computational resource available. Moreover, contrast to
DNNs, the gcForest has much fewer hyper-parameters and
its performance is robust in different hyper-parameter settings.
From experiments results, gcForest gets excellent performance
by using the default setting, competitive to DNNs on a
broad range of tasks, even across different data from different
domains. Deep forest offers an alternative when deep neural
networks are not superior, e.g., when DNNs are inferior to
random forest and XGBoost.

C. AutoEncoder by Forest

After gcForest, Zhi-Hua Zhou and Ji Feng [15] propose
autoencoder by forest called eforest, which is the first tree
ensemble based auto-encoder. As we know, auto-encoding is
a significant task; take convolutional neural networks (CNN)
as an example, it is achieved by deep neural networks (DNNs)
in auto-encoding way. This method presents a procedure for
enabling forests to do backward reconstruction by utilizing the
Maximal- Compatible Rule (MCR), as show in Fig. 1(b), the
rule is defined by the traversing backward decision paths of
the trees. Encoding and decoding are the two basic function
for an auto-encoder. The eForest makes a tree ensemble to
do forward encoding and backward decoding, so it is possible
for forest to construct an auto-encoder. In addition, the eForest
can be trained in both supervised or unsupervised way.

For encoding tasks, there is no difficulty for forest to do that.
Here is the encoding procedure: Once the input data traverse
down to the leaf nodes which belong to a trained tree ensemble
model contained T trees, the procedure will give back a T
dimensional vector.

For decoding task, here is the encoding procedure: Firstly,
each path can be identified by the leaf node without un-
certainty; Secondly, each path corresponds to a symbolic
rule; Thirdly, the Maximal-Compatible Rule (MCR) can be
calculated to reconstruct the original sample.

In all, auto-encoding task can be achieved by the eForest’s
forward encoding and backward decoding operations. Exper-
imental results shows eforest has the following advantages:
lower reconstruction error contrast to CNN or MLP based
auto-encoder, faster training speed, damage-tolerable and high
dataset adaption in same domain.

III. SOFTWARE DEFECT PREDICTION MODEL BASED ON
FORESTS

We propose our method in this section. Firstly, we propose
an improved deep forest algorithm for the lack of multi-
grained scanning in deep forests through data augmentation.
Secondly, the improved deep forest algorithm and eForest are
applied to software defect prediction problem, as shown in
Fig. 2.

A. Improved Deep Forest Algorithm

Despite the superior performance of deep forests, there are
still some shortcomings when using them to build the software
defect prediction model.

• Software defect prediction is a binary classification prob-
lem, which is to analyze the quality of software modules.
According to the classification rules, it is divided into
fault-proneness or non-fault-proneness class. Because the
main purpose of software defect prediction is to predict
whether the modules in the software have fault-proneness
modules, so we would set the fault-proneness module as
a positive example, and the non-fault-proneness module
as a negative example. Multi-grained scanning and cas-
cade structures are used the process that generated class
vectors to be aggregated into enhanced feature vectors.



For grained scanning: 500 trees per forest For cascade: 500 trees per forestCascade of Cascades 

(a) Multi-Grained Cascade Forest [14]

x
1
? 0

x
2
? 1.5

x
3
? = RED

x
3
? = BLUE

Leaf Node

Leaf Node

Leaf Node

Leaf Node

Leaf Node Leaf Node

x
3
? = GREEN

x
4
? = NO

x
2
? 2.7

Yes

Yes

No

No

No

Tree 1

x
3
? = BLUE

Leaf Node

x
2
? 5

Leaf Node

Leaf Node

Leaf Node Leaf Node

x
2
? 2

x
1
? 0.5

x
3
? = GREEN

Yes

Yes

No

No

Tree 2

x
4
? = YES

x
3
? = RED

Leaf Node

x
2
? 8

Leaf Node

Leaf Node Leaf Node

x
1
? 1.6

Yes

No

No

Tree n

(b) Traversing backward along decision paths [15]

