
An Empirical Study on Research and

Developmental Opportunities in Refactoring

Practices
Shivani Jain

University School of Information, Communication and

Technology, GGS Indraprastha University

Sector 16 C, Dwarka

Delhi, India

shivani.1091@gmail.com

Anju Saha
University School of Information, Communication and

Technology, GGS Indraprastha University

Sector 16 C, Dwarka

Delhi, India

anju_kochhar@yahoo.com

Abstract—Maintaining large complex software is one of the

major challenges faced by today’s software industry. Refactoring

is one way to do so. It is the process of changing internal structure

of project code or software design without altering functionality. It

improves software quality and reduces software entropy. This

paper presents the preliminary results of an explanatory survey

targeted at investigating refactoring practices by IT professionals.

221 participants helped to reveal important facts about refactoring

risks, benefits, limitations of tools, and how a team manages

consistency between different artefacts while practising

refactoring. Findings reveal that refactoring tools are under-used

as they have availability, usability and trust issues. An automated

system is the need of the hour to manage change consistencies,

visualizing code structures, detecting code, and design smells, and

performing refactorings. This study will enable researchers and

developers to understand their role in a better way as prevailing

issues with current state-of-art are exposed and challenges are

reported.

Keywords: Refactoring; code smells; refactoring tools; survey;

empirical study.

I. INTRODUCTION

Code smells are design flaws, though are free of syntax

errors, but can lead to future bugs and errors [1]. They are a

violation of basic design principles and are also known as anti-

patterns [2]. They contribute to financial debts and make

software complex, hard to understand and maintain, and make

changes difficult to embed. Thus, detection of such designs
flaws and their correction is an absolute necessity [3].

Refactoring is one of the techniques to remove these anomalies.

Refactoring is a well-organized practice for the reorganization

of the present body of code, changing its internal structure

without changing its external conduct. It is a sequence of little

functionality preserving transformations. It is done while

adding a feature, fixing a bug, and during code review [4].

Refactoring is mainly done to improve the internal structure
and readability of the software. It increases flexibility,

maintainability and reduces inter-modular couplings [5, 18]. It

DOI reference number: 10.18293/SEKE2019-038

can be done by a specialist or stakeholders like software

designer, developer, tester or maintenance team. It can be done

either manually or with the help of a tool. The scope can be
system-wide or small scale, depending on the aim of applying

refactorings. Refactoring is a time-consuming process that does

not reflect immediate benefits like new features or bug fixes [6].

Incomplete and incorrect refactorings can lead to bugs [7] and

it has been found that a high proportion of refactorings often led

to an increase in the number of errors [8, 17].

The refactoring process [9] consists of following activities:
(1) identify code smells; (2) determine which refactorings are

best suitable for application; (3) make sure that applied

refactoring preserves behaviour; (4) apply refactorings; (5)

calculate the impact of refactorings on software quality features;

(6) maintain uniformity between refactored program code and

other software relics (test data, documents etc.).

Murphy-Hill [10] mentioned four different ways to collect

research data for refactoring. They are:

 Mining the Commit Log – Look for mention of the

word “refactor” in the commit logs of versioned

repositories. Commit logs are updated when a

programmer commits a change to the repository.

 Analyse Code Histories - Analyze an order of versions

of the source code by manual comparison or by

automating the comparison using a software tool.

 Observing Programmers - Observe developers in the

field, working on software development and illustrate

their refactoring behaviour. Such observation can be

direct observation which comes under the category of

a controlled experiment. Another is indirect

observation which can be a survey or a project post-

mortem.

 Logging Refactoring Tools - Some programming

environments automatically record the programmer’s

activity in a log file. Such an environment is

specialized to collect refactoring tool events.

mailto:shivani.1091@gmail.com
mailto:anju_kochhar@yahoo.com

In this study, the third method i.e. indirect observation has

been implemented and data has been collected through a survey.

In this study, the following research questions have been

addressed:

RQ1: How do programmers ensure that code has been

refactored correctly and what are the measures taken to manage

consistency between software artefacts?

RQ2: What are the reasons that prompt the refactoring process?

