
Specification-based Testing with Simulation Relations

Canh Minh Do, Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {canhdominh,ogata}@jaist.ac.jp

Abstract—We propose a concurrent program testing tech-
nique that is a specification-based one and uses simulation
relations from concurrent programs to formal specifications.
For a formal specification S, a concurrent program P and
a simulation relation r from P to S, the proposed technique
is outlined as follows: (1) state sequences s0, s1, . . . , sn are
generated from P , (2) state sequences s′′0 , s

′′
1 , . . . , s

′′
m for S

are obtained by converting s0, s1, . . . , sn with r and (3) it is
checked that S can accept s′′0 , s

′′
1 , . . . , s

′′
m. (1) is very crucial,

but we first tackle (2) and (3) and then the present paper
focuses on (2) and (3).

Keywords-concurrent program testing; Maude; meta-
programming; simulation-based testing; simulation relations

I. INTRODUCTION

Major concepts of programming languages that can be
used to write concurrent programs emerged in the 1980s
and since nearly then studies on testing concurrent programs
have been conducted. Arora, et al. have comprehensively
surveyed testing concurrent programs [1]. They categorize
it into eight classes: (a) reachability testing, (b) structural
testing, (c) model-based testing, (d) mutation-based testing,
(e) slicing-based testing, (f) formal method-based testing,
(g) random testing, and (h) search-based testing. Model
checking concurrent programs has been intensively studied,
which may be classified into (c) and/or (f). Java Pathfinder
(JPF) [2], [3] is such a model checker. Model checking is
superior to the other testing techniques in that the former
exhaustively checks all possible execution paths (or com-
putations). However, model checking concurrent programs
often encounters the notorious state explosion, which has
not yet been conquered reasonably well.

We need a concurrent program testing technique that
can scale reasonably well because most important software
systems are in the form of concurrent programs, which are
large-scale. We then propose a concurrent program testing
technique in this paper toward this aim. The technique is a
specification-based one. We suppose that programmers write
concurrent programs based on formal specifications. The
FeliCa team has demonstrated that use of formal specifi-
cations is useful as well as feasible in a practical setting [4].

This work was partially supported by JSPS KAKENHI Grant Number
JP26240008 & JP19H04082.

DOI reference number: 10.18293/SEKE2019-027

Therefore, our assumption must be reasonable. Programmers
need to comprehend formal specifications and must know
their concurrent programs well and then they must be able to
find some good relations between formal specifications and
concurrent programs. Such relations should be simulation
relations from the latter to the former. Then, we use such
simulation relations to test concurrent programs.

Given a formal specification S, a concurrent program
P and a simulation relation r from P to S, the pro-
posed technique is outlined as follows: (1) state se-
quences s0, s1, . . . , sn are generated from P , (2) state se-
quences s′′0 , s

′′
1 , . . . , s

′′
m for S are obtained by converting

s0, s1, . . . , sn with r and (3) it is checked that S can accept
s′′0 , s

′′
1 , . . . , s

′′
m. (1) is very crucial, but we first tackle (2) and

(3) and then the present paper focuses on (2) and (3).
Our approach uses formal specifications to test concurrent

programs. Testing programs based on formal specifications
has been studied [5]. Among such techniques are a CSP-
based one [6] and an Event-B model-based on [7]. One dif-
ference between existing such techniques and our approach
is that test cases are generated from formal specifications
in the former, while the counterparts are generated from
concurrent programs.

The rest of the paper is organized as follows: § II Pre-
liminaries, § III Toward Concurrent Program Testing, § IV
Specification Testing with Simulation Relations, §V Exper-
iments, and §VI Conclusion.