Fig. 1. Deep forest and autoencoder by forest

Forest
A1

Forest
B1

Forest
A2

Forest
B2

Forest
A3

Forest
B3

200-dim

200-dim

100-dim

100-dim

100-dim

100-dim

400-dim

800-dim

eForest
A1

eForest
B1

eForest
A2

eForest
B2

100-dim

100-dim

100-dim

100-dim

400-dim
Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

8-dim

eForest
A1

eForest
B1

eForest
A2

eForest
B2

4-dim

4-dim

4-dim

4-dim

16-dim
408-dim

INPUT: Feature Vector

Data Augmentation

1st Level Nth Level

OUTPUT: Prediction Result

average

Auto Encode

Auto Decode

Concatenate

Concatenate

Concatenate Concatenate

Concatenate

Concatenate

Concatenate

Concatenate

Concatenate

Concatenate

Fig. 2. Software defect prediction model using Forests

But this process can cause redundancy of the feature
space. For the software defect prediction problem, the
sum of the probability of the module belonging to the
positive class and the probability of the module belonging
to the negative class is 1, that is, the two probabilities
are linear correlation. If two probabilities are both used
to fuse the feature vectors, which can cause feature space
redundancy and increase the space complexity of the
algorithm.

• Multi-grained scanning has significant effects on spatially
related features, such as image matching and speech
recognition, while features that are spatially uncorrelated
(such as software defect prediction, text classification,
etc.) may lose important information. The reason is that
for spatially uncorrelated features, multi-grained scanning
reduces the importance of the the first and the last feature.
In the multi-grained scanning process, the first feature and
the last feature are only scanning once, that is, these two
features are used only once. If the first feature or the last
feature is very important, multi-grained scanning can not
effectively use this important feature.

To solve the problem that multi-grained scanning in deep
forests may lose important information, data augmentation
method is used to transform the original input features. Our
data augmentation method is to randomly extract features
from different original scales from the original input features
from the defective/non-defective training samples. The vector
by data augmentation is treated as a defective/non-defective
instance. The instances which is the same size are combined

100-dim

200 Instances

400-dim

INPUT: Feature Vector

Forest A

Forest B
Concatenate

200-dim

200-dim

200

Fig. 3. The process of data augmentation as an example

to form a training entity. The all training entities would train a
random forest and a complete random forest, respectively, to
predict to generate class vectors. We transform class vectors
to enhanced feature vectors.

To be specific, assume that the original input features are
400-dimension, we use randomly sampled methods 200 times,
and each sample size is 100-dimensional feature. Each 100-
dimensional sample feature is to form an instance. So a total
of 200 instances are generated. The 200 instances is called an
entity. The entity would be trained using a random The forest
and a completely random tree forest, respectively, and then we
get two class vectors which is 200-dimension. We transform
two 200-dimensional vectors to one 400-dimensional vector,
that is, the 400-dimensional original feature vector corresponds
to the 400-dimensional enhanced feature vector. The process
is shown in Fig. 3.

Similarly, we transform the two 200-dimensional features
sampled from each original input feature to generate two 200-
dimensional enhanced features vector. We do the concatenate



Forest
A1

Forest
B1

Forest
A2

Forest
B2

Forest
A3

Forest
B3

Data Augmentation

200-dim

200-dim

100-dim

100-dim

100-dim

100-dim

400-dim

800-dim
Forest

Forest

Forest

Forest

Forest

Forest

Forest

Forest

4-dim

average

804-dim

INPUT: Feature Vector

1st Level Nth Level

OUTPUT: Prediction Result

Concatenate

Concatenate

Concatenate

Concatenate

Fig. 4. The pipeline of improved deep forest based on data augmentation

operator to transform the three enhanced feature vectors to
a 800-dimensional transformed feature vector. This is the re-
representation of the original input features by data augmen-
tation. In other words, each 400-dimensional original feature
vector is re-represented by the 800-dimensional transformed
feature vector.

The 800-dimensional transformed feature vector would be
passed to the cascade forest structure. If each layer of cascade
forest consists of 4 forests (two random forests and two com-
pletely random forests), the 804-dimensional feature vector
would be obtained at the end of the first layer. Then, input the
feature vector into the cascade forest structure of the next layer.
Repeat the process until the verification performance indicates
that the extension of the cascade forest structure should be
terminated.

In the test phase, given a test example, we first get the corre-
sponding 800-dimensional transformed feature vector through
the data augmentation process, and then predict through the
cascade forest structure until the last layer. The final prediction
result is decided on the 4 probabilities of 4-dimensional feature
vector in the last layer, and the average of the 4 probabilities is
the final prediction result. If the average value is greater than
or equal to 0.5, the test instance is predicted to be a positive
class, otherwise it is a negative class. The process is shown in
Fig. 4.

B. Software Defect Prediction Model using Forests

We use data augmentation algorithms to increase the amount
of data, challenging the time and efficiency of our algorithm.
Therefore, we use the eForest [15] to do data reduction. The
process is shown in Fig. 4.