RQ3: What are the common refactoring practices followed by

developers?

RQ4: Which are the most desirable features and barriers in the

adoption of refactoring tools?

RQ5: What are the risks and benefits associated with

refactoring?

To find answers to these burning questions, a survey was

conducted and 221 software engineers participated in the study.

Responses were collected online and analyzed quantitatively.

The results were presented pictorially through graphs.

This study will make the following contributions:

 Study will assist researchers to identify research areas

in the field of refactoring and to focus on issues to be
solved in refactoring process. It will support the

developers to develop the tools keeping in mind the

shortcoming of the available tools. And will help IT

professionals to understand the importance of

refactoring and make it a part of their development

process in various projects.

 Learning limitations of refactoring tools will guide

researchers to focus on grey areas and what are

prominent research areas, for example validation and

verification of applied refactorings, maintaining

change consistency in between artefacts, and
development of better algorithms for detection of code

smells etc. Developers can build easy to understand

tools with better GUI and work on availability issues

as well by creating awareness among development

community.

II. RELATED WORK

G. H. Pinto and F. Kamei [11] did a qualitative and

quantitative study to find out answers to following research

questions: Which are the most desirable features in refactoring

tools? What are the factors that prevent developers to adopt

refactoring tools? Does interest in refactoring tools increase

over the years? To uncover the number of issues regarding these

tools, more than 1,400 messages – 324 questions and 1,115

answers to those questions were analyzed from more than 1,200

users. Major findings of this study are: refactorings tools are in
demand for dynamic languages, databases and multi-language

refactorings. Users reported that a lack of trust and usability

problems in tools still prevails. Interest in refactoring tools over

the years has not increased as expected.

M. Kim, T. Zimmermann and N. Nagappan [12] conducted

a survey at Microsoft, followed by a semi-structured interview

and quantitative analysis of version history data of Windows 7
to reveal refactoring benefits and challenges. Survey finds that

the refactoring definition in practice is not restricted to a

standard definition of behaviour-preserving code alterations and

developers observed that refactoring involves considerable cost

and risks. The quantitative analysis of Windows 7 version

history finds refactoring top 5% of modules led to a reduction

in modular couplings and many complexity measures but

increases the size more than the bottom 95%.

N. Singh and P. Singh [16] performed a comprehensive

sentiments analysis on 3,171 GitHub comments during

refactoring 60 open Java source projects by mining relevant

commit messages. Research Question – “Does a refactoring task

allocated during the implementation of a software feature

following a strict deadline invoke positive or negative

sentiments in the developer?” was answered. Tool

RefTypeExtractor for automatically linking commit messages

to their respective refactoring techniques was developed and

dataset SentiRef, which stores the identified developer’s

sentiments linked to each of 3,171 commit messages was
created. The research concluded that in general software

developers express more negative sentiments than positive

sentiments while performing refactoring tasks which reveals the

substandard state of the refactoring process.

Arcoverde, Roberta, Alessandro Garcia, and Eduardo

Figueiredo [13] presented the results of a survey with the

purpose of understanding the longevity of code smells in

software projects. They concluded that (i) there is a probability

of breaking APIs before refactorings by developers of widely-

scoped reusable code; (ii) developers of standalone applications
consider contract breaking changes easier to apply than

developers of reusable assets; (iii) refactoring tools are more

frequently used by developers that apply Test-Driven

Development; (iv) refactoring tools are commonly used, and (v)

reusable assets and standalone applications have different

refactoring prioritization.

Our study intends to foster such previous investigations by

revealing current challenges faced by developers and how they
maintain consistency between different artefacts. We designed

a questionnaire in order to understand the gap that subsists

between the interpretation of refactoring practices by

developers and researchers. The questionnaire was made

available as an online survey and 221 software engineers filled

it.

