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Abstract—This paper leverages a well-established, rigorous
method for software specification to approach a unique problem
introduced by the emerging software-defined networking (SDN)
paradigm, i.e., the potential control conflict arising from running
multiple SDN apps in the same network. As individual SDN
apps have different optimization objectives and each assumes full
control of the network, their interaction is often unpredictable
and can destabilize the network as a result. We propose a
theoretical modeling framework for systematically detecting such
conflicts, which is deeply rooted in automaton theory and soft-
ware engineering. The key novelty and strength of our approach
is its ability to model and reason about the interaction of multiple
SDN apps precisely (with the capability of identifying when
and how conflicts may occur), proactively (prior to running the
apps), and without the knowledge of the apps’ implementation
details. To the extent of our knowledge our work is the first
to adapt rigorous software specification to the constructive,
formal modeling of SDN apps running on a network topology,
and through a formal treatment not only straightforwardly
detects and locates such conflicts but also examines and analyzes
important network properties (e.g., safe operational regions) of
interest to network managers.

I. INTRODUCTION

This paper reports an application of rigorous software
specification to the emerging software-defined networking
(SDN) paradigm, to approach a unique problem introduced
by “SDN apps” (also called network functions), which are
software applications running on top of the SDN controller
platform, offering a variety of functionalities such as load-
balancing, power-saving, quality of service, access control,
WAN optimization, network virtualization, to name a few (a
comprehensive survey is presented in [1]).

Because (i) the apps are created by different developers (vir-
tually anyone can develop and release them; marketplace exists
today for selling and buying SDN apps, e.g., Hewlett-Packard
App Store [2]), (ii) each app typically manages/optimizes
a single aspect of the network (e.g., performance, security,
resiliency, energy usage, etc.), and has a single optimization
objective, and (iii) each app assumes full control of the whole
network, they may seek to change the underlying network in
conflicting ways. The interaction of their conflicting outputs
can be unpredictable and, as a result, destabilize the network
(a case study of such conflict is presented in Sec. III).

In our preliminary work [3] a fine-grained approach was
proposed that models the SDN apps and their interactions
using deterministic finite state automata. However, derivation
of the automata was completely manual, and the conflicts were
manually identified afterwards based on human insight. The
modeling process was tedious with much trial and error, and
we were not able to prove the correctness of either the derived
automata or the located conflicts.

This paper presents an advanced approach that significantly
extends our previous work, with the following contributions:

1) We adapted a well-established, rigorous method for
software specification (i.e., sequence-based specification
[4, 5, 6, 7]) to systematically derive a formal (automa-
ton) model for each SDN app that runs on a network
topology (Sec. IV). The adapted method is inherently
rigorous, systematic, and constructive, and does not
require knowledge of the implementation details of the
apps; as such, we believe the method is very practical.

2) We developed a theoretical framework for analyzing
the interaction of multiple SDN apps running in par-
allel (Sec. V). With our new theory, important network
properties of interest to network managers, such as the
safe operational region (i.e., network states under which
multiple SDN apps can run free of conflict), can for the
first time be formally defined and precisely analyzed.
We demonstrated how potential control conflicts can be
straightforwardly and systematically detected (Sec. VI).

II. RELATED WORK

The problem of control conflicts caused by running multiple
independently-developed SDN apps, and the resulting destabi-
lization of the network, has recently started to receive attention
from the research community. Corybantic [8] and Athens [9]
take a coarse-grained approach that resolves potential conflicts
at run-time (i.e., when the network is in operation). They
let individual SDN apps generate “proposals” for network
configuration changes, and then require each app to evaluate
all proposals, based on some predefined policy or voting mech-
anism. While this approach can successfully resolve conflicts,
it does so with significant costs: (i) it requires all SDN apps
to implement the additional functionality of generating and
evaluating proposals; (ii) it only selects a single proposal at a
time, which can leave out potentially better solutions that com-
bine multiple conflict-free proposals, leading to sub-optimal
network configurations; (iii) it cannot identify the root cause
of the conflicts. Bairley and Xie [10] take a similar approach
(it thus suffers from similar drawbacks), except that it seeks
to combine multiple proposals to form a globally optimal
configuration using an evolutionary approach. In contrast, our
approach does not have any of those drawbacks.