II. PRELIMINARIES

A state machine M , 〈S, I, T 〉 consists of a set S of
states, the set I ⊆ S of initial states and a binary relation
T ⊆ S×S over states. (s, s′) ∈ T is called a state transition
and may be written as s →M s′. Let →∗M be the reflexive
and transitive closure of→M . The set RM ⊆ S of reachable
states w.r.t. M is inductively defined as follows: (1) for each
s ∈ I , s ∈ R and (2) if s ∈ R and (s, s′) ∈ T , then s′ ∈ R.
A state predicate p is called invariant w.r.t. M iff p(s) holds
for all s ∈ RM . A finite sequence s0, . . . , si, si+1, . . . , sn
of states is called a finite semi-computation of M if s0 ∈ I
and si →∗M si+1 for each i = 0, . . . , n − 1. If that is the
case, it is called that M can accept s0, . . . , si, si+1, . . . , sn.

Given two state machines MC and MA, a relation r over
RC and RA is called a simulation relation from MC to

Figure 1. A simulation relation from MC to MA

MA if r satisfies the following two conditions: (1) for each
sC ∈ IC , there exists sA ∈ IA such that r(sC , sA) and (2)
for each sC , s

′
C ∈ RC and sA ∈ RA such that r(sC , sA)

and sC →MC
s′C , there exists s′A ∈ RA such that r(sA, s′A)

and sA →∗MA
s′A [8] (see Fig. 1). If that is the case, we may

write that MA simulates MC with r. There is a theorem
on simulation relations from MC to MA and invariants w.r.t
MC and MA: for any state machines MC and MA such
that there exists a simulation relation r from MC to MA,
any state predicates pC for MC and pA for MA such that
pA(sA) ⇒ pC(sC) for any reachable states sA ∈ RMA

and sC ∈ RMC
with r(sC , sA), if pA(sA) holds for all

sA ∈ RMA
, then pC(sC) holds for all sC ∈ RMC

[8]. The
theorem makes it possible to verify that pC is invariant w.r.t.
MC by proving that pA is invariant w.r.t. MA, MA simulates
MC with r and pA(sA) implies pC(sC) for all sA ∈ RMA

and sC ∈ RMC
with r(sC , sA).

States are expressed as braced soups of observable compo-
nents, where soups are associative-commutative collections
and observable components are name-value pairs in this
paper. The state that consists of observable components oc1,
oc2 and oc3 is expressed as {oc1 oc2 oc3}, which equals
{oc3 oc1 oc2} and some others because of associativity and
commutativity. We use Maude [9], a rewriting logic-based
computer language, as a specification language because
Maude makes it possible to use associative-commutative
collections.

Simple Communication Protocol (SCP), a communication
protocol, is used as one running example in this paper. SCP
consists of a sender, a receiver and two channels between
them. One channel called dc (data channel) is a cell that is
used to transfer pairs 〈d, b〉, where d is a data value and b
is a Boolean value, to the receiver from the sender, and the
other channel called ac (ack channel) is a cell that is used
to deliver Boolean values (as ack) to the sender from the
receiver. Both cells are unreliable in that the contents may
drop. The sender maintains two pieces of information that
are sb (sender bit) and data. sb is a Boolean value and data
is the data to be delivered next to the receiver. The receiver
maintains two pieces of information that are rb (receiver
bit) and buf . rb is Boolean value and buf is the list of data
received so far. Initially, sb is true, data is d(0), rb is true,

Figure 2. A state of SCP

buf is empty, dc is empty and cc is empty. The sender has
two actions to do that are d-snd and d-rec. d-snd does the
following: the pair 〈data, sb〉 is put into dc. d-rec does the
following: if ac has a Boolean value b, then b is extracted
and if b 6= sb, then data is set to the next data and sb
is negated and otherwise nothing changes. The receiver has
two actions to do that are a-snd and a-rec. a-snd does the
following: rb is put into ac. a-rec does the following: if dc
has 〈d, b〉, then 〈d, b〉 is extracted and if b = rb, then d is
added to buf at the end and rb is negated and otherwise
nothing changes. There are two more actions that are d-drp
and a-drp. d-drp does the following: if dc is not empty,
dc becomes empty. a-drp does the following: if ac is not
empty, ac becomes empty. Fig. 2 shows a state of SCP.

