Reverse Engineering Behavioural Models of IoT Devices

Sébastien Salva
LIMOS - UMR CNRS 6158
University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Abstract—This paper addresses the problem of recovering
behavioural models from IoT devices in order to help engineers
understand how they are functioning and audit them. We
present a model learning approach called ASSESS, which
takes as inputs execution traces collected from IoT devices and
generates models called systems of Labelled Transition Systems
(LTSs). ASSESS generates as many LTSs as components inte-
grated and identified into a device. The approach is specialised
to IoT devices as it takes into account two architectures often
used to integrate components with this kind of system (cyclic
functioning, loosely-coupled or decoupled architectures). We
experimented the approach on two IoT devices and an IoT
gateway to evaluate the model conciseness and the approach
efficiency.

Keywords-Reverse engineering; 1oT; Model learning; Passive
learning.

I. INTRODUCTION

Internet connected devices, and especially Internet of
Things (IoT), belong to the digital transformation trends
proposed by industrial experts or advisory firms for several
years. The IoT, which which we consider as a network of
smart embedded devices connected to the Internet, is in-
deed a broad-based concept, transforming several uses from
consumer devices to large-scale manufacturing. However,
many customers and companies prefer staying away from
the IoT hype because of the issues related to privacy and
more generally to security. It is indeed manifest that IoT
devices have to be audited before using them, in particular
in the industry or in healthcare. Many companies chose to
outsource the IoT development for saving costs, hence the
IoT audit is rather done after the development. It is often
carried out from the source code or from devices seen as
black boxes. A common solution to help audit such devices
is to apply a reverse engineering process, which is usually
done by hands. From a black-box, this process is required
to understand how devices are functioning. Besides, it helps
document the behaviours of IoT devices or IoT networks,
and may serve to detect bugs or security issues.

In the literature, some papers dealing with the reverse
engineering of IoT devices have been published recently
[1], [2]. These approaches recover critical information or
detect privacy issues from source codes, firmwares or chips.

DOI reference number: 10.18293/SEKE2019-012

Elliott Blot
LIMOS - UMR CNRS 6158
University Clermont Auvergne, France
email: elliott.blot@uca.fr

This paper proposes another approach called ASSESS (Anal-
ySiS, Extraction, Separation, Synchronisation) to recover
behavioural models from IoT devices. Our approach, which
is based on the model learning concept, takes execution
traces collected from IoT devices and generates models
called systems of LTSs (Labelled Transition System). Model
learning approaches [3], [4], [5], [6], [7], [8] have proven
to be valuable for retro-engineering models that can be ex-
ploited in several software engineering steps. Our approach
advances the state of the art in these two points.

o It is specialised to IoT devices in the sense that their
general functioning is considered while the model
generation. We define an IoT device as an embedded
device integrating several components and running in
a cyclic way [9]. Several works focused on the com-
ponent architectures of embedded devices, i.e. on how
to compose them efficiently. It is often advised to use
a loosely-coupled architecture [10], where components
remain autonomous and allow middleware software to
manage internal communication between them. With
this kind of architecture, components are synchronised
together. However, we also observed that IoT devices
may also have a decoupled architecture, where the
components operate independently. We consider both
architectures for the model generation.

e Most of the model learning algorithms build one big
model for a given system. Such models may quickly be-
come uninterpretable. We focused on this problem and
laid the first stone of the approach in [11]. Our approach
builds as many LTSs as components detected in logs
collected from an IoT device. From these messages,
our approach is able to build traces and infer systems
of LTSs. Two strategies, which refer to the previous
IoT device architectures, are proposed to synchronise
LTSs together to form a complete model. The present
approach target specific system, IoT devices, and relax
some assumption with the modification of algorithms.

We have implemented a prototype tool to experiment
our algorithms and appraise their benefits. We provide a
preliminary evaluation in the paper made on two IoT de-
vices. Besides, this experimentation also shows that ASSESS
may be applied on an IoT gateway to recover a model

expressing the behaviours of an IoT network, i.e. of the
devices communicating with this gateway.