III. SURVEY SETTINGS

In order to understand the refactoring practices, a

questionnaire was created and sent to 10 experts (well learned

software engineers in the IT industry with more than 12 years

of experience in companies like Amazon, Adobe, Flipkart, TCS,

Walmart etc.) and based on their feedback, the questionnaire

was refined regarding the clarity and objectivity of the

questions. It consisted of 14 multiple choice questions and 6

free-form questions. Few multiple choice questions had an

option where participants could write answers of their choice as

well. A glossary was included at the beginning explaining terms

and acronyms used, for disambiguation. To collect information

online survey was conducted and 221 engineers participated.

Participants belonged to different companies and various
designations. Majorly, they were developers (i.e. 90.5%)

including requirement engineers, software designers, testers,

researchers, full stack developers, and software architects etc.

having a maximum of 20 years of experience, minimum of a

year and an average of 3.2 years. The survey was divided into

four sections and is described in Table 1.

The questions were formulated to identify how often and
when refactorings are performed, what is the main purpose

behind it and how consistency is managed between different

artefacts while performing refactorings. Another section was

focused on the most popular tools and what are the desirable

features and barriers in the adoption of refactoring tools.

Further, investigation on benefits, risks, and challenges

regarding refactoring is explored. After the collection of

responses, data was analyzed and categorized pictorially.

Results that were revealed were both interesting and useful in

understanding the roles and responsibility of researchers and

developers in the field of refactoring. It revealed major

challenges that still prevail and scope in the research area.

IV. RESULTS

The survey was made online and 221 IT professionals

participated. 90.5% of them were developers from different
companies and having experience in various languages like

Java, Python, .NET etc. 23.4% of participants performed

refactoring daily, 34.9% weekly and 21.1% daily. Software

engineers from diverse and virtuous companies like Amazon,

HCL, Infosys, Flipkart, Oracle, TCS, Expedia, Snapdeal, IBM,

Paytm, ISRO, and ICAR etc. contributed to our findings.

Participants had an average experience of 3.2 years with a

maximum of 20 years and working in various nations like India,

USA, Australia, Germany, and China.

The following section organizes the results in terms of the

research questions.

RQ1: How do programmers ensure that code has been

refactored correctly and what are the measures taken to

manage consistency between software artefacts?

Results show that 78% of participants perform some kind of

testing after refactoring code. Most of them prefer simple unit

or functional testing but some of them prefer regression,

integration, smoke, sanity or boundary value testing. Few of

them make their peers to do code review. To maintain

consistency, teams use version control platforms like Git,

communicate to the team through a pre-defined channel or by

adding comments, maintain an excel file of changes. Test code

and documents are changed manually after refactorings. Some

of the remarks are as follows:

 “Version control helps to keep a track of changes

made, which once are completed successfully are

documented.”

 “Rewrite/Update Unit Test, Update Documentation,

Add relevant comments”

 “Code and test cases must go hand in hand. To ensure

this I follow test based approach with unit test cases

written before the code has to be refactored.”

 “We use XML notation for commenting code which

reduces the need for separate documentation to a very

large extent, code coverage tools for maintaining test

cases.”

Some of the good practices followed by engineers after

performing refactorings are doing code reviews, compiling the

code, running test cases, running bug detectors and modifying

test cases according to the refactored code.

RQ2: What are the reasons that prompt the refactoring

process?

Refactoring software is only beneficial when it is done with

a purpose like reducing coupling between modules. Results

revealed some of the reasons that prompt software engineers.

79% and 83% of professionals refactor when code gets hard to

understand and maintain respectively. 50% agreed that slow

performance and wide dependencies between modules are the

main reason behind their refactoring actions. Logical mismatch,
difficulty in debugging and testing, readability, re-usability and

duplicity were also the main causes to initiate refactoring as

depicted in Fig 1.

Figure 1. Reasons that prompt team to refactor code

Majority of the participants agreed that refactoring increases

program flexibility, improves readability, reduces coupling,

improves the internal structure of the code and makes it easier

to add new features. Apart from these, honourable mentions
were to reduce bugs, to increase consistency of an application,

to reduce compiling time, to optimize and improve software

performance, to enhance scalability and robustness of

applications.

