
A Class-level Test Selection Approach Toward Full
Coverage For Continuous Integration

Yingling Li∗‡, Junjie Wang∗‡, Qing Wang∗†‡§, Jun Hu∗‡
∗Laboratory for Internet Software Technologies, †State Key Laboratory of Computer Science

Institute of Software,Chinese Academy of Sciences,Beijing,100089,China
‡University of Chinese Academy of Sciences,Beijing,100089,China,§Corresponding author

email:{yingling,wangjunjie,wq,hujun}@itechs.iscas.ac.cn

Abstract—Continuous Integration (CI) is an important practice
in agile development. With the growth of integration system,
running all tests to verify the quality of submitted code, is clearly
uneconomical. This paper aims at selecting a proper test subset
towards full coverage of all changed and affected code so as
to reduce the cost of CI testing. We proposes FEST, a novel
approach, which searches for the full dependencies of changed
code at the class level and then selects test classes related to
the changed and affected classes. We assess FEST from fault
detection efficiency and cost effectiveness based on 18 open
source projects with 261 continuous integration versions from
Eclipse and Apache communities, and compare it with the state-
of-the-art approach ClassSRTS (as baseline). Results show that
FEST (1) can not only cover all faults detected by actual CI
testing and baseline, but also find new faults in 25% and 18%
versions respectively. (2) shows better or equal test scale benefits
than actual CI testing (in 98% versions) and baseline (in 99%
versions); and can compensate risk of omitting necessary tests
for actual CI testing (in 62% versions) and baseline (in 73%
versions).

I. INTRODUCTION

Continuous Integration (CI) is a widely-applied develop-
ment practice which requires developers to integrate their
code into the master codebases frequently. It can improve
the productivity, facilitate fast feedback of quality problems,
and help projects release more often [1], [2]. One of the
best practices in CI is to make your build self-testing, called
CI testing. Each programmer must do a complete build and
run (and pass) all or eligible unit tests before submitting
work [1], [3]. With the growth of integration system, running
all tests to verify the quality of submitted code, is clearly
uneconomical. The big challenge of CI testing is how to
optimize the test set to reduce test size as much as possible
without sacrificing quality. These are many test case selection
techniques proposed to tackle this problem [2], [4]–[16].

Generally speaking, the methods of test case selection can
be split into static and dynamic techniques. Dynamic selection
technique collects test dependencies by dynamically running
tests on the previous revision, and selects a test set that may
reach the code changes [7]–[9], [15], [17]. However, dynamic
test dependencies for large projects may be time-consuming
to collect, and for real-time systems, dynamic selection tech-
niques may not be applicable, because code instrumentation
for obtaining dependencies may cause timeouts or interrupt

normal test run [5], [15]. Besides, for programs with non-
determinism (e.g., due to randomness or concurrency), de-
pendencies collected dynamically may not cover all possible
traces, leading to omission of necessary tests [5], [6]. Static
selection technique does not require to execute tests; it uses
static program analysis to infer the dependencies between
changed code, affected code and test code [4], [5], [13], [18],
[19]. It is easier to manipulate than dynamic technique thus
draws more and more attention. However, the drawback of
existing static approaches is that the selected test sets either
cannot fully cover the necessary tests or are too redundant due
to inefficient static analysis techniques [4]–[6], [13], [20].

In this paper, we propose a novel test selection approach
called FEST (i.e., Full dEpendency based class-level test
SelecTion) to select a proper test subset for CI testing based on
class-level static dependencies. FEST first locates the changed
classes of submitted commits, and generates full dependencies
of source code at the class level. It then searches a complete set
of affected classes and identifies affected test classes. Finally,
it extends the test classes based on recently failed tests.

We experimentally evaluate FEST from fault detection effi-
ciency and cost effectiveness on 261 CI versions of 18 projects
from two large open source communities (i.e., Eclipse and
Apache). For comparison, we refer the real-world practice of
CI testing as the actual CI testing and apply the state-of-the-
art approach ClassSRTS [5], [13] as baseline. The results show
that (1) FEST can cover all faults detected by actual CI testing
and baseline, and find new faults in 25% and 18% versions
respectively; (2) compared with baseline, FEST shows better
or equal test scale benefits in 99% versions, and higher risk
compensation in 73% versions.