First, we transform original 400-dimensional features to
800-dimensional transformed vectors using data augmentation.

Then, the 800-dimensional transformed feature vector
would be passed to the autoencoder using eForest. If au-
toencoder consists of 4 eForests, the 400-dimensional feature
vector would be obtained. The 400-dimensional feature vector
would be passed to the cascade forest structure. Because each
layer of cascade forest consists of 4 forests (two random
forests and two completely random forests) and we reset
each forest to output 2-dimensional class vector, the 408-
dimensional feature vector would be obtained at the end of

the first layer. Then, input the feature vector into the cascade
forest structure of the next layer. Repeat the process until the
verification performance indicates that the extension of the
cascade forest structure should be terminated. We get a 16-
dimensional feature vector through cascade forest structure.

Finally, the 16-dimensional feature vector would be passed
to the autodecoder which is the inverse structure of autoen-
coder. We get 8-dimensional feature vector. The final predic-
tion result is decided on the 8 probabilities of 8-dimensional
feature vector in the last layer, and the average of the 8
probabilities is the final prediction result. If the average value
is greater than or equal to 0.5, the test instance is predicted to
be a positive class, otherwise it is a negative class.

IV. EXPERIMENT RESULTS AND ANALYSIS

Reporting the average of precision/recall across the two
classes (defective and clean) is likely to overestimate the true
performance, since our dataset is imbalance (i.e. the number
of defective files are small). More importantly, predicting
defective files is more of interest than predicting clean files.
Hence, our evaluation is focus on the defective class.

A confusion matrix is used to store the correct and incorrect
decisions made by a prediction model. For example, if a
file is classified as defective when it is truly defective, the
classification is a true positive (tp). If the file is classified as
defective when it is actually clean, then the classification is a
false positive (fp). If the file is classified as clean when it is in
fact defective, then the classification is a false negative (fn).
Finally, if the issue is classified as clean and it is in fact clean,
then the classification is true negative (tn). The values stored
in the confusion matrix are used to compute the widely-used
Precision, Recall, and F-measure.

• Precision: The ratio of correctly predicted defective files
over all the files predicted as being defective. It is
calculated as:

pr =
tp

tp+ fp
(1)

• Recall: The ratio of correctly predicted defective files
over all of the true defective files. It is calculated as:

re =
tp

tp+ fn
(2)

• F-measure: Measures the weighted harmonic mean of the
precision and recall. It is calculated as:

F −measure =
2× pr × re

pr + re
(3)

All experiments were conducted using a 4-core PC with an
Intel Core i7 6700HQ with the NVIDIA GTX 1080, 16GB of
RAM, and Ubuntu Linux in practice.

To verify the advancement and robustness of our model, we
designed two experiments:
(1) Ablation Experiment. In order to verify the advancement

and rationality of our model, we experimented with each
component.

(2) Contrast Experiment. In order to verify the robust-
ness of our model, in the experiment separately to



TABLE I
THE RESULT OF ABLATION EXPERIMENT ON ECLIPSE BUG DATASET

Method gcForest [14] Improved Deep Forest gcForest [14]+eForest [15] Ours

Data Augumention × X × X

AutoEncoder/AutoDecoder × × X X

Training Set Test set Accuracy Rate Precision Recall F-measure Accuracy Rate Precision Recall F-measure Accuracy Rate Precision Recall F-measure Accuracy Rate Precision Recall F-measure

file2.0
file2.0 0.8845 0.6708 0.4031 0.5036 0.8847 0.6712 0.4038 0.5042 0.8861 0.6522 0.4601 0.5399 0.8865 0.6753 0.4603 0.5475
file2.1 0.8555 0.3208 0.2998 0.3099 0.8557 0.3217 0.3001 0.3106 0.8569 0.3361 0.3302 0.3331 0.8572 0.3368 0.3307 0.3337
file3.0 0.8505 0.4912 0.2832 0.3592 0.8511 0.4912 0.2834 0.3594 0.8427 0.4486 0.273 0.3394 0.8555 0.4492 0.2834 0.3475

file2.1
file2.0 0.8501 0.4543 0.1733 0.2509 0.8505 0.4551 0.1735 0.2512 0.852 0.476 0.2133 0.2946 0.8527 0.4763 0.2137 0.2950
file2.1 0.8978 0.5705 0.223 0.3206 0.8978 0.5715 0.2238 0.3216 0.8968 0.5446 0.2858 0.3748 0.8988 0.5853 0.2860 0.3843
file3.0 0.8453 0.4397 0.1652 0.2401 0.8461 0.4407 0.1652 0.2404 0.8453 0.4518 0.2124 0.2889 0.8660 0.4520 0.2125 0.2891