The paper is organized as follows: we recall some def-
initions about the LTS model in Section II. Our approach
is presented in Section III. The next section shows some
results of our experimentation. Section V summarises our
contributions and draws some perspectives for future work.

II. THE LTS MODEL

We express the behaviours of components with Labelled
Transition Systems (LTS) as defined in [12]. This model is
defined in terms of states and transitions labelled by actions,
taken from a general action set £, which expresses what
happens. 7 is a special symbol encoding an internal (silent)
action; it is common to denote the set L U7 by L.

Definition 1 (LTS) A Labelled Transition System (LTS) is
a 4-tuple (Q, q0,3, —) where:
o @ is a finite set of states; q0 is the initial state;
o XU {71} C L, is the finite set of actions, with T the
internal (unobservable) action;
o 2C Q xXU{r} xQ is a finite set of transitions. A
transition (q,a,q') is also denoted q = .

We use the generalised transition relation — to represent
LTS paths: ¢ 2= ¢ =der 390...¢n,q = q0 4,
Qo Qo1 2 g, = ¢. We also use the following
notations on action sequences. The concatenation of two
action sequences seq;, seqz € L7 is denoted seq;.seqa. €
denotes the empty sequence. A trace is a finite sequence of
observable actions in £*.

To better match the functioning of IoT devices, we assume
that an action has the form a(«) with a a label and « an
assignment of parameters in P, with P the set of parameter
assignments. For example, switch(id := 115,¢e¢md := on)
is made up of the label ”switch” followed by the assignment
(id := 115, cmd := on) of two parameters.

The use of LTSs allows to exploit the definitions related
to the LTS composition. The integration of two components
C, and C5, modelled with LTSs, is often defined by two
operations in the literature. The first one is the parallel com-
position of C; and Cs denoted Cy || Co, which synchronises
their shared actions, also called synchronisation actions (the
rest must happen independently). This composition is often
followed by the hiding of the communications between C
and Cy to express that only the communications with the
environment are observable. This operation is defined by
the relation hide S in Cy || Co with S a set of actions. We
refer to [13] for the definitions of theses two LTS operators.

This principle of LTS composition leads to a model called
system of LTSs, which describes a component-based system:

Definition 2 (System of LTSs) A system of LTSs SC is the
couple (S,C) with C = {C4,...,Cn} a non empty set of
LTSs, and S a set of synchronisation actions.

III. THE ASSESS APPROACH

This section presents our model learning approach, which
aims at inferring system of LTSs from messages given
by an IoT device. The later is seen as a black box and
integrates components by means of a loosely coupled or a
decoupled architecture. We assume that the components pro-
duce messages or logs which include component identifiers,
i.e. parameter assignments allowing to identify components.
However we consider that the component calls are hidden.
This is usually the case with IoT devices integrating several
sensors. Furthermore, the messages have to include times-
tamps for ordering them. A logical clock mecanism may be
required to add timestamps in logs.

The list of messages is initially translated into a set of
execution traces with our tool TFormat!. This one starts
by filtering and formatting raw messages into actions by
means of regular expressions. Then, the tool analyses the
timestamps of every pair of successive actions and computes
means of time intervals. It searches for gaps between actions
(distinctive longer durations), which are usually observed
when an execution trace ends and another one begins. The
time gap detection is used for the trace extraction. We denote
the trace set T'races(SUL) and assume that a trace has the
form aq(aq)...ar (o).

The model generation is performed by three steps called
“Trace Extraction”, “LTS Generation”, and “LTS Synchroni-
sation”. The last step proposes two LTS generation strategies
called “LTS Loose-coupling” and “LTS Decoupling”. These
steps are illustrated with the example of Figure 1. In the
first step, the traces of T'races(SUL) are analysed to detect
component calls by covering the component identifiers found
in actions. The example of Figure 1 lists 3 traces that capture
the behaviours of two components (id:=1, id:=3), which call
other components. The component calls are here detected
whenever a new identifier is found (id:=2, id:=3). In a trace,
the action sequences having different identifiers are extracted
and replaced by synchronisation actions of the form call(id)
and return(id) to express component calls, with id an
identifier referring to a component. Next, the resulting traces
are partitioned to gather the traces having the same identifier.
We obtain 3 trace sets in our example of Figure 1.