The main contributions of the paper are as follows:
• We design a new class-level test selection approach

(FEST) to select a proper test subset towards fully cover-
ing all changed code and affected code. It can resolve full
dependency relations at the class level, which improves
previous work by capturing the dependencies of hidden
references; and design an algorithm to incrementally and
iteratively search the affected tests.

• We conducted experiments on 261 integration versions
of 18 open source projects to evaluate the fault detection
efficiency and cost-effectiveness of our approach, and
results are promising.DOI reference number: 10.18293/SEKE2019-011

II. APPROACH

This paper proposes an approach, called FEST (i.e., Full
dEpendency based class-level test SelecTion). There are four
major steps in FEST (shown in Figure 1), the following
subsections will explain the details of the four steps.

Fig. 1. The overview of FEST

A. Locating the changed classes of submitted commits

For each CI, we have three phases to analyze and locate the
changed classes. Firstly, we look for the names of changed
files from the log message of the commits. Secondly, we look
for the changed lines of each changed file by applying “git
diff ”, and filter the blank lines and annotation lines. Thirdly,
we locate the changed code on associated classes. In detail,
an improved open source tool Doxygen (named as Doxygen#)
is applied to analyze the structure and dependencies of source
code. We further parse the xml files generated by Doxygen#
to obtain the code structure information of each file, including
class names, the start line and end line of each class, and anno-
tation information of each method (e.g., @Test, @BeforeClass,
@Before). Based on the code structure information, we map
the changed lines to their corresponding classes, and then label
them as changed classes. Note that the commits can involve
both program code and test code. We also locate changed test
classes for better selecting the related tests. After this step,
FEST will output a set of changed classes (C Set).

B. Generating the full dependencies of code version

To ensure the full dependencies of code captured, we refer
to the relations defined in UML. There are six relations among
classes or objects defined in UML. Table I presents these
relations and their representation in code (refer Orso’s work
[21]), as well as the corresponding relations in code. There are
two categories of relations in code: inheritance and invocation
[22]. Some of the invocation types can be directly obtained
with code dependency analysis tools (e.g., Doxygen#), and
we call it as direct reference (short for R). Other invocation
types can not be directly obtained with existing tools, and we
call it hidden reference (short for HR). These hidden reference
relations are usually ignored in the existing approaches [5],
[20] or tools for code dependency analysis (e.g., Doxygen)
because they are hard to resolve. We carefully consider and
resolve the relation.

For inheritance and reference relations of invocation cat-
egory, we directly capture them using the tags (e.g., de-
rivedcompoundref, referencedby) in xml files outputted by
Doxygen#. For hidden reference, we parse the xml files based
on its representation in code (as shown in Table I) and the code
structure information of class files obtained in Step 1. Take the
first dependency relation as an example (i.e., the invocation

TABLE I
MAPPING OF RELATIONS BETWEEN RELATIONS IN UML AND IN CODE

Relations
in UML

Representation
in code

Relations
in code

Generalization A subclass e1 extends its superclass e2. Inheritance
Realization Class e1 implements an interface e2 Inheritance

Dependency

A Method of Class e1 usesClass e2
as an argument, e.g., the invocation by
“Class.forName(‘P.e2’)” in reflection

Invocation
(HR)

A Method of Class e1 uses Class e2
in a cast operation.

Invocation
(HR)

Class e1 instantiates Class e2 in e1’methods,
then invokes its methods or variables.

Invocation
(R)

Association

Class e1 uses Class e2
as a member variable.

Invocation
(HR)

A method in Class e1 invokes methods
or member variables of member Class e2.

Invocation
(R)

Class e1 defines a member variable, and
initiates it by invoking Class e2’s methods

or variables, or using e2 in a cast operation.

Invocation
(HR)

Aggregation Class e1 uses Class e2 as
an argument to instance.

Invocation
(HR)

Composition If Class e2 is a component of Class e1,
it can only be instantiated in Class e1.

Invocation
(R)

by “Class.forName(‘P.e2’)” in reflection), for each xml file,
we check whether there is such hidden reference relation by
its representation in code. If there is “Class.forName” in the
xml file, we regard it as this case, and obtain the information
of the referenced class (i.e., e2 as the name of referenced
class, P as the name of e2’s package), and record its position
(i.e., line of code); then we map the position to corresponding
class based on the code structure information, and obtain the
reference class and its information (e.g., class name). Finally,
the hidden reference can be built with the obtained information
of reference and referenced classes.

