
Improve Language Modelling for Code Completion
by Tree Language Model with Tree Encoding of

Context
Yixiao Yang

School of Software
Tsinghua University

Beijing, China
yangyixiaofirst@163.com

Xiang Chen
Beijing, China

kuailezhish@gmail.com

Jiaguang Sun
School of Software
Tsinghua University

Beijing, China

Abstract—In last few years, using a language model such
as LSTM to train code token sequences is the state-of-art to
get a code generation model. However, source code can be
viewed not only as a token sequence but also as a syntax
tree. Treating all source code tokens equally will lose valuable
structural information. Recently, in code synthesis tasks, tree
models such as Seq2Tree and Tree2Tree have been proposed
to generate code and those models perform better than LSTM-
based seq2seq methods. In those models, encoding model encodes
user-provided information such as the description of the code,
and decoding model decodes code based on the encoding results
of user-provided information. When applying decoding model to
decode code, current models pay little attention to the context
of the already decoded code. According to experiments, using
tree models to encode the already decoded code and predicting
next code based on tree representations of the already decoded
code can improve the decoding performance. Thus, in this paper,
we propose a novel tree language model (TLM) which predicts
code based on a novel tree encoding of the already decoded code
(context). The experiments indicate that the proposed method
outperforms state-of-arts in code completion.

Index Terms—code completion, tree language model, tree
encoding of context

I. INTRODUCTION

Taking highly repetitive and predictable [1] source code
as natural languages to build language models (n-gram, n-
gram with Bayes or decision tree, RNN, LSTM) to suggest
code fragments has made great progress [2]–[9]. However,
sequential models does not explicitly model the tree structure.
In the meanwhile, tree classification models such as TreeNN
[10] and TBCNN [11] have more powerful ability in capturing
the characteristics of trees. The works in [10] have confirmed
that tree models perform better than sequential models in
classification tasks. On the other hand, it is hard to adapt the
code classification models as the code generation models. This
paper addresses this challenging problem and demonstrates the
special property of the proposed model.

In code synthesis models, encoding module is used for
encoding the user-provided information, decoding module is
used for decoding the desired code from the encoding of

DOI reference number: 10.18293/SEKE2019-057

the provided information. In decoding module, we creatively
use encoding model to encode the already decoded code to
improve the performance of the decoding model. A novel
tree decoding model (tree language model) which consists of
Encoding model and Decoding model is proposed. In the rest
of this paper, the term encoding model refers to the model
which is used for encoding the already decoded code (context)
in decoding procedure, not the one used for encoding the
provided information in code synthesis tasks. Encoding model
is responsible for generating the representation for a tree or
a sub-tree. Decoding model is designed to traverse the syntax
tree to accumulate encoding of encountered sub-trees to pre-
dict the next code. We propose a novel encoding model based
on two-dimensional LSTM to generate better representations
for trees. The experiments indicate that the proposed model
outperforms state-of-arts. In summary, the contributions of this
paper include: 1) A framework is proposed to predict next
code based on the accumulated representations of sub-trees in
an AST. 2) A new encoding model based on two-dimensional
LSTM is designed to generate representations for trees.

Related Work: The statistical n-gram language model has
been widely used in capturing patterns of source code. The
n-gram model was applied to lexical code tokens in [1]. In
SLAMC [2], they improved n-gram by associating code tokens
with topics. In cacheca [4], they improved n-gram with caching
recently appeared tokens in local files to improve prediction
performance. In [12], source code was abstracted into DSL and
had been sampled and validated until the good code suggestion
was obtained. Deep learning techniques such as RNN, LSTM
were applied to code generation model [6] [8] [9] to achieve
a higher prediction accuracy. Decision tree was applied to
code suggestion relying on a hybrid language model presented
by [7]. In [5], code was trained on graphs. Naive-Bayes was
integrated into n-gram model to suggest API usages. Seq2Seq
[13], Seq2Tree [14] models were proposed to translate text
description into the abstract syntax tree (AST) to handle the
problem of code synthesis. The work [15] used basic Seq2Seq
model to synthesize the API usage patterns based on natural
languages. The aims of language model and the decoding



module in code synthesis models are similar: to generate the
most likely next code. Thus, we compare these methods in the
experiments. In the problem of program translation, Tree2Tree
[16] model is proposed.