The step “LTS Generation” transforms each previous trace
set into a LTS. In this step, we take into account the general
functioning of the IoT devices, which are usually designed
to perform actions in a cyclic way. The traces are hence
transformed into cyclic LTS paths, the later being joined on
an initial state. Once every trace set is transformed into a
LTS, we obtain a first system of LTSs SC = (S, C) with C
the set of LTSs and S the set of synchronisation actions.

The last step transforms this system of LTSs to produce
more general models with respect to the nature of the IoT
devices. As stated earlier, we consider that these devices

Uhttps://github.com/sasa27/TFormat

Traces(SUL)={

Req(id:=1) Req(id:=2) Resp(id:=2) Resp(id:=1) Req2(id:=3) Resp2(id:=3),
Req(id:=1) Req(id:=2) Resp(id:=2) Resp(id:=1) Req3(id:=2) Resp3(id:=2),
Req4(id:=3) Resp4(id:=3)}

STEP 1
Trace Extraction

STraces={
C_1= {Req(id:=1) call(id:=2) return(id:=2) Resp(id:=1) call(id:=3) return(id:=3),
Req(id:=1) call(id:=2) return(id:=2) Resp(id:=1) call(id:=2) return(id:=2) }

C_2= {call(id:=2) Req(id:=2) Resp(id:=2) return(id:=2),
call(id:=2) Req(id:=2) Resp(id:=2) return(id:=2) call(id:=2) Req3(id:=2) Resp3(id:=2)
return(id:=2) }

C_3= {call(id:=3) Req2(id:=3) Resp2(id:=3) return(id:=3), Req4(id:=3) Resp4(id:=3) } }

STEP 2
LTS Gen.
return(id:=3) (return(idi=3)
1 Res
'cali TS:irzn(i :=p Req2(BESDZ(

d:=3

d:<3)

id:=2) id:=2)

call(

return(
id:=2)

Req(call(

id:=2)

Resp(
id:=2)

return(id:=2)

return(id:=3)

Req2(
id:=3),

_caII(

Resp2(
d:=3) id:

id:=3),

call(id:=2)

call(return(id:=2)

DI
. id:=1)
id:=2)
return(id:=2) Ef,s:p.;(

return(id:=2)

return(

Req3(

Req(
id:=2)

id:=2)
STEP 3
LTS Sync: id:=2)
Loose-coupling
Strategy
STEP 3 Req(
LTS Sync: idi=1) Resp4(
- id:=3
Decoupling ™Sx id:=3)
Strategy Req2(
esp(yd:=3)
id:=1)

Figure 1: The ASSESS approach overview

may integrate loosely-coupled or decoupled components.
The strategy “LTS Loose-coupling” builds a system of LTSs
SC1 such that SC'1 allows repetitive calls of components,

which are synchronised together. This is materialised by
. call(id) return(id) .
replacing the sequences g —————— = ¢o with loops.

Then, we apply the kTail algorithm [3]. kTail is a well-
known approach that merges the (equivalent) states having
the same k-future, i.e. the same event sequences having the
maximum length k. We obtain three LTSs in Figure 1(right-
top side) expressing components that call each other.

The strategy “LTS Decoupling” produces another system
of LTSs SC2 from SC to express the behaviours of inde-
pendent components. The synchronised actions are removed
from the LTSs of SC. Then, the kTail algorithm is applied.
We obtain three LTSs expressing autonomous components.
Now, we detail these steps below.