TABLE I. Summary of Survey Questions

Background

Which best describes your primary work area (developer, tester, manager etc.)? (open answer)

How many years of work experience do you have in the software industry? (open answer)

Name of Current Company and Country (open answer)

Refactoring

Practices

How often do you perform refactoring (Daily, Weekly, Monthly, Yearly, Seldom, Never)? (multiple choice)

Which keywords do you use or have you seen being used to mark refactoring activities in change commit messages? (multiple choice)

How do you ensure that you have refactored program correctly? (open answer)

How do you manage consistency between different software artefacts (e.g. documents, code and test cases) during refactoring? (open

answer)

What is the purpose of your refactorings? (multiple choice with the open answer)

Which of these reasons prompts you to initiate the refactoring process? (multiple choice with the open answer)

Select following options for refactorings [multiple choice: (a) manually and with a tool (b) manually, (c) using automated tools, (d)

know this but don't use it, (e) don't know this refactoring.]

• Rename, Extract Method, Encapsulate Field, Extract Interface, Remove Parameters, ... [From Fowler's catalogue]

How do you strongly agree, agree, neither agree or disagree, disagree, strongly disagree with each of the following statements?

• I perform refactorings with other functional changes.

• Refactorings I want to perform are different from what supported by tools.

• Tools do not support higher level refactorings.

• How do you validate code refactorings?

Few statements are shown in this table for presentation purposes.

Refactoring

Tools

What tools do you use during refactoring? (open answer)

How do you perform most of your refactorings? (multiple choice with the open answer)

What are the barriers to adoption of refactoring tools? (multiple choice with the open answer)

What are the features in refactoring tools you would like to have? (multiple choice with the open answer)

Risks and

Benefits

How do you strongly agree, agree, neither agree or disagree, disagree, strongly disagree with each of the following statements?

• Refactorings advance code readability

• Refactorings introduce subtle errors

• Refactorings disrupt other programmer’s code

• Refactorings advance performance

• Refactorings make it debugging easy.

What are the challenges associated with performing refactorings? (open answer)

Based on your own experience, what are the risks involved in refactoring? (multiple choice with the open answer)

What benefits have you observed from refactoring? (multiple choice with the open answer)

Only some of the questions are mentioned for representation purpose.

RQ3: What are the common refactoring practices followed by

developers?

Great proportion strongly agreed on the following practices:

 Refactorings are carried out in batches and changes in

associated test cases and documents are reflected.

 Refactorings are done with other types of changes which

modifies program behaviour externally. Pure refactorings

are hardly done. This observation is consistent with R.

Johnson’s study [14].

 Refactorings that are done manually differ from what tools

offer.

 Refactorings that are applied are higher level changes

which are not supported by tools. This informs about the

need for tools for higher level refactorings, for example

dealing with generalization refactorings.

 Majority of the refactorings (60.6%) are done manually.

This practice proves the urgent need for good quality,

available and easy to use tools.

 Renaming, Extract Method and Remove Parameters are the

most common refactorings performed manually or with the

help of a tool. The same observation was made by M. Kim

[15].

RQ4: Which are the most desirable features and barriers

in the adoption of refactoring tools?

Participants listed a wide variety of tools that are used to

perform common refactorings. Most commonly used tools
are Jenkins, ReSharper, CodeRush, JS Refactor, Visual

Assist X, TSLint, DPack, JetBrain etc. Refactorings like

renaming and move method are simply done in IDEs like

Eclipse, IntelliJ, Visual Studio etc.

Figure 2. Most desirable features of refactoring tools

Most desirable features, developers want in refactoring

tools are code smell detection feature, 74% want code

visualization applicability. 72% of professionals would like

to verify correctness feature after they are done performing

refactorings, estimation of cost and benefits of refactoring

are another requirement that participants mentioned.

Automatically applying refactorings was only suggested by

42%. Fig 2 represents data in graphical form.

65% stated barriers that cease developers in adopting

tools are less or no knowledge about the availability of tools.

Around 29% participants mentioned difficult to

understand/learn tools and unknown or not able to

understand the debugging process is their reason that

prevents them to use refactoring tools. Tools are not

trustworthy and have bad GUI. Fig 3 represents same. Other

mentions were:

 “Company support”

 “Languages like Python and CSS have limited

support for refactoring tools.”