Prior works [11, 12] concern individual-flow-level forward-
ing behavior and can detect policy violations (such as black
holes and loops) at that level; however, none of them can detect
the network state oscillation caused by conflicts of running
multiple SDN apps, since state oscillation is not a violation of
flow policy (it is a higher-level issue).
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Fig. 1. The Network Topology Used in the Case Study

III. CONTROL CONFLICTS AND NETWORK STATE
OSCILLATION: A CASE STUDY

A software-defined network typically has a three-tier ar-
chitecture [13]. The bottom layer, also called the data plane,
consists of “dumb” switches and other hardware boxes that
primarily focus on packet streaming. The middle layer, also
called the controller or the network operating system, is a
software platform that directly manages the hardware boxes
and offers an abstraction of the network resources via a set
of application programming interfaces (APIs). The APIs in
turn enable the development of network functions, also called
“SDN apps”, which form the top layer.

An SDN app generally seeks to optimize some aspect of
a network, by modifying the network state. The state of a
network includes multiple variables, such as traffic load, rout-
ing paths, power state of devices, up/down state of links, etc.
[14] SDN apps control the network state by issuing commands
to the controller via the northbound API; the controller then
compiles each command down to a set of new configurations
to be installed on the data plane.

We observed that, when multiple SDN apps are trying to
control the network state, conflicts may occur. For the purpose
of demonstrating both the problem and our solution in a
tangible and unambiguous manner, we now present a concrete
case study involving two popular types of SDN apps that have
been extensively researched (e.g., [15, 16, 17]): a power-saving
app and a load-balancing app, running on a toy network as
depicted by Fig. 1. End hosts attach to Routers A and B.
Between them there are two routing paths: one goes through
Router E and the other F . The traffic load on each link (w
or v) is modeled as a step function that has three states: high
(H), low (L), and zero (Z). Assume all devices and links have
the same capacity. The two apps work in the following way:
Power-saving app: it seeks to aggregate traffic to one of the
two paths (without loss of generality, assuming it’s always the
top path), and then turn off Router E to reduce energy use. To
realize this objective, it checks the utilization rates of Links w
and v every M seconds, and whenever the utilization rates of
both links are low or zero for two consecutive cycles, it issues
a command to the controller to turn off E and route all future
packets to the top path.
Load-balancing app: it seeks to spread traffic across all
possible paths, to minimize the load of any link. It checks
the utilization rates of w and v every M seconds. Whenever
one is high and the other is low or zero for three consecutive
cycles, it issues a command to the controller to route a larger
fraction of new flows entering the network in the next M
seconds through the less congested path. It stops issuing such
commands once the utilization rates of both links become high,
or both become low or zero (i.e., the load is balanced).

Intuitively, when the two apps run on the same network,
control conflict might occur, as one seeks to aggregate traffic
to a subset of paths, while the other seeks to spread traffic
evenly on all paths. However, the simple intuition is unable
to tell precisely when and how control conflict may arise, and
the consequences of the conflicts. The problem can get much
more complicated, as the conflict may be caused by more than
two apps, and the network may oscillate among more than two
states.

IV. MODELING INDIVIDUAL SDN APPS

This section first presents a formal model for individual
SDN apps, and then describes our approach for deriving the
model. The two SDN apps described in Sec. III are used as
running examples to illustrate the modeling process.

A. An Automaton-Based Model

Our model of an SDN app running on a network topology
follows the conventional definition of a Moore machine.

Definition 1 (Moore Machine): A Moore machine is a 6-
tuple (Q,Σ,Γ, δ, ν, q0), where Q is a finite set of states, Σ is
an input alphabet, Γ is an output alphabet, δ : Q×Σ→ Q is
the transition function, ν : Q→ Γ is the output function, and
q0 ∈ Q is the starting state.

Specifically for the SDN apps, they can be modeled as
a subset of Moore machines, of which the output alphabet
includes the two special responses: 0 (the null response) and
ω (the illegal response). Additionally, the model only needs
to include states that are reachable from the initial state; non-
reachable states can be safely ignored as they will never be
realized. To model reachable states, we need to extend the
transition function of a Moore machine to input sequences, as
follows: δ̂ : Q×Σ∗ → Q is defined by (1) δ̂(q, λ) = q, where λ
is the empty input sequence; and (2) δ̂(q, wa) = δ(δ̂(q, w), a)
for all q ∈ Q, w ∈ Σ∗, a ∈ Σ.