A. Step 1: Trace Extraction

This step covers the traces of Traces(SUL) and the
identifiers included in actions to detect implicit component
calls and to gather the traces related to each component in
separate trace sets. The following definition formalises the
notion of component identification:

Definition 3 (Component identification) Ler a;(ay1) be
an action of L. The component identifier of a1(ay) is given
by the mapping ID : L — P, which gives the parameter
assignment o found in oy that identifies the component
producing the action aq(aq).
The component identifier of a sequence aj(aq)as(as)
...ai(ag) is given by the mapping ID, : L* — P.
ID(a1(a1)az(o2) ... ap(ow)) =des

o iff Va; ¢ {call,return} : ID(a;(e;)) = '(1 <i < k)
{ {} otherwise.

For simplicity, we denote the mapping I D by I D in the
remainder of the paper.

Algorithm 1: Component Trace Detection

input : Traces(SUL)

output: STraces

Traces := {};

foreach t = a1 (a1)az(a2) ... ar(ak) € Traces(SUL) do
L id := ID(a1(1)); T := {};

T:=Extract(t, T, id);
Traces := Traces U T}

I I R SR

EN

STraces:=GroupByld(T'races);
return STraces;

=

The Trace Extraction step is implemented with Algorithm
1, and its two procedures Fxtract and GroupByld. The
algorithm covers every trace ¢ of Traces(SUL), extracts
the identifier ¢d of the first running component found in
the first action of ¢ and calls the procedure Eztract. The
latter takes ¢, id and a set T used to store new traces.
Extract potentially splits ¢ into several traces, each having
one non empty component identifier. Then, the procedure
GroupByld partitions all the traces given by Extract and
returns the set STraces = {Cy,Cs,...,C,} such that the
traces of a set C; exhibit the behaviour of one component
only. The procedure Extract(t = a1(aq)az(asg) ... ar(ak),
T,id) is given in Algorithm 2. It covers the component
identifiers in the actions of ¢ to detect component calls.While
covering the actions of ¢, if an identifier n different from
newid (first identifier of the current trace) is found (line
6), we assume that a new component has been called by
the current one. In this case, the procedure searches for
the sequence a;+1(11)...a;—1(cj—1) composed of actions
having identifiers different from newid. This sequence
is extracted and replaced by the synchronisation actions

Algorithm 2: Procedure Extract

Procedure Extract(t = a1(a1)az(az)...ak(ak), T, id): T is

1

2 newid := Identifier(ai(ai));

3 t' = ai(); apr1(aktr) = gi=1;

4 while 7 < k do

5 n = ID(ai+1(Oéi+1));

6 if n == newsid then

7 t' =t a;+1(it1);

8 ji=1+1;

9 else

10 find smallest j > ¢ such that ID(a;(c;)) == newid
orj:=k+1;

11 t' :=t'.call(n)return(n).a;(a;);

12 if (j —4) > 2 then

13 L Extract(a7¢+1(a7¢+1) . aj_l(oz]‘_l), T, id);

14 else

15 ty := call(n).aj41(ait1).return(n);

16 if 3t € T : ID(t2) == n then

17 | tni=tatn; T =T\ {t2};

18 T:=TU({tp};

19 L i =7,

20 if newid # id then

21 L t' := call(newid).t’ .return(newid);

22 if 3t € T : ID(t2) == newid then

23 L t =t t; T =T\ {t2};

2 T:=TuU{t'};

3| return T;

call(n).return(n), which model the call of a component
C,,. If the extracted sequence has more than one action, the
procedure Extract is recursively called (line 13). Otherwise,
it builds a trace ¢, composed of the action a;y1(cvy1)
surrounded by synchronisation actions. If there exists a trace
to in T having the identifier n, t,, is concatenated to t,. t,
is added to the trace set 1. Once the trace t is covered,
we obtain a new trace ¢’ including synchronisation actions.
The procedure Extract eventually checks whether ¢’ has
to be completed to express that this trace was produced
by a component called by another one: if the identifier of
t' is different from the identifier id given as input (line
20) then the trace t’' is surrounded with call(idnew) and
return(idnew). Finally, if there exists a trace ¢ in T having
the component identifier idnew, then ¢’ is concatenated to
to. The final trace t’ is added to 7.