 “They sometimes don't understand that "why I do,

what I do" such as if I declare something in multiple

lines, I mean it to be so, but formatting online size

makes it hard to understand.”

Figure 3. Barriers in the adoption of refactoring tools

RQ5: What are the risks and benefits associated with

refactoring?

Refactoring risks are quantitatively presented through the

graph in Fig 4. Key causes are identifying code smells. It is

one of the major research areas in the field of refactoring.

Many automatic, semi-automatic, and metric-based code

smell detection techniques have and are being developed.

Managing consistency between artefacts is a long and

regressive process. Managing time is challenging as

developers avoid refactoring code before major releases.

Refactorings might introduce bugs or break existing code.

Preserving behaviour, understanding legacy code, and

convincing management team are considerable challenges.
Refactoring though is time-consuming procedure but it

definitely yields promising benefits such as improved

maintainability and readability which was further supported

by more than 80% of the participants in this empirical study.

More than 60% acknowledged improved performance,

reduction in code size as well as duplicate code are perks of

refactoring code. Other advantages are the reduction in

release time and bugs, software becomes easy to test and add

the new features. Fig 5 represents the benefits of refactoring

pictorially through a bar graph.

Figure 4. Risks involved in the refactoring process

Figure 5. Benefits of performing refactorings

V. THREATS TO VALIDITY

Some points to be considered are:

Participants of survey conducted were IT professionals

not refactoring specialists and with the assumption that

people who filled the survey know what “Refactor” means.

Survey made no inquiry about the type of projects (e.g. Web

applications, Embedded systems, Information systems, etc.)

participants had experience in. A number of participants

were low to generalize the results and few of them had the

experience below 5 years. Most of the questions were close-
ended which might lead to biasing.

VI. CONCLUSIONS AND FUTURE WORK

Large scale survey was conducted and a wide range of

IT professionals was engaged. The main purpose of the

survey was to understand the trends followed by developers

and what are the research opportunities in the field of

refactorings and developmental challenges. The study also

answers the questions like what sort of tools should be built

to better or automate the whole process and limitations of

currently available tools. Survey responses were collected

and analyzed to conclude the following results:

The refactoring process needs automated tools to

maintain changes between different artefacts of software.

Some companies use version control systems but a system

that updates the design, test cases, documentation

automatically after refactoring is in demand. Software

companies can invest their efforts in this sector.

Refactoring without purpose will not yield any benefits.

Some of the factors that prompt refactorings are - hard to
understand and maintain program code, wide inter-modular

dependencies, difficulty in debugging and testing, readability

issues etc. Software development teams should devote their

time in refactoring process to overcome such issues.

Refactoring increases program flexibility, reduces

coupling, improves the internal structure of the code and

makes it easier to add new features. These points were
supported by the majority of participants. Benefits associated

with the refactoring process are improved maintainability,

performance, modularity and readability, reduction in code

size, duplicate code, release time and bugs, and easy to test.

They are the motivations for teams to invest more time and

effort in the refactoring process.

Common practices in refactoring are that they are carried

out in batches, done with other types of changes that modify
external program behaviour. Majority of the refactorings

(60.6%) are done manually. Renaming, Extract Method, and

Remove Parameters are the most common refactoring

performed manually or with the help of a tool.

The reason that prevents software engineers to adopt

refactoring tools is - less or no knowledge about the

availability of tools, difficult to understand/learn, unknown

or not able to understand debugging process, trust issues, and
bad GUI. So, developers and researchers should investigate

the reasons behind such an inappropriate condition of

refactoring tools and try diminishing them. Tools for many

dynamic languages are still unavailable. Code structure

visualization, code smell detection, cost and effort estimation

tools are coveted. Tools to validate and verify refactorings

need to be developed.

Most desirable features, developers want in refactoring

tools are automatic code smell detection, code visualization

aspect, verifying correctness after refactoring edits,

estimation of cost, efforts and benefits of refactoring,

automatically applying refactorings. This provides research

areas that should be explored by researchers and developers

working in the field of refactoring.