Definition 2 (Network Function Moore Machine): A network
function Moore machine is a Moore machine (Q,Σ,Γ, δ, ν, q0)
satisfying (1) {0, ω} ⊂ Γ, and (2) for any q ∈ Q there exists
w ∈ Σ∗ such that δ̂(q0, w) = q.

Here Q represents the set of software states of the SDN
app (note that these are different from the network states); Σ
represents inputs to the SDN app, which includes the network
states such as link load and topology; Γ represents outputs
from the SDN app, which are commands to the SDN controller
that seek to change the network state; 0 and ω are special
outputs representing the null output, and the illegal output (for
an input sequence not possible to occur – this is defined for
completeness purposes). The second condition ensures that any
state in Q must be reachable from the initial state q0.

B. A Rigorous Approach for Deriving the Automaton

Our approach for deriving the Moore machine of a given
SDN app is rigorous (based on the automaton theory), system-
atic (we offer a systematic process to follow), and constructive
(the state machine will be discovered at the end of the process).
It is based on a well-established rigorous method for software
specification, i.e., sequence-based specification [7, 6, 5, 4].
The input to our approach is an informal description of how the
SDN app is supposed to work on the given network topology



(this description is termed “functional requirements” in the
field of software engineering). The output is a Moore machine
representing the working mechanism of the SDN app. The
approach has three key steps: identification of stimuli and
responses, sequence enumeration, and automaton construction.

1) Step 1: Identification of stimuli and responses:
We first identify a list of stimuli (i.e., inputs) and
responses (i.e., outputs) of the SDN app running on
the given network topology. The power-saving app and
the load-balancing app share a common set of inputs:
{HwHv, HwLv, HwZv, LwHv, LwLv, LwZv, ZwHv, ZwLv,
ZwZv}, where H , L, and Z indicate link utilization is high,
low, or zero, respectively, and the subscript indicates which
link (i.e., w or v). Each input contains information about the
utilization rates of both links. Outputs of the power-saving
app are {OnE, OffE, 0}, where OnE/OffE represents turning
on/off the switch E (a request to turn on/off E, rather than
a successful command or operation, as such request may
be overridden [3]), respectively, and 0 represents the null
response, i.e., no output issued by the SDN app that potentially
changes the network’s state. Outputs for the load-balancing
app are {FtoE, EtoF, 0}, where FtoE/EtoF represents
moving flows from F /E to E/F , respectively.

2) Step 2: Sequence enumeration: We start with an
informal description of the requirements for each SDN app
running on the given topology, and tag (number) them to
facilitate tracing decisions we have made (in the specification
process) to the tagged requirements or derived requirements
(as a by-product the process also leads to the discovery of
derived requirements that were not originally stated, and the
resolution/correction of inconsistent/incorrect requirements).
Requirements for the power-saving app and for the load-
balancing app are listed in Tables I and II, respectively.
Original requirements were retrieved from descriptions of the
functions in [3]. Tags that begin with D indicate new require-
ments we derived in the specification process (following the
same assumptions as implied by [3]).

Next we perform the key step of sequence-based specifica-
tion, called sequence enumeration, to discover/construct every
detail of the state machine. We enumerate all finite sequences
of stimuli (inputs) in length-lexicographical order (i.e., first by
length, and within the same length lexicographically), and for
each enumerated sequence make two decisions:

- Response mapping. We map the sequence of inputs to a
response (output) of the network function. The response
is the output the network function produces in response to
the very last input in the sequence, given the input history.
For instance, the sequence LwLv.LwLv (we concatenate
inputs with dots) is mapped to the response OffE by
the power-saving function by Requirement 2 (Table I).
We introduce two special responses in theory: the null
response, denoted by 0, for the lack of an externally
observable output (there might have been an internal
state update), and the illegal response, denoted by ω,
for an operationally unrealizable sequence of inputs (the
sequence cannot occur in practice). A sequence is illegal
if it is mapped to ω; otherwise, it is legal.

- Equivalence declaration. We determine if the sequence
is Moore equivalent to (and hence can be reduced to) a

TABLE I
REQUIREMENTS FOR THE POWER-SAVING FUNCTION

Tag Requirement
1 Assume each link exhibits a utilization rate that can vary over

time. This rate can be sampled on each cycle and is either high
(H), low (L), or zero (Z).

2 Suppose a power-saving machine tries to power down E when
the link utilization of both links v and w is low or zero for two
consecutive cycles. Any new flows are then routed to F .