The procedure GroupByld(Traces) : STraces, parti-
tions the trace set T'races in such a way that every subset
holds traces sharing the same non empty component iden-
tifier. We partition T'race by defining the trace equivalence
relation ~;4; and by extracting the equivalences classes of
Trace for ~;4. Let ~;4 on £* be given by Vseq, seqa € L%,
seqy ~iq seqs iff ID(seq1) = ID(seqs). The procedure
GroupByld returns the partition STraces = Trace/ ~q.

B. Step 2: LTS Generation

At this stage, STraces gathers n subsets with n the
number of component identifiers found in the traces of
Traces(SUL). These subsets of traces are now transformed
into LTSs. Intuitively, given T3 in STraces, a trace of T} is

lifted to the level of a LTS cyclic path. The LTS is obtained
after joining the paths by means of a disjoint union on the
state q0:

Definition 4 (LTS inference) Let T7 € STraces be a
trace set. The LTS C1 expressing the behaviours found in
T, is the tuple (Q,q0,%, —) where q0 is the initial state,
and),3, — are defined by the following rule:

t=ay(a1)...ap(og),id=1D(t)

ay(ay) ag (ag)
q0———2Gid1---Qidk—1———7q0

Once the LTS generation is completed, we obtain a first
system of LTSs SC = (S, C) with C the set of LTSs derived
from ST'races and S the set of synchronized actions.

C. Step 3: LTS Synchronization

Algorithm 3: LTS Synchronisation Strategies
., Cn})) : SC is

1 Procedure Loose-coupling(SC = (S,{C1,Ca, ..

2 foreach C; = (Q, ¢0,%,—) € C do

s foreach g1 call(o)return (o) 42 do

4 | merge g1 and g2;

5 L C!:= kTail(k = 2,C;);

6 | return (S,{C{,C3,...,CL})

7 Procedure Decoupling(SC = (S, {C1,Ca2,...,Cnr})) : SCa is

8 foreach C; = (Q,q0,%, —) € C do
C; := hide S'in C;;

10 C; := 7-reduce C;;

11 L C; = kTail(k =2,C,);

2 | return (S, {C],C},...,C})

This last step proposes two strategies to synchronise the
LTSs of SC' with regard to the architecture considered to
integrate components together. Both strategies are imple-
mented in Algorithm 3 with two procedures.

The strategy “LTS Loose-coupling” builds a new system
of LTSs SC; from SC and keeps the transitions carrying
synchronised actions. This strategy allows repetitive calls of

components but also makes these calls optional by replacing

... call(o)return(o)
the transition sequences of the form ¢ q' by
loops (lines 3,4).

The strategy “LTS Decoupling” gives another system of
LTSs SC2 from SC by firstly hiding the synchronisation
actions. The operator hide S in C; transforms the transitions
of C; by replacing the actions of S with the non observable
action 7. We then reduce C; by removing the transition la-
belled by 7. Several algorithms are proposed in the literature
to perform this LTS reduction with respect to a given LTS
equivalence relation. However, as the LTSs generated by
Step 2 have a simple structure (only one outgoing transition
per state), we propose a lightweight LTS reduction operation
denoted 7-reduction:

Definition 5 (7-reduction) Letr C; = (Q1,q01,%, —1 be
a LTS. t-reduction C1 =ge5 (Q2,q02,%,—2) where
Q2,q02, —o are the minimal sets satisfying the following
inference rules:

a(a) a(o) a(a)

[—T Q" g ——as
a(a) a(a) a o)
ql— 242 ql——2(q24s) (q1q2)i—+2q2

kTail is finally applied on the LTSs achieved by both
strategies. We use k = 2 as recommended in [6].

Both systems of LTSs SC; and SC offer different points
of view. With SC1, the component calls are explicitly given,
which offers the possibility of extracting a dependency graph
of components showing how the components are hierar-
chically organised. With the system of LTSs SC5, as the
transitions carrying synchronised actions are removed, the
parallel composition of the LTSs expresses the behaviours
of asynchronous and autonomous components, which hence
produce actions independently of the others. As it is illus-
trated in Figure 1, the second strategy returns more compact
and general models.