A state of SCP is expressed as follows:

{(scp-sb: b1) (scp-data: d(n)) (scp-rb: b2)
(scp-buf: dl) (scp-dc: cell1) (scp-ac: cell2)}

Each of the six actions in SCP is formalized as state tran-
sitions, which are described in Maude (conditional) rewrite
rules (or rules) as follows:

rl [d-snd] : {(scp-sb: B)(scp-data: D)
(scp-dc: DC) OCs}
=> {(scp-sb: B)(scp-data: D)
(scp-dc: (< D,B >)) OCs} .

crl [a-rec1] : {(scp-sb: B)(scp-data: d(N))
(scp-ac: B’) OCs}
=> {(scp-sb: (not B))(scp-data: d(N + 1))
(scp-ac: empc) OCs} if B =/= B’ .

crl [a-rec2] : {(scp-sb: B)(scp-data: D)
(scp-ac: B’) OCs}
=> {(scp-sb: B)(scp-data: D)(scp-ac: empc)
OCs} if B = B’ .

rl [a-snd] : {(scp-rb: B)(scp-ac: AC) OCs}
=> {(scp-rb: B)(scp-ac: B) OCs} .

crl [d-rec1] : {(scp-rb: B)(scp-buf: Ds)
(scp-dc: (< D,B’ >)) OCs}
=> {(scp-rb: (not B))(scp-buf: (Ds | D))
(scp-dc: empc) OCs} if B = B’ .

crl [d-rec2] : {(scp-rb: B)(scp-buf: Ds)
(scp-dc: (< D,B’ >)) OCs}
=> {(scp-rb: B)(scp-buf: Ds)
(scp-dc: empc) OCs} if B =/= B’ .

Figure 3. Specification-based concurrent program testing with a simulation
relation

rl [d-drp] : {(scp-dc: P) OCs}
=> {(scp-dc: empc) OCs} .

rl [a-drp] : {(scp-ac: B) OCs}
=> {(scp-ac: empc) OCs} .

The search command given by Maude can conduct reacha-
bility analysis of state machines specified in Maude. Let s1
and s2 be the following states:

{(scp-sb: true)(scp-data: d(0))
(scp-rb: false)(scp-buf: d(0))
(scp-dc: < d(0),true >)(scp-ac: false)}

{(scp-sb: false)(scp-data: d(1))
(scp-rb: false)(scp-buf: d(0))
(scp-dc: < d(0),true >)(scp-ac: false)}

The search command “search [1,2] in SCP : s1
=>* s2 .” checks if s2 is reachable from s1 in depth 2,
where SCP is the module in which SCP is specified. If so,
the command finds one transition sequence from s1 to s2.
Because there is such a transition sequence, the commands
finds it. If [1,1] is used instead of [1,2], then because
there is no transition sequence from s1 to s2 in depth 1, the
command does not find any such transition sequences.

Maude has meta-programming (or reflexive programming)
facilities with which we can develop software tools, such
as Real-Time Maude. The first search command can be
expressed in the term: metaSearch(upModule(’SCP,
false), upTerm(s1), upTerm(s2), nil, ’*, 2,
0), where upModule converts a module to its meta-
representation, the term representing the module, and
upTerm converts a term to its meta-representation. By
reducing the term, we can essentially get the same result
as the one obtained by the first search command.

III. TOWARD CONCURRENT PROGRAM TESTING

Testing concurrent programs is inherently different from
testing sequential programs. All we need to test the latter is
basically to check the output for each input, although there
is some room to generate better test cases. Even though there
is no decidable test oracle, we could use the metamorphic

Figure 4. Specification-based specification testing with a simulation
relation

testing technique. Concurrent programs have multiple active
entities, such as threads, and therefore can lead to lots of
execution scenarios. What execution scenario will be taken
depends a scheduler, such as Java VM thread scheduler.
It is usually impossible to control such a scheduler with
an ordinal program. There may be some nondeterminism
in concurrent programs. Hence, it does not suffice to have
concurrent programs run on real machines to test such
programs because we cannot check all possible execution
scenarios.