For convenience of step 3, FEST outputs an inheritance
relation graph (HRG) and an invocation relation graph (VRG).

C. Searching affected classes and identifying related test
classes

In this section, we design a BFS-based (i.e., Breadth-First
Search) search algorithm to incrementally and iteratively look
for a complete set of affected classes and identify related test
classes. Note that since our approach considers the class-level
dependency relations, the tests in this paper means the test
classes.

In detail, for each changed class Ci in C Set, firstly, we use
BFS to search its all subclasses from HRG, and all referenced
classes from VRG which invoke class Ci or its subclasses, and
add them to the set of affected classes A Set. Then, for the
changed class Ci or each affected class, we check whether it
is a test class. Note that we also check the changed class Ci,
which ensures to select the newly-added tests or changed tests.
Following existing work [6], [20], if it contains at least one
method (the method name started with “test” or the method
has the annotation “@Test”, “@BeforeClass”, “@Before”), we
regard it as a test class. If it is a test class, we will add it to the
set of related tests T Set. Finally, when this loop is over, and
A Set is not null, for each class ai in A Set, we apply BFS
iteratively to search its subclasses and referenced classes until
there is no new class found, and identify new test classes, add

them to T Set. After the above process, we search affected
classes and identify the set of related tests T Set.

D. Extending test classes

In this section, we aim to complement some tests to re-
detect the deferred faults. These faults detected in the previous
versions might have not been fixed and deferred to subsequent
versions. This strategy has also been applied in existing studies
[2], [11], [23]. In detail, we look for the failed test classes in
recent n versions, then check whether they run again. If not,
we add them into T Set. We have experimented n from 1 to
30, and results showed that the performance is better and more
stable when n is 10. Hence, we apply the recent 10 versions
in the following experiments. Finally, we obtain a final test
set (T Set).

III. EXPERIMENT DESIGN AND EVALUATION METRICS

A. Subject projects and data preparation

According to the activeness and CI testing history avail-
ability, we chose 12 Eclipse projects and 6 Apache projects to
evaluate our approach presented in Section II. We collected the
CI testing history from November 2017 to January 2018 for
the chosen projects, which contains test classes, test methods,
results, etc. From which we can obtain the failed test infor-
mation for each CI version. Then we collected commits from
the Git repository by executing “git log”, checked out source
code by executing “git checkout”; and built the relationship of
the three datasets by the commit id of CI versions. Finally, we
chose the versions for our experiment, in which the number
of changed classes and the number of executed CI tests are
greater than 0; and obtained 261 versions from the 18 projects.

We ran all experiments on a 3.40 GHz Intel Core i7-3770
machine with 8 GB of RAM, running Ubuntu Linux 14.04.3
LTS and Java 64-Bit sever version 1.8.0 73.

B. Baseline approach

To further evaluate the performance of our approach, we
take ClassSRTS [5], [13], the state-of-the-art class-level static
selection technique, as baseline. Besides, we also compare
FEST with the selected tests of actual CI testing, which are
recorded in the repositories.

We did not select any dynamic approach as baseline because
in the most recent work [5], ClassSRTS is compared to
the state-of-the-art dynamic approach, and results show that
ClassSRTS is comparable with the dynamic approach. The
reason we did not compare with dynamic selection is because
it needs to run tests to obtain the dependency information,
which is costly and limits its realization in our study.

C. Evaluation metrics

Following existing work, faults denote failed test classes
where a test class is regarded as fail if at least one of the
test cases in the test class fails, otherwise, it is regarded as
pass. For each CI version, we compare the selected tests and
the failed tests in the CI testing history, and count the failed
test classes contained in the set of selected tests to get the

TABLE II
BASIC METRICS USED IN THE STUDY

Metrics Description
Ct A set of actual CI tests (i.e., actual tests ran during CI testing).

St
A set of selected tests by FEST or ClassSRTS

(marked by St@F and St@C respectively).
Cft A set of faults detected by actual CI testing.

Tft
A set of total faults detected by FEST or ClassSRTS

(marked by Tft@F and Tft@C respectively).

number of detected faults. Regarding a new test class which
is not included in the current set of actual CI testing, it will
be labeled as a detected fault if its first run in the subsequent
versions fails by following previous work [24]. It is because it
should be detected in the previous version, but it was omitted
by actual CI testing. To facilitate understanding, we present
basic metrics used in this paper in Table II.