file3.0
file2.0 0.8575 0.5155 0.2728 0.3568 0.8579 0.5158 0.2736 0.3575 0.8575 0.5124 0.3384 0.4077 0.8583 0.5563 0.3390 0.4213
file2.1 0.8581 0.3221 0.281 0.3002 0.8584 0.3229 0.2811 0.3005 0.8556 0.3277 0.3173 0.3224 0.8656 0.3281 0.3181 0.3230
file3.0 0.8662 0.5911 0.324 0.4186 0.8667 0.5912 0.3241 0.4186 0.8637 0.5554 0.3974 0.4633 0.8674 0.5958 0.3980 0.4772

realize the Naive-Bayes-Based method [11], Support-
Vector-Machine-Based method [12], Random-Forests-
Based method [13], Deep Tree-based method [22] and
DNN-based method [23], Eclipse standard dataset on the
experiment and comparing with the result of the experi-
ment.

Note that in the experiment, the hyper-parameter settings we
used were consistent with the reference gcForest [14] and
eForest [15].

The data used in this experiment is derived from the Eclipse
standard dataset which is one of the most widely used public
datasets in software defect prediction research. Since this paper
studies the software defect prediction of the classification task,
and the Eclipse data set gives the number “post” of defects
(refers to the number of defects after the software is released),
it is necessary to convert the number “post” of defects into a
defective class “hasDefects”. The conversion method is:

hasDefect =

{
0, post = 0
1, post 6= 0

(4)

Since the structure of the “file” level data of the Eclipse
data set is same, one of the versions of the data is used as the
training data to learn the model, and the three versions of the
data can be predicted separately, so that the “file” level data
can be used for 9 predictions and verifications.

When the training set and the test set are from the same
version, the ten-fold cross-validation is used, that is, the data
set is equally divided into 10 parts, one of which is taken as
the prediction set, and the 9 remaining data are used as the
training set to construct the software defect prediction model
and do classification prediction. The experiment was carried
out for 10 rounds, and the average of 10 rounds of experiments
was taken as the final result.

A. Ablation Experiment
In order to verify the advancement and rationality of our

model, we experimented with each component. We use the
accuracy rate, precision, recall rate and F-measure to evaluate
the experimental results in the experiment. From Table.I, we
know our method is better than others. This shows that the
design of our algorithm is reasonable.

B. Contrast Experiment
In order to verify the robustness of our model, in the ex-

periment separately to realize the Naive-Bayes-Based method

TABLE II
THE RESULT OF CONTRAST EXPERIMENT ON ECLIPSE BUG DATASET

Method Training Set Test set Accuracy Rate Precision Recall F-measure Test Time/s

Naive-Bayes-Based

file2.0
file2.0 0.4049 0.2487 0.3818 0.3012 939.10
file2.1 0.3950 0.1990 0.1361 0.1617 992.42
file3.0 0.3621 0.1123 0.1366 0.1233 963.81

file2.1
file2.0 0.7169 0.1784 0.1876 0.1829 965.69
file2.1 0.5621 0.3514 0.2471 0.2902 981.40
file3.0 0.4467 0.0499 0.1744 0.0776 905.80

file3.0
file2.0 0.6412 0.4286 0.1163 0.1830 994.07
file2.1 0.7742 0.2874 0.3415 0.3121 963.66
file3.0 0.6147 0.3210 0.1127 0.1668 995.49

Support-Vector-Machine-Based

file2.0
file2.0 0.5266 0.4855 0.3372 0.3980 984.68
file2.1 0.5802 0.4319 0.1014 0.1642 940.42
file3.0 0.8175 0.2333 0.1178 0.1565 936.28

file2.1
file2.0 0.8011 0.1011 0.1754 0.1283 971.73
file2.1 0.8927 0.2631 0.1463 0.1880 991.80
file3.0 0.4862 0.1785 0.1936 0.1857 984.54

file3.0
file2.0 0.6165 0.4705 0.1964 0.2772 910.49
file2.1 0.7281 0.2550 0.0325 0.0576 996.15
file3.0 0.6047 0.5585 0.1147 0.1903 944.24