3 The machine waits for two consecutive cycles when link w is
experiencing heavy load before restoring power to E.

4 The machine is designed such that the attempt to turn E off
may have failed or been overridden. Thus it is treated more as
a request than a command.

D1 Assume there is an attempt to turn on E at system
start/initialization.

D2 Assume that turning on E is also treated as a request than a
command.

D3 The latest two cycles’ link utilization for both v and w is
necessary to determine if a command needs to be issued to turn
on/off E.

D4 Except for at system initialization, an attempt to restore power
to E has to follow a recent power off attempt for which no other
restore attempt has been made, and only a zero link rate of v and
two consecutive high link rates of w have been observed since
that power off attempt.

D5 After a recent power off attempt that appears unsuccessful (by
a non-zero link utilization of v), another two consecutive cycles
of both links v and w being low or zero need to be observed to
power off E again.

D6 After a recent power off attempt, if v has been observed of zero
utilization it suggests the latest power off attempt might have
been successful, but is subject to future observations.

TABLE II
REQUIREMENTS FOR THE LOAD-BALANCING FUNCTION

Tag Requirement
D1 Assume load is balanced at system start/initialization.
D2 Continued balanced load does not change the (load) balanced

state the function is in.
D3 The load-balancing function needs to observe three consecutive

cycles of the same imbalanced load patterns before functioning.
D4 If load is observed re-balanced from an imbalanced state, the

load-balancing function returns to the (load) balanced state.
D5 If heavy load switches between the two links v and w, the load-

balancing function transitions to the corresponding imbalanced
state (based on which link has heavy load).

D6 After observing three consecutive cycles of the same imbalanced
load patterns (i.e., high w and low/zero v, or high v and low/zero
w), the load-balancing function directs load from the heavy link
to the light link.

D7 Load-balancing operations are issued based on the most recent
three consecutive cycles’ loads only, irrespective of whether the
same operation has been recently issued.

previously enumerated sequence. Two sequences u and v
are Moore equivalent if and only if for any input sequence
w, uw and vw always map to the same response by the
network function. This implies u and v are mapped to
the same response as well (as w could be the empty
sequence). For instance, LwLv.LwZv can be reduced to
the prior sequence LwLv.LwLv by Requirement 2 for the
power-saving function. Two equivalent sequences arrive
at the same state of the underlying Moore automaton
starting from the initial state. We chose to model it using
a Moore machine to be consistent with the transducer
model in [3], whereas in software specification Mealy
equivalence and a Mealy machine are used as they lead



to a shorter enumeration table. One could easily transform
between Moore and Mealy machines. When reducing a
sequence to a prior sequence, we follow the reduction
chain and get to the sequence that is itself unreduced.
For instance, HwZv is reduced to HwHv and not HwLv
as HwLv is further reduced to HwHv (for the power-
saving function). A sequence is reduced if it is Moore
equivalent to a prior sequence in length-lexicographical
order; otherwise, it is unreduced.

One starts with the empty sequence λ. To get all the
sequences of Length n + 1 (integer n ≥ 0) one extends all
the sequences of Length n by every stimulus, and considers
the extensions in lexicographical order. This inherently com-
binatorial process can be controlled by two observations:

- If Sequence u is reduced to a prior sequence v, there is
no need to extend u, as the behaviors of the extensions
are defined by the same extensions of v.

- If Sequence u is illegal, there is no need to extend u, as
all of the extensions must also be illegal (i.e., physically
unrealizable).

Therefore, only legal and unreduced (also called extensible)
sequences of Length n get extended by every stimulus for
consideration at Length n+ 1. The process continues until all
the sequences of a certain length are either illegal or reduced
to prior sequences. The enumeration becomes complete. This
terminating enumeration length is discovered in enumeration,
and varies from application to application.

Excerpt of an enumeration for the power-saving function is
shown in Table III. We show the enumeration until Length 3
due to lack of space (the enumeration terminates at Length
4). Columns of the table are for enumerated sequences, their
mapped responses, possible reductions to prior sequences
under Moore equivalence, and traces to requirements. We
similarly performed the enumeration for the load-balancing
function, but omitted it here due to lack of space.