One possible remedy is to use software model checkers,
such as Java Pathfinder (JPF) [3]. JPF has its own VM run-
ning on a native Java VM and controls its own VM to cover
all possible execution scenarios of concurrent programs.
Many case studies with JPF have been reported and several
techniques for JPF that may mitigate the notorious state
explosion have been proposed. Even so, non-JPF experts can
often encounter the state explosion that cannot be mitigated
at all. We have written an ABP simulator in Java and tried to
model check with JPF running on a computer that carries a
32GB memory the simulator in which each channel capacity
is 3 and 3 messages are delivered to the receiver from the
sender [10]. We have spent several days but the information
we have obtained was out of memory. Thus, we do not think
that it would suffice to use software model checkers, such
as JPF, to test concurrent programs.

We propose a concurrent program testing technique that
is a specification-based testing one (see Fig. 3). Let S be
a formal specification of a state machine and P be a
concurrent program. A state machine could be extracted
from P , for example, as what is done by JPF. What we
would like to do is to test if P is an implementation of S,
or S simulates P . To this end, we use a simulation relation
candidate r from P to S. For a formal specification S, a
concurrent program P and a simulation relation r from P to
S, the proposed technique does the following: (1) finite state
sequences s1, s2, . . . , sn are generate from P , (2) each si of
P is converted to a state s′i of S with r, (3) one of each two
consecutive states s′i and s′i+1 such that s′i = s′i+1 is deleted,
(4) finite state sequences s′′1 , s

′′
2 , . . . , s

′′
m are then obtained

and (5) it is checked that s′′1 , s
′′
2 , . . . , s

′′
m can be accepted by

S. We suppose that programmers write concurrent programs
based on formal specifications, although it may be possi-
ble to generate concurrent programs (semi-)automatically
from formal specifications in some cases. The FeliCa team
has demonstrated that programmers can write programs
based on formal specifications and moreover use of formal
specifications can make programs high-quality. Therefore,
our assumption is meaningful as well as feasible. If so,
programmers must have profound enough understandings of
both formal specifications and concurrent programs so that
they can come up with simulation relation candidates from
the latter to the former.

In our approach, state sequences generated from P are test
cases. Therefore, it is really crucial that what state sequences
are generated from P and how they are generated. The
former and the latter have something to do with the quality of
test cases and the scalability of our approach, respectively.
Some may say that our approach has the same problems
as software model checkers. Our approach never checks
any properties while generating state sequences from P . It
would take non-trivial time to check properties. Thus, we
anticipate that our approach can scale better than software
model checkers.

IV. SPECIFICATION TESTING WITH SIMULATION
RELATIONS

This paper mainly focuses on the left part of the diagram
shown in Fig. 3. However, we need something, which is
substituted for P , from which state sequences are generated.
We use an abstract specification SA as S and a concrete
specification SC as P in this paper (see Fig. 4).

It is often the case that any state sequences generated from
SC cannot be accepted by SA. A simulation relation r from
SC to SA is not necessarily a function from SC states to SA

states or from SA states to SC states in general. Because
states in SC are often designed by refining those in SA,
however, we conjecture that r is a function from SC states
to SA states in practice.