IV. PRELIMINARY EVALUATION

We have implemented our approach in a tool, with which

we began a first evaluation to answer to these two questions:

e RQ;: can ASSESS extract more concise and readable
models than the ones generated by kTail?

e RQ,: how long does ASSESS take to generate models?
Setup: we applied ASSESS on two IoT devices and one
IoT gateway. The first device (exp.l) is a smart thermostat
controlling heat-pumps via infra-red, composed of 4 compo-
nents (a Web server, two sensors, and a component that man-
ages the heating mode). The second device (exp.2) is a Wifi
IP camera that integrates 5 components. The IoT gateway
(exp.3) was interconnected to 8 autonomous devices, which
we consider as components for the experimentation. We
collected HTTP messages from these systems and formatted
them with our tool TFormat. The results and the tool are
available here”.

A. Question RQ;

Procedure: we collected traces for every setup and ran
ASSESS with its two strategies. We also ran kTail on the
same trace sets for comparison purposes. Then, we measured
the sizes of the generated models. These are given in Table 1.
Furthermore, with large trace sets, model learning might
return spaghetti-like models, containing an uninterpretable
mess of transitions. We compared the generated models
to deduce whether ASSESS can significantly help reduce
this spaghetti model problem by inferring one model per
component.

Loosely-coupled

Exp. kTail Loosely-coupled without call and return Decoupled
#states | #trans | #states | #trans #states #trans #states | #trans
exp.l| 52 90 116 208 61 118 31 54
exp.2| 92 186 | 172 346 80 193 36 76
exp.3| 349 | 419 | 426 552 362 439 310 | 339

Table I: Size of the LTSs obtained with kTail and ASSESS.

Zhttps://github.com/Elblot/ASSESS

\

2\ \ =
il

%
X
n

N

.

Figure 3: Overview of the models generated with ASSESS
(exp.3)

Results: Table I shows that we obtain larger transition
sets with the "LTS Loose-coupling” strategy. In average, the
state number is increased by 77.33% in comparison to the
results of kTail. This is due to the addition of transitions
labelled by synchronisation actions, which show how com-
ponents interact with one another. If we do not take into
account these transitions, we obtain models whose sizes are
close to the sizes of the models generated by kTail. With the
”LTS Decoupling” strategy, we always obtain more concise
models. The state number is reduced on average by 37.33%
with this strategy. The state reduction is a consequence of the
segmentation of the traces by our algorithm. We infer one
LTS for each component, which is easier to reduce with kTail
than one big model. Afterwards, we compared the models
generated by kTail and ASSESS and manifestly concluded
on these experimentations that the systems of LTSs are
significantly more interpretable. Figure 2 shows an overview
of the “spaghetti”-like model generated by kTail for exp.3.
This model (even zoomed) is difficult to understand. Figure 3
illustrates the system of LTSs generated by ASSESS (second
strategy). We believe that the later is more readable since
every component is represented by its own model whose
transition set is smaller. Besides, a system of LTSs sounds
more adaptable to the user needs. For instance, an undesired
component may be concealed to help focus on the others.

B. Question RQ,

Procedure: to investigate RQ,, we measured the execu-
tion times of ASSESS with several trace sets containing 10
to 35000 traces of around 150 events collected from exp.3.
Experimentations were done on a computer with 1 Intel(R)
CPU i5-6500 @ 3.2GHz and 16GB RAM. Figure 4 draws
two curves showing the execution times measured with both
strategies.