Random-Forests-Based

file2.0
file2.0 0.7175 0.5661 0.3932 0.4641 993.29
file2.1 0.7424 0.1544 0.2673 0.1957 926.15
file3.0 0.8227 0.3748 0.2418 0.2940 949.10

file2.1
file2.0 0.8093 0.4630 0.1572 0.2347 926.51
file2.1 0.7362 0.3983 0.2712 0.3227 968.88
file3.0 0.7906 0.2622 0.1532 0.1934 949.81

file3.0
file2.0 0.6972 0.4031 0.2695 0.3230 986.32
file2.1 0.6683 0.1613 0.2884 0.2068 988.58
file3.0 0.6860 0.4845 0.2445 0.3250 954.50

Deep Tree-based

file2.0
file2.0 0.7919 0.2475 0.3052 0.2734 2740.51
file2.1 0.8236 0.4088 0.1980 0.2667 3462.27
file3.0 0.8006 0.3925 0.1907 0.2567 2672.78

file2.1
file2.0 0.8806 0.5172 0.2197 0.3084 2711.65
file2.1 0.8445 0.4067 0.1393 0.2075 3313.87
file3.0 0.8333 0.5195 0.2640 0.3501 3251.04

file3.0
file2.0 0.8070 0.3062 0.2540 0.2777 3168.86
file2.1 0.8413 0.5205 0.3410 0.4121 2537.39
file3.0 0.4778 0.4877 0.1443 0.2228 2815.82

DNN-based

file2.0
file2.0 0.8856 0.5209 0.2136 0.3029 4070.51
file2.1 0.8140 0.1531 0.3253 0.2082 4629.74
file3.0 0.5592 0.2508 0.0559 0.0915 4449.19

file2.1
file2.0 0.8438 0.4124 0.0675 0.1161 4643.71
file2.1 0.8413 0.5248 0.1379 0.2184 4389.90
file3.0 0.6942 0.4166 0.1111 0.1754 4447.18

file3.0
file2.0 0.8260 0.5292 0.1614 0.2473 4767.79
file2.1 0.6791 0.0655 0.1613 0.0932 4486.30
file3.0 0.8282 0.4512 0.3592 0.4000 4566.45

Ours

file2.0
file2.0 0.8865 0.6753 0.4603 0.5475 2552.15
file2.1 0.8572 0.3368 0.3307 0.3337 2641.29
file3.0 0.8555 0.4492 0.2834 0.3475 2974.45

file2.1
file2.0 0.8527 0.4763 0.2137 0.2950 2666.39
file2.1 0.8988 0.5853 0.2860 0.3843 2472.26
file3.0 0.8660 0.4520 0.2125 0.2891 2560.44

file3.0
file2.0 0.8583 0.5563 0.3390 0.4213 2699.37
file2.1 0.8656 0.3281 0.3181 0.3230 2868.56
file3.0 0.8674 0.5958 0.3980 0.4772 2604.83

[11], Support-Vector-Machine-Based method [12], Random-
Forests-Based method [13], Deep Tree-based method [22]
and DNN-based method [23], Eclipse standard dataset on the
experiment and comparing with the result of the experiment.
We use the accuracy rate, precision, recall rate, F-measure
and the time of test to evaluate the experimental results in the
experiment.

From Table. II, we can get two points:
• In terms of performance, our algorithm is optimal in

all cases. Therefore, the robustness of our algorithm is
optimal among all methods.



• In terms of test time, our algorithm is not the least time
in all cases, but our algorithm is the least time in all cases
of deep learning. It shows that our algorithm has obvious
advantages in efficiency compared to other deep learning
algorithms.

From these two points, we know that our algorithm has
good robustness and efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, in order to solve the problem that the shallow
machine learning algorithm can not deeply mine the software
data features in the current software defect prediction, software
defect prediction model based on improved deep forest and
autoencoder by forest is proposed. Firstly, the original input
features are transformed by the data augmentation method to
enhance the ability of feature expression, and the autoencoder
by forest performs the data of dimensionality reduction on
the features. Then, we use the improved deep forest algorithm
and autoencoder by forest to build software defect prediction
model. The experimental results show that the proposed algo-
rithm has higher performance than the original deep forest (gc-
Forest) algorithm, and has higher performance and efficiency
than other deep learning algorithms. However, the algorithm
does not consider unbalanced data problem. In future, we will
be to study how to further improve the prediction performance
of the algorithm and consider a solution to the problem of data
imbalance in the training set.

ACKNOWLEDGMENT

This paper was supported in part by the National Natural
Science Foundation of China (Grant No. 61702386).