Given a finite sequence s0, s1, . . . , sn of states generated
from SC , each state is converted into a state in SA with r,
generating s′0, s

′
1, . . . , s

′
n, where s′i = r(si) for each i and r

is used as a function from SC states to SA states. There may
be two consecutive states s′i and s′i+1 such that s′i = s′i+1.
If so, one of them is deleted. We then generate a sequence
s′′0 , s

′′
1 , . . . , s

′′
m of states in SA such that there does not exists

i such that s′′i = s′′i+1 (see the bottom part of Fig. 4). We
finally check if s′′0 , s

′′
1 , . . . , s

′′
m is a finite semi-computation

of SA (see the left part of Fig. 4).
Let sim be a function from SC states to SA. The function

simList that converts s0, s1, . . . , sn to s′′0 , s
′′
1 , . . . , s

′′
m is

defined as follows:

eq simList(C | L, S)
= if S == {empty}

Figure 5. A state of ABP

then sim(C) | simList(L, sim(C))
else (
if compareTo(sim(C),S)
then simList(L, S)
else sim(C) | simList(L, sim(C)) fi) fi .

where _|_ is used as the constructor of state sequences.
compareTo(sim(C),S) checks if there are two consec-
utive states such that they are equal.

Given a module mQid in which a state machine is
specified, two states S1 & S2 and the depth B, the function
checkSttTrans checks if S2 is reachable from S1 in B
w.r.t. the state machine, which is defined as follows:

ceq checkSttTrans(mQid, S1, S2, B)
= if sttTrans? :: ResultTriple

then true else false fi
if sttTrans? :=

metaSearch(upModule(mQid, false),
upTerm(S1), upTerm(S2), nil, ’*, B, 0) .

metaSearch is used to check if S2 is reachable from S1
in B w.r.t. the state machine specified as mQid.

Given a module mQid in which a state machine is
specified, a sequence of the state machine states and a
depth B, the function checkConform checks if the state
sequence is a finite semi-computation of the state machine,
which is defined as follows:

eq checkConform(mQid, S1 | S2 | L, B)
= $checkConform(mQid, S2 | L, S1, 0, B).
eq $checkConform(mQid, nil, S, N, B)
= success .
eq $checkConform(mQid, S2 | L, S1, N, B)
= if checkSttTrans(mQid, S1, S2, B)

then $checkConform(mQid, L, S2, N + 1, B)
else {msg: "Failure",from: S1,to: S2,

index: N, bound: B} fi .

checkSttTrans(mQid, S1, S2, B) checks if S1
→∗mQid S1 in the depth B.

V. EXPERIMENTS

We use a specification of Alternating Bit Protocol (ABP)
as SC . ABP is a communication protocol as SCP. A state in
ABP is shown in Fig. 5. The difference between ABP and
SCP is as follows: instead of the two cells used in SCP, ABP
uses as two channels two queues that are unreliable in that

an element in the queues may drop and/or be duplicated.
Therefore, there are two actions for each queue: d-drp and
d-dup for dc and a-drp and a-dup for ac. There are totally
eight actions in ABP.

A state of ABP is expressed as follows:

{(abp-sb: b1) (abp-data: d(n)) (abp-rb: b2)
(abp-buf: dl) (abp-dc: q1) (abp-ac: q2)}

Each of the eight actions in ABP is formalized as state
transitions, which are described in Maude rules as follows:

rl [d-snd] : {(abp-sb: B)(abp-data: D)
(abp-dc: Ps) OCs}
=> {(abp-sb: B)(abp-data: D)
(abp-dc: (Ps | < D,B >)) OCs} .

crl [a-rec1] : {(abp-sb: B) (abp-data: d(N))
(abp-ac: (B’ | Bs)) OCs}
=> {(abp-sb: (not B)) (abp-data: d(N + 1))
(abp-ac: Bs) OCs} if B =/= B’ .

crl [a-rec2] : {(abp-sb: B) (abp-data: D)
(abp-ac: (B’ | Bs)) OCs}
=> {(abp-sb: B) (abp-data: D)
(abp-ac: Bs) OCs} if B = B’ .

rl [a-snd] : {(abp-rb: B)(abp-ac: Bs) OCs}
=> {(abp-rb: B) (abp-ac: (Bs | B)) OCs} .

crl [d-rec1] : {(abp-rb: B)(abp-buf: Ds)
(abp-dc: (< D,B’ > | Ps)) OCs}
=> {(abp-rb: (not B))(abp-buf: (Ds | D))
(abp-dc: Ps) OCs} if B = B’ .