1) Fault detection efficiency: In this dimension, we define
two metrics to evaluate fault detection efficiency.

(a) Fault coverage (Fcovg) means the percentage of the
faults found by test selection approach (i.e., FEST or ClassS-
RTS) compared with the faults detected in actual CI testing.
Following existing work [4], [12], [20], [25], it is defined as
Equation 1.

Fcovg =
|Tft ∩ Cft|
|Cft|

× 100% (1)

In it, Tft is the faults detected by the measured approach, it can
be Tft@F (for FEST) or Tft@C (for ClassSRTS). This metric
is also used to evaluate the coverage of the faults detected
by FEST compared with the faults detected by ClassSRTS,
where Cft will be replaced by Tft@C. When |Cft| is 0, we
treat Fcovg as 100%.

(b) Fault detection enhancement (Fenhm) means the new
faults which are detected by the measured approach compared
with actual CI testing or ClassSRTS. It is defined as NewFt.

2) Cost effectiveness: In this dimension, we evaluate the
cost effectiveness from test scale benefits and risk compensa-
tion ability.

(a) Test scale benefits (Testscal) evaluates the return on
investment (ROI), i.e., the number of detected faults divided
by the number of running tests, as the existing work [9], [26],
[27]. As we could not obtain the exact set of all faults, we
use the union set of the faults detected by all investigated
approaches and actual CI testing, as previous work [12], [20].
Therefore, we apply a penalty coefficient to adjust ROI, which
is the proportion of the number of faults detected by current
approach to the number of all faults. Hence, Testscal is defined
as Equation 2. The higher value of Testscal the better.

Testscal =
|Tft|
|St|

× |Tft|
|Cft ∪ Tft@F ∪ Tft@C|

(2)

Here, Tft is the fault set of the measured approach, i.e., it can
be Cft (for actual CI testing), Tft@F (for FEST) or Tft@C
(for ClassSRTS). When |St| or |Cft ∪ Tft@F ∪ Tft@C| is
0, we simply treat Testscal as 0.

(b) Risk compensation ability (Riskcomp): Running insuf-
ficient tests for CI could lead to omit some potential faults,
while running necessary and sufficient tests will decrease the

quality risk even if sometimes they did not find more faults.
We define risk compensation ability to evaluate the ability of
compensating the omitted necessary tests by actual CI testing.
It is defined as Equation 3.

Riskcomp =
|St| − |(St@F ∪ St@C) ∩ Ct|

|St@F ∪ St@C|
(3)

Here, St is the test set of the measured approach, it can
be St@F or St@C (for Riskcomp of FEST or ClassSRTS).
St@F ∪ St@C means the union set of tests selected by FEST
and ClassSRTS respectively. (St@F∪St@C)∩Ct is the test set
running in actual CI testing and also selected by FEST or base-
line. The positive Riskcomp means that the measured approach
can compensate risk for actual CI testing, the higher value of
Riskcomp the better. In contrast, the negative Riskcomp means
it can not compensate risk. When |St@F ∪ St@C| is 0, we
simply treat Riskcomp as 0.

IV. EXPERIMENT RESULTS AND ANALYSIS

Based on the number of faults detected by actual CI testing
and FEST, we divide the experiment project versions (261)
into four categories. The following subsections will present
their results and analysis respectively.

• Category Dual F (9%:23): both actual CI testing and
FEST detected faults.

• Category FEST F (20%:51): actual CI testing did NOT
detect faults, while FEST detected faults.

• Category Dual NF (70%:184): both actual CI testing and
FEST did NOT detect faults.

• Category CI F (1%:3): actual CI testing detected faults,
while FEST did NOT detect faults.

A. Category Dual F

In Figure 2, the size of bubbles refers to the number of
tests. We order versions by reduced test size between FEST
and actual CI testing, then assign the ID sequentially.

Fig. 2. Number of selected tests and number of detected faults for Dual F

We can easily see that blue bubbles are either higher or
inside other bubbles. It means that FEST can find more or
equal number of faults than ClassSRTS or actual CI testing.
Particularly, in some versions, the difference is quite large.