II. TREE LANGUAGE MODEL

A. Preliminary

AST(Abstract Syntax Tree): Figure 1 shows an example
of an expression and its corresponding AST. In this figure,
the tree is placed horizontally: the root is on the left and
the leaves are on the right. In rest of this paper, all trees are
placed horizontally.

Fig. 1. an example of AST

Concepts on AST: For the abstract syntax tree of source
code, some concepts need to be given.

• τn: the content (token) of node n is τn
• Sibling nodes: If two nodes have the same parent, they

are siblings. For example, in Figure 1, node a and node b
are sibling nodes, node + and node − are sibling nodes.

• Previous sibling node: If node m appears prior to node n
and m and n are sibling nodes, m is called the previous
sibling of n. For example, in Figure 1, node a is located
above node b, so a is the previous sibling of b.

• Previous adjacent sibling node: If node m is the previous
sibling of node n and m, n are adjacent, node m is called
the previous adjacent sibling of node n. For example, in
Figure 4, n is the previous adjacent sibling of o.

• Sibling trees: If roots of two sub-trees are siblings, these
two sub-trees are called sibling trees. For example, in
Figure 4, the sub-tree rooted at m and the sub-tree rooted
at n are sibling trees, sub-tree rooted at node m and the
sub-tree rooted at node o are sibling trees.

• Previous sibling tree: If the root of tree T1 is the previous
sibling of the root of tree T2, tree T1 is the previous
sibling tree of tree T2. For example, in Figure 4, the tree
rooted at node m is the previous sibling tree of the tree
rooted at node n.

LSTM: In this paper, the main logics of LSTM and two-
dimensional LSTM (2DLSTM) will be expressed as two func-
tions: LSTM and 2DLSTM. These two functions are shown in
Figure 2. Function LSTM(x, cell, h) takes three inputs while
the function 2DLSTM(x, cell, h, cell2, h2) takes five inputs.
The outputs for this two functions are same: cellnew, hnew.
In this paper, parameter x is the embedding of node token

on abstract syntax tree of source code. In LSTM, cell, h pair
is taken as accumulated information from one direction, and
2DLSTM receives accumulated information: cell, h; cell2, h2
from two directions. Please consult [17] for more information
about LSTM and two-dimensional LSTM.

Fig. 2. LSTM and two-dimensional LSTM

TreeNN: Given a tree T , TreeNN [10] generates vector
representation of a tree. TreeNN is defined in Algorithm 1.
In Algorithm 1, the symbols: c1, c2, ..., ck represent all k
children of node n, [·, ·] is the vector concatenation operator,
σ is the activation function such as tanh.

Algorithm 1 TreeNN(node n)
Require: node n
Ensure: representation of tree rooted at node n

if n is a leaf then
h = embedding of τn

else
h = σ(Wτn · [TreeNN(c1), ...,TreeNN(ck)])

end if
return h

Additional Functions Other functions used are defined here.
• GetLastChildOfNode(n): returns the last child of tree

node n. If n does not have any child, function returns
null. In Figure 1, node c is the last child of node −,
GetLastChildOfNode(−) returns c.

• GetPrevAdjacentSiblingOfNode(n): returns previous ad-
jacent sibling of node n, if n does not have a previous
sibling (n is the first child of its parent), returns null. In
Figure 1, node + is the previous adjacent sibling of node
−, then GetPrevAdjacentSiblingOfNode(−) returns +.

• Parent(n): returns the parent node of node n in AST.