crl [d-rec2] : {(abp-rb: B)(abp-buf: Ds)
(abp-dc: (< D,B’ > | Ps)) OCs}
=> {(abp-rb: B)(abp-buf: Ds)(abp-dc: Ps)
OCs} if B =/= B’ .

rl [d-drp] : {(abp-dc: (Ps1 | P | Ps2)) OCs}
=> {(abp-dc: (Ps1 | Ps2)) OCs} .

rl [d-dup] : {(abp-dc: (Ps1 | P | Ps2)) OCs}
=> {(abp-dc: (Ps1 | P | P | Ps2)) OCs} .

rl [a-drp] : {(abp-ac: (Bs1 | B | Bs2)) OCs}
=> {(abp-ac: (Bs1 | Bs2)) OCs} .

rl [a-dup] : {(abp-ac: (Bs1 | B | Bs2)) OCs}
=> {(abp-ac: (Bs1 | B | B | Bs2)) OCs} .

Let sim be a simulation function that converts an ABP
state

(abp-sb: S)(abp-data: D)(abp-rb: R)
(abp-buf: BUFF)(abp-dc: DC2)(abp-ac: AC2)

to a SCP state

{(scp-sb: S)(scp-data: D)(scp-rb: R)
(scp-buf: BUFF)(scp-dc: norm(hd(DC2)))
(scp-ac: norm(hd(AC2)))}

where hd returns the top element if a given queue is not
empty and an error element otherwise and norm returns the

Figure 6. Time taken when the length of each state sequence is fixed
(100) and the number of state sequences is changed (100, 1000, 10000,
50000, 100000, 500000 & 1000000)

cell in which the element is stored if the argument is an
element and the empty cell if it is an error element.

Let seqABP100 be a sequence of states randomly
generated from the ABP specification such that its
length is 100. Let seqSCP be the sequence of states
obtained by simList(seqABP100, {empty}).
We can check if seqSCP is a finite semi-
computation of the SCP specification in the depth 2
by checkConform(’SCP, seqSCP, 2). The result is
success. If we use 1 as the depth instead of 2, we get
the following result:

{msg: "Failure",from: {scp-sb: true scp-data:
d(0) scp-rb: false scp-buf: d(0) scp-dc:
< d(0),true > scp-ac: false},to: {scp-sb:
false scp-data: d(1) scp-rb: false scp-buf:
d(0) scp-dc: < d(0),true > scp-ac: false},
index: 20,bound: 1}

This is because two state transitions need to be taken to
move the state following from: to the state following to:
in SCP as described in Sect. II.

It is also important to know how many state transitions
need to be taken to move one state to the next state in the
state sequence of SA obtained by converting a state sequence
of SC with a simulation function. We also conjecture that
programmers who have written a concurrent program based
on a formal specification can guess such information because
they need to understand the formal specification well and
know a simulation relation from the concurrent program to
the formal specification.

We used the SCP and ABP specifications in Maude
to measure time taken to generate state sequences from
the ABP specification, transform them with the simulation
relation from ABP to SCP to other state sequences, and
check if the state sequences obtained can be accepted by
the SCP specification. We used one node of SGI UV3000

Figure 7. Time taken when the number of state sequences is fixed (1)
and the length of the state sequence is changed (100, 1000, 10000, 50000,
100000, 250000 & 500000)

that carries 2.90GH microprocessor and 256GB memory for
the experiments. Two sets of experiments were conducted.
One set is to fix the length of each state sequence, which is
100, and modify the number of state sequences generated,
which is one of 100, 1000, 10000, 50000, 100000, 500000
and 1000000. The other set is to fix the number of state
sequences generated, which is one, and modify the length of
the state sequence, which is one of 100, 1000, 10000, 50000,
100000, 250000 and 500000. For both sets of experiments,
2 was used as the depth of state transitions. Fig. 6 shows
the experimental results for the first set. The time taken
increases almost linearly as the number of state sequences
generated increases. Fig. 7 shows the experimental results
for the second set. The time taken increases a bit greater
than linearly as the length of the state sequence generated
increases.