50 Time(seconds)

50
40
30
20

10

0 5000 10000 15000 20000 25000 30000 35000

traces
Decoupled strategy

—8— Loose-coupling strategy

Figure 4: Executions times of ASSESS

Results: Figure 4 shows that ASSESS requires less
than 60 seconds to build models with the largest trace set.
The tendency curves also confirm that the time complexity
of both strategies is linear. Regarding the memory space
complexity, we also observed a linear curve; we reached a
memory limit between 25000 and 30000 traces (more than
3.5 millions of events) with the Loose-coupling strategy, and
between 35000 and 40000 traces (more than 5 millions of
events) with the Decoupled strategy. We hence believe that
our tool can be used with systems producing a huge amount
of messages.

V. CONCLUSION

The increase in IoT technologys popularity holds many
benefits, but it is also accompanied by many concerns related
to the IoT device reliability and security. Learning models
from these devices may serve to audit them. However recov-
ering models usable for inspection is still challenging. So far,
most of the learning algorithms build big models and do not
take into consideration the IoT device architectures. In this
paper, we have presented ASSESS, a model learning method
dedicated to IoT devices that recovers systems of LTSs. The
method constructs execution traces from messages or logs,
and generates LTSs that capture the behaviours of all the
components of an IoT device and their synchronisations.
Two strategies are proposed to adapt the model generation
with regard to the loosely-coupled or decoupled architecture
usually used to design embedded devices.

Our future work includes further evaluating ASSESS on
other kinds of IoT devices, improving its effectiveness by
devising parallel algorithms, and proposing other strategies
to better match the available IoT architectures and frame-
works.

REFERENCES

[1] M. Tellez, S. El-Tawab, and M. H. Heydari, “lot security
attacks using reverse engineering methods on wsn applica-
tions,” in 2016 IEEE 3rd World Forum on Internet of Things
(WF-1oT), Dec 2016, pp. 182-187.

[2] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren,
“Opening pandora’s box: Effective techniques for reverse en-
gineering iot devices,” in Smart Card Research and Advanced
Applications, T. Eisenbarth and Y. Teglia, Eds. = Cham:
Springer International Publishing, 2018, pp. 1-21.

[3] A. Biermann and J. Feldman, “On the synthesis of finite-state
machines from samples of their behavior,” Computers, IEEE
Transactions on, vol. C-21, no. 6, pp. 592-597, June 1972.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE '99. New
York, NY, USA: ACM, 1999, pp. 213-224.

[5] K. Meinke and M. Sindhu, “Incremental learning-based test-
ing for reactive systems,” in Tests and Proofs, ser. Lecture
Notes in Computer Science, M. Gogolla and B. Wolff, Eds.
Springer Berlin Heidelberg, 2011, vol. 6706, pp. 134-151.

[6] D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic gener-
ation of software behavioral models,” in Proceedings of the
30th International Conference on Software Engineering, ser.
ICSE’08. New York, NY, USA: ACM, 2008, pp. 501-510.

[7] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,
I. Beschastnikh, and Y. Brun, “Behavioral resource-aware
model inference,” in Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering,
ser. ASE ’14. New York, NY, USA: ACM, 2014, pp. 19-30.

[8] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail: Au-
tomatic inference of timed automata,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and
Validation (ICST), March 2017, pp. 401-411.

[9] L. Gomes and J. Fernandes, Behavioral Modeling for Embed-
ded Systems and Technologies: Applications for Design and
Implementation, Jan 2009.

[10] D. S. Stewart, “Designing software components for real-time
applications,” in Proceedings of Embedded System Confer-
ence, september 2000.

[11] S. Salva, E. Blot, and P. Laurengot, “Combining model
learning and data analysis to generate models of component-
based systems,” in Testing Software and Systems - 30th IFIP
WG 6.1 International Conference, ICTSS 2018, Cddiz, Spain,
October 1-3, 2018, Proceedings, 2018, pp. 142-148.

[12] J. Tretmans, Model Based Testing with Labelled Transition
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1-38. [Online]. Available: https://doi.org/10.1007/
978-3-540-78917-8_1

[13] M. van der Bijl, A. Rensink, and J. Tretmans, “Compositional
testing with ioco,” in Formal Approaches to Software Testing,
A. Petrenko and A. Ulrich, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 86-100.