B. Encoding model

Encoding model such as TreeNN generates the repre-
sentation for a tree through visiting the tree in post-order
traversal. Figure 3 gives an illustration of the execution flow
of encoding model. We propose the novel encoding model
based on two-dimensional LSTM: AccuredTreeGen model.
AccuredTreeGen model is the one used in Decoding model
of Tree Language Model. The aim of AccuredTreeGen(n) is
to generate the representation for a set of trees: the tree T
rooted at node n and all previous sibling trees of tree T . Unlike



Fig. 3. data flow of encoding

traditional tree encoding model which generates encoding for
a tree, The AccuredTreeGen model generates encoding for
a set of trees. Figure 4 illustrates the difference of trees

Fig. 4. An illustration of TreeNN and AccuredTreeGen

handled by TreeNN(n) and AccuredTreeGen(n). The black
circles are nodes in trees to be processed. TreeNN(n) only
handles the tree rooted at node n while AccuredTreeGen(n)
extraly handles all previous sibling trees of the tree handled
by TreeNN(n).

Algorithm 2 AccuredTreeGen(node n)
Require: node n
Ensure: representation of tree with previous sibling trees

if n == null then
return cellzero, hzero

end if
embedτn = embedding of τn
siblingprev = GetPrevAdjacentSiblingOfNode(n)
childlast = GetLastChildOfNode(n)
cell, h = AccuredTreeGen(siblingprev)
cell2, h2 = AccuredTreeGen(childlast)
cellnew, hnew = 2DLSTM(embedτn , cell, h, cell2, h2)
return cellnew, hnew

The algorithm of AccuredTreeGen is defined in Al-
gorithm 2. AccuredTreeGen is a recursive model. For
a node n, apart from the embedding of node n, the
result of AccuredTreeGen(n) depends on the result of
AccuredTreeGen(previous adjacent sibling of n) and
the result of AccuredTreeGen(last child of n). Recur-
sively, For the last child: childlast of node n, the re-
sult of AccuredTreeGen(childlast) depends on the result of
AccuredTreeGen(previous adjacent sibling of childlast)
and the result of AccuredTreeGen(last child of childlast).
Keep computing the dependency recursively, we will find

that the result of AccuredTreeGen(n) is the accumulated
information of all nodes on a set of trees: tree T rooted at
node n and all previous sibling trees of tree T . If node n is
null, AccuredTreeGen(n) will return cellzero and hzero which
are fixed default zero values. This is also the termination for
the recursive AccuredTreeGen model. The gates used in two-
dimensional LSTM make the model less troubled by vanishing
gradient problem than TreeNN.

C. Decoding model

Decoding model traverses from the root to the leaves on
a tree in pre-order to predict the token of each node. Figure

Fig. 5. data flow of decoding

5 illustrates the execution flow of the Decoding model. The
Decoding model contains two sub-models: DecodeFirstChild
model and DecodeNextSibling model. When we are visiting
node n in pre-order traversal, DecodeFirstChild(n) generates
prediction information for predicting the first child of node
n. DecodeNextSibling(n) generates prediction information for
predicting the next sibling of node n. The information gen-
erated by DecodeFirstChild or DecodeNextSibling consists of
two vectors (cell, h). Every node except the root is either the
first child or the next sibling of some node. So each node
except the root can receive the prediction information from its
parent or its previous adjacent sibling. The root node receives
the fixed default values. The function FetchPrediction(node
n) is defined to get the prediction information generated for
predicting node n. The definition is in Algorithm 3.

Algorithm 3 FetchPrediction(node n)
Require: node n
Ensure: (cell, h) for predicting node n

if n is root of AST then
return cellzero, hzero

end if
parentn = Parent(n)
if n is the first child of parentn then
cell, h = DecodeFirstChild(parentn)

else
siblingprev = GetPrevAdjacentSiblingOfNode(n)
cell, h = DecodeNextSibling(siblingprev)

end if
return cell, h

In Algorithm 3, if node n is the root of AST which means
node n does not have parent or previous siblings, the default
zero values: cellzero and hzero are returned. If node n is
the first child of node parentn, DecodeFirstChild(parentn)



generates prediction information (cell, h) for predicting the
content of node n, as shown in the then branch of the if-
statement in Algorithm 3. If node n is not the first child
of parent parentn, in this case, node n must have previous
adjacent sibling: siblingprev, DecodeNextSibling(siblingprev)
generates prediction information (cell, h) for n, as shown in
the else branch of the if-statement in Algorithm 3. In sum-
mary, FetchPrediction(n) just fetches prediction information
from the parent of n or the previous sibling of n according
to the position of n in AST. Assume that n is the first
child of parentn, then, the information (cell, h) returned by
FetchPrediction(n) is just the information (cell, h) returned by
DecodeFirstChild(parentn). Note that the prediction (cell, h)
for node n returned by FetchPrediction(n) can be taken as the
accumulated information of nodes visited before n.