1) Fault detection efficiency: In Figure 3, FEST can not
only cover all faults detected by actual CI testing and
ClassSRTS, but also find new faults in 65% (15/23) and 83%
(19/23) versions respectively. While ClassSRTS can cover
the faults detected by actual CI testing only in 43% (10/23)
versions, and find new faults in 48% (11/23) versions.

Fig. 3. Fault coverage and detection enhancement compared with actual CI
testing for Dual F

2) Cost effectiveness: In Figure 2, we observe that FEST
selects slightly more tests than ClassSRTS in some versions.
We further analyze the cost effectiveness of FEST.

Test scale benefits: From Figure 4, we can see that FEST
shows better Testscal than actual CI testing in 96% (22/23) ver-
sions. Only in one version (v21), both FEST and ClassSRTS
show slightly lower Testscal than actual CI testing. Compared
with ClassSRTS, FEST shows better or equal Testscal in 87%
(20/23) versions; in other three versions (v2, v19, v20), FEST
shows lower Testcal. For these 4 versions where FEST shows
lower Testcal, it has higher Riskcomp (see the next paragraph),
which indicates our proposed approach can mitigate the risk
of omitting necessary tests.

Fig. 4. Test scale benefits for Dual F (the enlarged figure on the right shows
the details)

Risk compensation ability: In Figure 5, compared with
actual CI testing, FEST has positive Riskcomp in all versions,
while ClassSRTS shows negative Riskcomp in 35% (8/23)
versions. It means that in these 35% versions, ClassSRTS
omits some necessary tests, which might lead to omit faults.

Fig. 5. Risk compensation ability for Dual F

Compared with ClassSRTS, FEST shows higher Riskcomp
in 96% (22/23) versions. It indicates that FEST can compen-
sate more necessary tests than ClassSRTS, even though FEST
selects more test in some cases. Only in 1 versions (v5), FEST
shows lower Riskcomp than ClassSRTS. This is because when
computing Riskcomp, we treat the union set of tests selected
by FEST and ClassSRTS as ground truth of necessary tests.
However, ClassSRTS has selected some unnecessary tests. In
detail, it treats the selected tests as the difference between
the set of all tests and the set of non-affected tests (tests not
affected by changed code). However, the set of all tests could
include some unnecessary classes, e.g., the basic classes which

do not have test cases. Hence, the lower Riskcomp@FEST
does not indicate the low effectiveness of our approach.

B. Category FEST F

Similar to category Dual F, in Figure 6, the size of bubbles
refers to the number of tests.

1) Fault detection efficiency: In Figure 6, all green bubbles
lie on X-axis due to |Cft| = 0. It indicates that compared
with actual CI testing, the fault coverage of both FEST and
ClassSRTS are all 100%. More than that, FEST can cover all
faults detected by ClassSRTS and detect more new faults in
57% versions.

Fig. 6. Number of selected tests and number of detected faults for FEST F

2) Cost effectiveness: In Figure 6, test size of FEST is
smaller than actual CI testing, and similar or slightly larger
than ClassSRTS.

Test scale benefits: In this category, Testscal@CI = 0 in all
versions. From Figure 7, we can observe that FEST shows
better Testscal than actual CI testing, and better or equal
Testscal than ClassSRTS in all versions. Especially, in 8
versions, Testscal of FEST is more than three times as large
as that of ClassSRTS.

Fig. 7. Test scale benefits for FEST F (the enlarged figure on the right shows
the details)

Risk compensation ability: In Figure 8, FEST has pos-
itive Riskcomp in 90% (46/51) versions and none negative
Riskcomp, while ClassSRTS shows negative Riskcomp in 24%
versions. Meanwhile, compared with ClassSRTS, FEST has
better or equal Riskcomp in 96% (49/51) and 2% (1/51)
versions respectively. The reason of lower Riskcomp in other 1
version (v63) is similar with the discussion in Section IV-A2.

Fig. 8. Risk compensation ability for FEST F

C. Category Dual NF

In all versions of this category, neither actual CI testing nor
FEST or ClassSRTS detected faults (i.e., Fcovg, Fenhm and
Testscal are 0). Therefore, we only discuss risk compensation
ability for this category.