Refactoring challenges faced by professionals are
identifying code smells, managing consistency between

artefacts, time management, excessive couplings between

modules, refactorings might introduce bugs or break existing

code, behaviour preservation, understanding legacy code,

and convincing management team. Researchers can work in

these domains to ease up the refactoring process. Companies

and teams should realize the importance of refactoring code

and refactoring activities needs to be further encouraged to

reduce maintenance time, money, and effort.

For future work, personal interview with professionals

can be conducted on a large scale and further conclusions

can be made by observing refactorings patterns and

behaviour of IT teams in the field.

REFERENCES

[1] V. Maggio and M. Faella, “Improving the Design of Existing code,”

Slides, 2011.

[2] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE

Trans. Softw. Eng., vol. 30, no. 2, pp. 126–139, 2004.

[3] M. Tufano et al., “When and Why Your Code Starts to Smell Bad

(and Whether the Smells Go Away),” IEEE Trans. Softw. Eng., vol.

43, no. 11, pp. 1063–1088, 2017.

[4] M. Fowler, “Refactoring,” p. 13472, 2002.

[5] W. Opdyke, “Refactoring Object-Oriented Frameworks,” PhD

thesis, University of Illinois at Urbana-Champaign, 1992.

[6] W. Opdyke, "Refactoring, reuse & reality," Lucent

Technologies/Bell Labs, 1999.

[7] C. G€org and P. Weißgerber, “Error detection by refactoring
reconstruction,” in Proc. Int. Workshop Mining Software

Repositories, 2005, pp. 1–5.

[8] P. Weißgerber and S. Diehl, “Are refactorings less error-prone than
other changes?,” Proc. ACM Int. Workshop Mining Software

Repositories, 2006, pp. 112–118.

[9] A. V. D. Tom Mens, “Refactoring: Emerging Trends and Open
Problems,” IEEE Int. Conf. Software Maintenance, ICSM, pp. 521–

522, 2003.

[10] E. Murphy-Hill, Danny Dig, Chris Parnin, “Gathering refactoring
data: a comparison of four methods,” Proc. 2nd Work. Refactoring

Tools WRT 08 conjunction with Conf. Object Oriented Program.

Syst. Lang. Appl. OOPSLA 2008, 2008.

[11] G. H. Pinto and F. Kamei, “What programmers say about
refactoring tools?,” Proc. 2013 ACM Work. Work. refactoring tools

- WRT ’13, pp. 33–36, 2013.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An Empirical Study
of Refactoring Challenges and Benefits at Microsoft,” IEEE Trans.

Softw. Eng., vol. 40, no. 7, pp. 633–649, 2014.

[13] Arcoverde, Roberta, Alessandro Garcia, and Eduardo Figueiredo.
"Understanding the longevity of code smells preliminary results of

an explanatory survey." Proceedings of the 4th Workshop on

Refactoring Tools. ACM, 2011.

[14] R. Johnson, “Beyond behavior preservation,” Microsoft Faculty

Summit 2011, Invited Talk, Jul. 2011.

[15] Kim, Miryung, Thomas Zimmermann, and Nachiappan Nagappan.
"A field study of refactoring challenges and benefits," Proceedings

of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering. ACM, 2012.

[16] Singh, Navdeep, and Paramvir Singh, “How Do Code Refactoring

Activities Impact Software Developers' Sentiments?-An Empirical
Investigation Into GitHub Commits,” 24th Asia-Pacific Software

Engineering Conference, pp. 648-653 IEEE, 2017.

[17] Alshayeb, Mohammad, "Empirical investigation of refactoring

effect on software quality," Information and software

technology 51.9 (2009), 1319-1326.

[18] Szőke, Gábor, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor

Gyimóthy, "Empirical study on refactoring large-scale industrial
systems and its effects on maintainability," Journal of Systems and

Software 129 (2017): 107-126.

	I. introduction
	II. RELATED WORK
	III. SURVEY SETTINGS
	IV. RESULTS
	V. THREATS TO VALIDITY
	VI. CONCLUSIONS AND FUTURE WORK
	References