VI. CONCLUSION

We have proposed a concurrent program testing technique
that is a specification-based one and uses simulation re-
lations from concurrent programs to formal specifications.
For a formal specification S, a concurrent program P and
a simulation relation from P to S, the proposed technique
is outlined as follows: (1) state sequences s0, s1, . . . , sn are
generated from P , (2) state sequences s′′0 , s

′′
1 , . . . , s

′′
m for S

are obtained by converting s0, s1, . . . , sn with r and (3) it is
checked that S can accept s′′0 , s

′′
1 , . . . , s

′′
m. The present paper

has focused on (2) and (3).
The first set of experiments (shown in Fig. 6) indicates

that it would be feasible to (almost) exhaustively check if
state sequences whose length is small and that are generated
from a concurrent program can be accepted by a formal
specification with a simulation relation (candidate) from the
program to the specification. This must be useful because
of the small world hypothesis [11], which means that most
flaws of programs lurk in a shallow depth and could be found

with such exhaustive testing in a shallow depth. The second
set of experiments (shown in Fig. 7) indicates that it would
not be feasible to exhaustively test state sequences whose
length is large and that are generated from a concurrent
program with a formal specification and a simulation relation
(candidate) from the program to the specification. There may
be flaws lurking in programs in a non-shallow depth [12].
Therefore, it is worth testing state sequences whose length
is large. It seems feasible to do so selectively. What and how
long state sequences are selected is one piece of our future
work.

The present paper does not mention anything about how to
generate state sequences from concurrent programs. We plan
to use Java as a programming language to write concurrent
programs and to use JPF to generate state sequences from
concurrent programs.

REFERENCES

[1] V. Arora, R. K. Bhatia, and M. Singh, “A systematic review
of approaches for testing concurrent programs,” Concurrency
Computat.: Pract. Exper., vol. 28, no. 5, pp. 1572–1611, 2016.

[2] K. Havelund and T. Pressburger, “Model checking JAVA
programs using JAVA PathFinder,” STTT, vol. 2, no. 4, pp.
366–381, 2000.

[3] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda,
“Model checking programs,” Autom. Softw. Eng., vol. 10,
no. 2, pp. 203–232, 2003.

[4] T. Kurita, M. Chiba, and Y. Nakatsugawa, “Application of
a formal specification language in the development of the
”Mobile FeliCa” IC chip firmware for embedding in mobile
phone,” in FM 2008, 2008, pp. 425–429.

[5] M. Gaudel, “Software testing based on formal specification,”
in PSSE 2007, 2007, pp. 215–242.

[6] A. Cavalcanti and M. Gaudel, “Testing for refinement in
CSP,” in ICFEM 2007, 2007, pp. 151–170.

[7] D. H. Vu, A. H. Truong, Y. Chiba, and T. Aoki, “Automated
testing reactive systems from Event-B model,” in 4th NAFOS-
TED Conf. Info. & Comp. Sci., 2017, pp. 207–212.

[8] K. Ogata and K. Futatsugi, “Simulation-based verification for
invariant properties in the OTS/CafeOBJ method,” in Refine
2007, 2007, pp. 127–154.

[9] M. Clavel, et al., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[10] K. Ogata, “Model checking designs with CafeOBJ – a con-
trast with a software model checker,” Workshop on Formal
Method and Internet of Mobile Things, ECNU, Shanghai,
China, 2014.

[11] D. Jackson, Software Abstraction. The MIT Press, 2012.

[12] K. Ogata, M. Nakano, W. Kong, and K. Futatsugi, “Induction-
guided falsification,” in 8th ICFEM, 2006, pp. 114–131.