3) Step 3: Construction of the automaton: We observe
that the completed enumeration from the previous step en-
codes a Moore machine as follows. First we retrieve all the
unreduced sequences; each represents a state, whose associated
output is the mapped response of the unreduced sequence (that
can be read off from the table). Table IV shows the mapping
from unreduced sequences in the power-saving enumeration
to Moore states of the power-saving automaton. The mapping
table for the load-balancing function is omitted here due to
lack of space.

With this observation we are now ready to construct the
automaton. For doing so, we simply map each row in the
enumeration table (except the empty sequence) to a transition
in the Moore machine as follows: if the prefix sequence u
concatenated with the current stimulus a is reduced to the
sequence w (here we treat any unreduced sequence as being
reduced to itself; an equivalence relation must be reflexive),
then a transition triggered by the input a goes from the state
represented by u to the state represented by w. For instance,
HwHv.HwHv being reduced to HwHv in the power-saving
enumeration implies a transition from State r0 to State r0 on
Input HwHv for the power-saving automaton.

The state machines for both apps constructed in this step are
shown in Fig. 2 and Fig. 3. Their equivalent formal definitions

TABLE III
EXCERPT OF AN ENUMERATION FOR THE POWER-SAVING FUNCTION

UNTIL LENGTH 3

Sequence Response Equivalence Trace
λ OnE D1, D2
HwHv 0 D3
HwLv 0 HwHv D3
HwZv 0 HwHv D3
LwHv 0 HwHv D3
LwLv 0 D3
LwZv 0 LwLv D3
ZwHv 0 HwHv D3
ZwLv 0 LwLv D3
ZwZv 0 LwLv D3
HwHv .HwHv 0 HwHv D3
HwHv .HwLv 0 HwHv D3
HwHv .HwZv 0 HwHv D3
HwHv .LwHv 0 HwHv D3
HwHv .LwLv 0 LwLv D3
HwHv .LwZv 0 LwLv D3
HwHv .ZwHv 0 HwHv D3
HwHv .ZwLv 0 LwLv D3
HwHv .ZwZv 0 LwLv D3
LwLv .HwHv 0 HwHv D3
LwLv .HwLv 0 HwHv D3
LwLv .HwZv 0 HwHv D3
LwLv .LwHv 0 HwHv D3
LwLv .LwLv OffE 2
LwLv .LwZv OffE LwLv .LwLv 2
LwLv .ZwHv 0 HwHv D3
LwLv .ZwLv OffE LwLv .LwLv 2
LwLv .ZwZv OffE LwLv .LwLv 2
LwLv .LwLv .HwHv 0 HwHv 4
LwLv .LwLv .HwLv 0 HwHv 4
LwLv .LwLv .HwZv 0 3, D6
LwLv .LwLv .LwHv 0 HwHv 4
LwLv .LwLv .LwLv 0 LwLv 4, D5
LwLv .LwLv .LwZv 0 D6
LwLv .LwLv .ZwHv 0 HwHv 4
LwLv .LwLv .ZwLv 0 LwLv 4, D5
LwLv .LwLv .ZwZv 0 LwLv .LwLv .LwZv D6

TABLE IV
THE MAPPING FROM UNREDUCED SEQUENCES TO MOORE STATES FOR

THE POWER-SAVING FUNCTION

Unreduced Sequence State Output
λ r5 OnE
HwHv r0 0
LwLv r1 0
LwLv .LwLv r2 OffE
LwLv .LwLv .HwZv r4 0
LwLv .LwLv .LwZv r3 0

are omitted for lack of space.

V. MODELING JOINT EFFECT OF MULTIPLE SDN APPS

One benefit of using automata to model SDN apps is that,
when two SDN apps run in parallel on the same network
topology, their behavior can be modeled by the standard
automaton product, which can be straightforwardly computed
by applying the following definition:1

Definition 3 (Product of Network Function Moore Ma-
chines): Given two network function Moore machines M1 =
(Q1,Σ1,Γ1, δ1, ν1, q1,0) and M2 = (Q2,Σ2,Γ2, δ2, ν2, q2,0),
the product of M1 and M2, denoted by M1 ×M2, is defined

1This operation can be easily extended to more than two SDN apps and
performed in a successive way.
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Fig. 2. The Power-Saving Moore Machine
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Fig. 3. The Load-Balancing Moore Machine

by M1×M2 = (Q1×Q2,Σ1×Σ2,Γ1×Γ2, δ, ν, (q1,0, q2,0)),
where δ and ν are defined by:
δ((p, q), (a, b)) = (δ1(p, a), δ2(q, b)),
ν((p, q)) = (ν1(p), ν2(q)).
We extend the null response and the illegal response to the

product of two network function Moore machines by assuming
0 = (0, 0) and ω = (r1, r2) where either r1 = ω or r2 = ω.
An input (a, b) ∈ Σ1×Σ2 is legal if it is physically realizable;
otherwise, it is illegal.