The algorithm of DecodeFirstChild model is defined in
algorithm 4. The embedding of node n and the accumulated

Algorithm 4 DecodeFirstChild(node n)
Require: node n
Ensure: (cellout, hout) for first child of node n
cell, h = FetchPrediction(n)
embedτn = embedding of τn
cellout, hout = LSTM(embedτn , cell, h)
return cellout, hout

information of nodes visited before n (cell, h returned by
FetchPrediction(n)) are fed into LSTM to predict the first
child of node n. The FetchPrediction, DecodeFirstChild and
DecodeNextSibling (described in the following) functions call
each other and form a recursive neural model. To predict
the sibling of a node n, the algorithm of DecodeNextSibling
model is in Algorithm 5. If childlast is the last child of
node n, AccuredTreeGen(childlast) generates the representa-
tion (cell2, h2) for a set of trees: tree Tlastchild rooted at
node childlast and all previous sibling trees of tree Tlastchild.
The nodes in tree Tlastchild and all previous sibling trees
of Tlastchild constitute all the descendants of node n. The
embedding of node n, the accumulated information of nodes
visited before n (cell, h returned by FetchPrediction(n))
and the representation (cell2, h2) for all descendants of
node n are fed into two-dimensional LSTM to predict next
sibling of node n. For a node n, DecodeForFirstChild(n)

Algorithm 5 DecodeNextSibling(node n)
Require: node n
Ensure: (cellout, hout) for next sibling of node n
cell, h = FetchPrediction(n)
childlast = GetLastChildOfNode(n)
cell2, h2 = AccuredTreeGen(childlast)
embedτn = embedding of τn
cellout, hout = 2DLSTM(embedτn , cell, h, cell2, h2)
return cellout, hout

and DecodeForNextSibling(n) both use the embedding of
node n. The difference between DecodeForFirstChild(n) and

DecodeForNextSibling(n) is whether or not to take all descen-
dants of node n into consideration. When predicting the first
child of node n, we do not need to take descendants of node
n into consideration because no descendant of node n has
been visited in pre-order traversal of AST. When predicting
the sibling of node n, all descendants of this node have been
visited (predicted) and we use AccuredTreeGen to explicitly
encode the already visited (predicted) sub-trees. Given a tree,
starting with the root of that tree, all nodes can be predicted by
keeping inferring the first child of a node and the next sibling
of a node. Figure 6 gives an illustration about the data flow of
encoding model and decoding model to show how decoding
model interacts with encoding model. In Figure 6, solid arrow
means the data flow of encoding while dotted arrow means the
data flow of decoding. In Figure 6, we use the content of a
node to refer to that node. As shown in the figure, the nodes (),
> and + are the first child of their parents. DecodeFirstChild
model is used to generate prediction information for those
nodes. To predict node − which is the next sibling of node
+, the embedding of token +, the prediction for node + (the
data flow is marked with dotted arrow), the representation for
all descendants of node + (the data flow is marked with solid
arrow) will be fed into two-dimensional LSTM to generate a
new cell, h.