Risk compensation ability: In Figure 9, FEST has positive
Riskcomp in 49% versions and none negative Riskcomp, while
ClassSRTS shows positive and negative Riskcomp in 28% and
47% versions respectively. Compared with ClassSRTS, FEST
presents higher or equal Riskcomp than ClassSRTS in 91%
(118/261) versions, among which Riskcomp of FEST is twice
as large as that of ClassSRTS in 109 versions. The reason of
lower Riskcomp in 9% versions is similar with the discussion
in Section IV-A2.

Fig. 9. Risk compensation ability for Dual NF

D. Category CI F

1) fault detection efficiency: In all three versions (i.e.,
v259, v260 and v261) of this category, actual CI testing
detected a few faults while ran a large size of tests. Both FEST
and ClassSRTS selected very small test sets while detected no
faults. We further examine the detail of these 3 versions.

In the 3 versions, the faults which are not covered by FEST
do not have any dependencies with the changed and affected
code, and have no failed test history in recent 10 versions. In
other words, these faults were committed in earlier versions,
and should be detected earlier. Hence, detecting these faults is
not the responsibility of current CI testing. This indicates that
the bad performance does not due to the drawback of FEST.

2) Cost-effectiveness: In this category, both FEST and
ClassSRTS did not detect any faults, Testscal of both FEST
and ClassSRTS are zero, lower than actual CI testing.

Risk compensation ability: Regarding risk compensation
ability, both FEST and ClassSRTS positively compensate risk
in all versions, but FEST can get much higher Riskcomp
for all of them even though it did not find any faults. It
is because actual CI testing ran some redundant tests while
omitting necessary tests which results in a high risk of omitting
faults. Meanwhile, FEST presents better or equal Riskcomp
than ClassSRTS in all versions.

Summary: Based on the detailed results and analysis of
the 4 categories, we obtain the summary of FEST across all
categories: (1) FEST can cover all faults detected by actual
CI testing and baseline, and find new faults in 25% and 18%
versions respectively; (2) FEST shows better or equal Testscal
than actual CI testing (in 98% versions) and ClassSRTS (in
99% versions); can compensate risk of omitting necessary tests
for actual CI testing (in 62% versions) and baseline (in 73%
versions).

V. VALIDITY

The internal validity of our study arises from the imple-
mentation of baseline and FEST. We implemented baseline by
strictly following the steps described in the original paper [13].
For both baseline and FEST approaches, we have employed
213 test cases to test their functionality. For the suspicious
results, we have manually checked the code, and found they
do not due to the defect in code.

The external validity concerns about our experimental
dataset. We can not guarantee that our results can be fully
generalize to other projects. However, the size of the dataset
(18 projects with 261 versions) and the diversity of domains
relatively reduce this risk.

VI. RELATED WORK

CI test selection based on dynamic dependency: Gligoric
et al. [7] and Vasic et al. [19] implemented a test selection
approach based on dynamic dependencies at the file level
for Java and .NET respectively, and analyzed the strengths
and drawbacks of file-level and module-level test selections.
Because of that, Zhang [15] proposed a hybrid test selection
technique that combined file-level and method-level analysis.
Furthermore, Celik et al. [8] designed a file-level test selection
across JVM boundaries, which can find more dependencies and
improve precision of selection.

CI test selection based on static dependency: Soetens et
al. [25] and Parsai et al. [4] proposed an approach to select
tests on method-level static dependencies and improved it to
deal with invocation in polymorphism. Legunsen et al. [5],
[13] implemented class-level and method-level test selection
techniques based on static dependencies. But the class-level
approach would still omit some tests because it can not obtain
all dependencies (e.g., the dependencies in reflection and
cast operation), while the method-level approach shows worse
performance in fault detection and time cost.

Generally speaking, the drawbacks with existing dynamic
selection approaches are long running tests, non-determinism,
and real-time constraints; while the drawbacks of existing
static selection approaches lie in omitting some tests or select-
ing some unnecessary tests [4]–[6], [13], [20]. Our approach
belongs to static test selection which improves existing ap-
proaches by resolving full dependency relations and selecting
a test set towards fully covering all changed and affected code.

VII. CONCLUSION

In this paper, we propose FEST to select a proper test subset
towards full coverage of all changed and affected code so as
to reduce the cost of CI testing. Evaluations are conducted on
18 projects with 261 CI versions from Eclipse and Apache
communities. Results show that FEST can outperform actual
CI testing and the state-of-the-art ClassSRTS in terms of fault
detection efficiency and cost-effectiveness in most cases.