REFERENCES

[1] F. Wu, X. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun, “Cross-
project and within-project semisupervised software defect prediction: A
unified approach,” IEEE Transactions on Reliability, vol. 67, no. 2, pp.
581–597, June 2018.

[2] S. Huda, S. Alyahya, M. M. Ali, S. Ahmad, J. Abawajy, H. Al-Dossari,
and J. Yearwood, “A framework for software defect prediction and
metric selection,” IEEE Access, vol. 6, pp. 2844–2858, 2018.

[3] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
“Mahakil: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,” IEEE Transactions on
Software Engineering, vol. 44, no. 6, pp. 534–550, June 2018.

[4] E. A. Felix and S. P. Lee, “Integrated approach to software defect
prediction,” IEEE Access, vol. 5, pp. 21 524–21 547, 2017.

[5] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 44, no. 5, pp. 412–428, May
2018.

[6] S. Qiu, L. Lu, and S. Jiang, “Multiple-components weights modelfor
cross-project software defect prediction,” IET Software, vol. 12, no. 4,
pp. 345–355, 2018.

[7] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, “An ensemble oversampling model for class imbalance
problem in software defect prediction,” IEEE Access, vol. 6, pp. 24 184–
24 195, 2018.

[8] T. Chen, S. W. Thomas, H. Hemmati, M. Nagappan, and A. E. Hassan,
“An empirical study on the effect of testing on code quality using
topic models: A case study on software development systems,” IEEE
Transactions on Reliability, vol. 66, no. 3, pp. 806–824, Sept 2017.

[9] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study to
benchmark cross-project defect prediction approaches,” IEEE Transac-
tions on Software Engineering, vol. 44, no. 9, pp. 811–833, Sept 2018.

[10] C. Hu, X. Xue, L. Huang, H. Lyu, H. Wang, X. Li, H. Liu, M. Sun,
and W. Sun, “Decision-level defect prediction based on double focuses,”
Chinese Journal of Electronics, vol. 26, no. 2, pp. 256–262, 2017.

[11] T. Wang and W. Li, “Naive bayes software defect prediction model,”
in 2010 International Conference on Computational Intelligence and
Software Engineering, Dec 2010, pp. 1–4.

[12] H. Wei, C. Shan, C. Hu, H. Sun, and M. Lei, “Software defect dis-
tribution prediction model based on npe-svm,” China Communications,
vol. 15, no. 5, pp. 173–182, May 2018.

[13] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, “Software defect prediction
using feature selection and random forest algorithm,” in 2017 Interna-
tional Conference on New Trends in Computing Sciences (ICTCS), Oct
2017, pp. 252–257.

[14] Z. Zhou and J. Feng, “Deep forest: Towards an alternative to
deep neural networks,” CoRR, vol. abs/1702.08835, 2017. [Online].
Available: http://arxiv.org/abs/1702.08835

[15] J. Feng and Z. Zhou, “Autoencoder by forest,” CoRR, vol.
abs/1709.09018, 2017. [Online]. Available: http://arxiv.org/abs/1709.
09018

[16] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Third International Workshop on Predictor Models in Soft-
ware Engineering (PROMISE’07: ICSE Workshops 2007), May 2007,
pp. 9–9.

[17] R. Jindal, R. Malhotra, and A. Jain, “Software defect prediction using
neural networks,” in Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2014 3rd International Con-
ference on. IEEE, 2014, pp. 1–6.

[18] P. Selvaraj and D. P. Thangaraj, “Support vector machine for software
defect prediction,” International Journal of Engineering & Technology
Research, vol. 1, no. 2, pp. 68–76, 2013.

[19] A. Okutan and O. T. Yıldız, “Software defect prediction using bayesian
networks,” Empirical Software Engineering, vol. 19, no. 1, pp. 154–181,
2014.

[20] S. G. Jacob et al., “Improved random forest algorithm for software defect
prediction through data mining techniques,” International Journal of
Computer Applications, vol. 117, no. 23, 2015.

[21] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel ensemble
learning for software defect prediction,” Automated Software Engineer-
ing, vol. 23, no. 4, pp. 569–590, 2016.

[22] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose,
T. Kim, and C. Kim, “A deep tree-based model for software defect
prediction,” CoRR, vol. abs/1802.00921, 2018. [Online]. Available:
http://arxiv.org/abs/1802.00921

[23] A. V. Phan, M. L. Nguyen, and L. T. Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), Nov 2017, pp. 45–52.