Note that we also extend the concept of being legal/illegal
to inputs of a product automaton.

Example 4: The product of the power-saving Moore ma-
chine M1 and the load-balancing Moore machine M2 is
defined by M = M1 × M2 = (Q1 × Q2,Σ × Σ,Γ1 ×
Γ2, δ, ν, (r5, q0)), where δ and ν are defined by:
δ((p, q), (a, b)) = (δ1(p, a), δ2(q, b)),
ν((p, q)) = (ν1(p), ν2(q)).
Observe that {(a, a) : a ∈ Σ} is the set of all legal inputs

of M .
One interesting observation on the constructed product

Moore machine is that not all its states may be reachable from
the initial state. Intuitively, for a state (pj , qj) in the product
Moore machine M = M1×M2 to be reachable from another

state (pi, qi), there must exist paths of the same length from
pi to pj in M1 and from qi to qj in M2.

Definition 5 (Reachable States): Given the product M =
(Q,Σ,Γ, δ, ν, q0) of two network function Moore machines
and a set of legal inputs I ⊆ Σ, the set RS of reachable states
of M is defined by RS = {q : q ∈ Q,∃w ∈ I∗. δ̂(q0, w) = q}.

This definition enabled us to develop a simple algorithm to
automatically identify all reachable states in a product Moore
machine, which we omitted here due to space constraint.

Definition 6 (Joint Network Function Moore Machine):
Given the product M = M1 × M2 = (Q,Σ,Γ, δ, ν, q0) of
two network function Moore machines M1 and M2, and a set
of legal inputs I ⊆ Σ, let RS be the set of reachable states of
M , δ′ be δ restricted to RS× I , and ν′ be ν restricted to RS:
δ′(q, a) = δ(q, a), ν′(q) = ν(q). Let Γ′ = range(ν′)∪{0, ω},
where range(ν′) denotes the range of ν′. The joint network
function Moore machine M ′ of M1 and M2 can be defined
by M ′ = (RS, I,Γ′, δ′, ν′, q0).

Clearly a joint network function Moore machine satisfies
the definition for a network function Moore machine.

Example 7: The joint network function Moore machine
M of the power-saving and the load-balancing automata is
omitted due to space. Only 13 out of the 42 states of Q1×Q2

are reachable, and included in the joint automaton.

VI. PROPERTY ANALYSIS AND CONFLICT DETECTION

We present analysis of the joint network function Moore
machine, which enables detection of control conflicts as well
as answers the many questions regarding the network’s behav-
ior. Our analysis focuses on three critical and closely related
concepts: stable states of a Moore machine, safe operational
region of a network, and conflict freeness of SDN apps.

A. Stable States of a Moore Machine
Intuitively, an SDN app enters a stable state, if it no

longer attempts to modify the network state (i.e., the network
has reached a desirable state from the app’s perspective).
This intuition can be formally defined using the automaton
model. To do so, we extend the output function of a Moore
machine to pairs of states and input sequences as follows.
ν̂ : Q × Σ∗ → Γ∗ is defined by (1) ν̂(q, λ) = ν(q), and (2)
ν̂(q, wa) = ν̂(q, w)ν(δ̂(q, wa)) for all q ∈ Q, w ∈ Σ∗, a ∈ Σ.

We can now formally define the stable states of a network
function Moore machine as follows:

Definition 8 (Stable State): Let q ∈ Q be a state of the
network function Moore machine M = (Q,Σ,Γ, δ, ν, q0). q is
a stable state of M iff the following hold for all a ∈ Σ:
(1) δ(q′, a) = q implies ν̂(q, an) = 0n+1 for all integer n ≥

0, and
(2) q = q0 implies ν(q0) = 0.

Informally, two conditions need to be satisfied for a state
to be a stable state: (1) on any input by which there is
an incoming arc to this state, if a sequence of such input
continues it will never land on any state that produces a non-
null response, which could potentially change this input (i.e.,
a network state); and (2) the starting state must have the null
output to be a stable state.