VIII. ACKNOWLEDGMENTS

We sincerely thank Yun Yang for his contribution to the pa-
per. This work is supported by National Natural Science Foun-
dation of China under Grant No.61602450, No.61432001.

REFERENCES

[1] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
FSE’15, pp. 805–816.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in FSE’14, pp. 235–245.

[3] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
ASE’16, pp. 426–437.

[4] A. Parsai, Q. D. Soetens, A. Murgia, and S. Demeyer, “Considering
polymorphism in change-based test suite reduction,” in Agile’14, pp.
166–181.

[5] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in FSE’16, pp. 583–594.

[6] V. Blondeau, A. Etien, N. Anquetil, S. Cresson, P. Croisy, and
S. Ducasse, “Test case selection in industry: An analysis of issues related
to static approaches,” SQJ’16, pp. 1–35.

[7] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in ISSTA’15, pp. 211–222.

[8] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across JVM boundaries,” in FSE’17, pp. 809–820.

[9] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing
less without sacrificing quality,” in ICSE’15, pp. 483–493.

[10] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming google-scale continuous testing,” in ICSE’17,
pp. 233–242.

[11] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in ISSTA’17, pp. 12–22.

[12] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite diver-
sification and code coverage in multi-objective test case selection,” in
ICST’15, pp. 1–10.

[13] O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in ASE’17, pp. 949–954.

[14] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining
test-suite reduction and regression test selection,” in FSE’15, pp. 237–
247.

[15] L. Zhang, “Hybrid regression test selection,” in ICSE’18, pp. 199–209.
[16] K. Wang, C. G. Zhu, A. Celik, J. Kim, D. Batory, and M. Gligoric,

“Towards refactoring-aware regression test selection,” in ICSE’18, pp.
233–244.

[17] G. Wikstrand, R. Feldt, J. K. Gorantla, and C. Zhe, W.and White,
“Dynamic regression test selection based on a file cache: An industrial
evaluation,” in ICST’09, pp. 299–302.

[18] E. D. Ekelund and E. Engström, “Efficient regression testing based on
test history: An industrial evaluation,” in ICSME’15, pp. 449–457.

[19] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs.
module-level regression test selection for .Net,” in FSE’17, pp. 848–
853.

[20] Q. D. Soetens, S. Demeyer, A. Zaidman, and J. Pérez, “Change-based
test selection: An empirical evaluation,” ESE’16, vol. 21, no. 5, pp.
1990–2032.

[21] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” Acm Sigsoft Software Engineering Notes, vol. 29,
no. 6, pp. 241–251, 2004.

[22] B. Meyer, Object-Oriented Software Construction. Prentice Hall, New
York, N.Y., second edition, 1997.

[23] S. Yoo, R. Nilsson, and M. Harman, “Faster fault finding at google using
multi objective regression test optimization,” in ESEC/FSE’11, pp. 1–4.

[24] A. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, and
T. Gyimóthy, “Code coverage-based regression test selection and pri-
oritization in webkit,” in ICSM’12, pp. 46–55.

[25] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-based test
selection in the presence of developer tests,” in CSMR’13, pp. 101–
110.

[26] S. Mirarab, S. Akhlaghi, and L. Tahvildari, “Size-constrained regression
test case selection using multicriteria optimization,” TSE’12, pp. 936–
956.

[27] E. EngstrÖm, P. Runeson, and A. Ljung, “Improving regression testing
transparency and efficiency with history-based prioritization - an indus-
trial case study,” in ICST’11, pp. 367–376.

	Introduction
	Approach
	Locating the changed classes of submitted commits
	Generating the full dependencies of code version
	Searching affected classes and identifying related test classes
	Extending test classes

	Experiment Design and Evaluation Metrics
	Subject projects and data preparation
	Baseline approach
	Evaluation metrics
	Fault detection efficiency
	Cost effectiveness

	Experiment Results and Analysis
	Category Dual_F
	Fault detection efficiency
	Cost effectiveness

	Category FEST_F
	Fault detection efficiency
	Cost effectiveness

	Category Dual_NF
	Category CI_F
	fault detection efficiency
	Cost-effectiveness

	Validity
	Related Work
	Conclusion
	Acknowledgments
	References