It is easy to see that this definition enforces any stable state
be associated with the null response, as shown by the following
theorem (proof is omitted due to lack of space).



s1/ν(s1) s2/ν(s2)
x2x1 x3

sn/ν(sn)
xn

x1 = x  x1Rν(s1)x2 x2Rν(s2)x3 xn-1Rν(sn-1)xn

s1 = q0 s2 = δ(s1, x2) sn = δ(sn-1, xn)

Fig. 4. An Example Sequence of Inputs and States for Analyzing the Safe
Operational Region

Theorem 9: Let q be a stable state of the network function
Moore machine M = (Q,Σ,Γ, δ, ν, q0). ν(q) = 0.

Example 10: Applying Definition 8, it can be straightfor-
wardly discovered that the constructed power-saving automa-
ton M1 has two stable states r0 and r3; the constructed load-
balancing automaton M2 has one stable state q0; and the joint
automaton M (Example 7) has two stable states (r0, q0) and
(r3, q0). We omit the proofs due to space constraint.

B. Safe Operational Region of a Network

Intuitively, a network becomes “stabilized” when none of
the SDN apps running on top of it attempts to change its
state; that is, all the SDN apps have entered a stable state as
defined by Definition 8. Thus we consider a network state to
be “safe”, if it can eventually (i.e., after a finite number of
state changes) lead to a stabilized network, which guarantees
no state oscillation. We term the set of all such safe states of
a network to be the safe operational region of the network.

Note that a network’s state is already encapsulated in the
stimuli (i.e., inputs) of a network function Moore machine.
Hence we are able to formally define the concept of safe
operational region of a network, as follows:

Definition 11 (Safe Operational Region): Given a network
function Moore machine M = (Q,Σ,Γ, δ, ν, q0), a set of
binary relations Rr over Σ for each r ∈ Γ − {ω} such
that (1) R0 : Σ → Σ is the identify function; and (2)
(r 6= 0, aRrb) implies either δ(p, a) = q, ν(q) = r for
some p, q ∈ Q or ν(q0) = r, and x ∈ Σ, x is in the safe
operational region iff the alternating sequence of inputs and
states x1, s1, x2, s2, · · · , xn, sn, in which x = x1, q0 = s1,
xi−1Rν(si−1)xi, si = δ(si−1, xi) for all i ≥ 2, ν(si) 6= ω
for all i ≥ 1, ends with some stable state sn of M . The safe
operational region of the network is the set of all such x’s.

The set of binary relations Rr over I define how each output
of an SDN app modifies the status of the network (notice
that the null response does not modify the network status,
as indicated by the identity function). Informally, a network
state, as encapsulated in the input x, is in the safe operational
region if and only if a stable state of the Moore machine will
always be reached when starting from the initial state of the
Moore machine with the input x. At that point the network
state will no longer be changed by the running SDN app(s).
Fig. 4 illustrates an example sequence of inputs and states that
need to be examined from the initial state q0 with a specific
input (say x).

Example 12 (Safe Operational Region of Example Network):
Applying Definition 11 on the joint automaton as defined in
Example 7, it can be computed that the safe operational region
of the example network ( Fig. 1) includes HwHv , LwZv , and
ZwZv . We omit the algorithm here due to lack of space.

C. Conflict Freeness of SDN Apps
An SDN network is free of conflict, if starting from any

state it can eventually become stabilized; that is, every possible
network state is in its safe operational region. We have the
following formal definition:

Definition 13 (Conflict-Free SDN apps): Two or more SDN
apps are conflict-free if and only if their joint network function
Moore machine has the set of inputs identical to the safe
operational region of the network.

Note that Definition 13 not only enables direct detection
of potential conflict, but also precisely specifies under what
network condition such conflict will arise.

Example 14 (Conflict in the Example Network): Applying
Definition 13, we immediately see that the two SDN apps
running on the example network are not conflict-free: this is
because a subset of inputs to the joint network function Moore
machine including HwLv , HwZv , LwHv , LwLv , ZwHv , and
ZwLv , is left out of the safe operational region.

VII. CONCLUSION AND FUTURE WORK

We presented a theoretical framework, based on rigorous
software specification, for detecting conflicts caused by run-
ning multiple SDN apps in parallel. Our future work includes
experimental validation and further investigation on the scal-
ability and applicability of the framework.
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