Fig. 6. an example of decoding combined with encoding

Tree Language Model is also a generalized framework in
which the encoding model can be replaced with existing tree
classification models. Take TreeNN as an example. If we want
to use TreeNN in Tree Language Model, DecodeNextSib-
ling model should be replaced with DecodeNextSiblingUs-
ingTreeNN model. The definition of DecodeNextSiblingUs-

Algorithm 6 DecodeNextSiblingUsingTreeNN(node n)
Require: node n
Ensure: (cellout, hout) for next sibling of node n
cell, h = FetchPrediction(n)
encodingtree = TreeNN(n)
cellout, hout = LSTM(encodingtree, cell, h)
return cellout, hout

ingTreeNN is in Algorithm 6. The difference between De-
codeNextSibling and DecodeNextSiblingUsingTreeNN is that
DecodeNextSiblingUsingTreeNN uses TreeNN to encode the
root node n and all its descendants into one vector instead of
taking apart them. LSTM instead of two-dimensional LSTM is
applied. It is a pioneering work to adapt the tree classification
model as a language model. Other tree models such as TBCNN
and EQNET can be adapted in a similar way.



D. Predicting and Training

For every node n, the prediction result (cell ∈ Rd, h ∈ Rd)
for node n returned by FetchPrediction(n) is used to compute
the probability distribution of all tokens. The Algorithm 7
is the definition of function Predict. In Algorithm 7, W1 ∈
Rt×d and bias ∈ Rt are model parameters, t represents the
total number of unique tokens in data set, d is the length
of the embedding vector for one token. The probs is the
probability distribution for all tokens. The top k elements with
the highest probabilities will be the final complement result.
Top-k accuracy is computed in the way that if the desired
token appears in the top k recommended tokens, the prediction
is right, otherwise, the prediction is wrong.

Algorithm 7 Predict(node n)
cell, h = FetchPrediction(n)
logits = tanh(W1 · h+ bias)
probs = softmax(logits)
return probs

For every node n, training is to maximize the probability
of n. This is achieved by minimize the loss of node n which
is computed by function ComputeLoss. The Algorithm 8 is
the definition of function ComputeLoss. In Algorithm 8, the
probs is the probability distribution for all tokens returned
by Predict(n). The probs[τn] means choosing the probability
of τn (the actual content of node n) from probs. The final

Algorithm 8 ComputeLoss(node n)
probs = Predict(n)
loss = −log(probs[τn])
return loss

loss is the summation of loss computed by ComputeLoss for
each node in each AST. The training of the whole model is
to minimize the final loss.

III. IMPLEMENTATION

Source code [18] of all models along with all data sets
has been public. The source code is parsed into AST through
Eclipse JDT. The implementation is based on Deep learn-
ing platform: TensorFlow. The model parameters consists of
parameters in LSTM, parameters in 2DLSTM and W1,W2

in Algorithm 7. Because TensorFlow does not offer the im-
plementation of two-dimensional LSTM, the logic of two-
dimensional LSTM is implemented by ourselves. The physical
environment is the computer with Windows 10 64 bit OS, Intel
i7-6850k CPU, 32G memory and one Geforce GTX 1080 Ti
GPU. The learning rate and the momentum are automatically
decided by Adam optimizer in TensorFlow. Global norm is
used to clip the gradient. Examples are trained or tested one
by one. The representation size (alias as embedding size or
feature size) for one token is 128. We will keep training the
model until the prediction accuracy on the validation set does
not exceed the optimal value for 50 epochs.

IV. EXPERIMENT

Without loss of generality, one of the most widely used
programming language Java is chosen to conduct experiments.
Java projects with high number of stars on GitHub are ex-
tracted and filtered into different data sets. Source code in
each data set is divided into training set, validation set and
test set in the proportions 60%, 15%, 25%. Every function
declared in Java files will be parsed into an abstract syntax tree
and every tree node in AST will be predicted to compute the
prediction accuracy. The tree will be flattened into a sequence
to apply sequential models such as LSTM. The sequence is
generated by traversing the tree in pre-order and appending the
encountered node back to the sequence. We mark the 0.15%
least frequently occurred code tokens in training set and all
unseen tokens in validation set or test set as UNK.

Date Sets: Three data sets: Dataset A, Dataset B, Dataset
C are collected to conduct experiments to examine the perfor-
mance of models. Details are shown in the following Table.
Dataset A consists of all java files in project apache commons

From Projects Size Vocabulary
Dataset A apache commons io 2.0MB 5807
Dataset B google guava 7.7MB 7538

Dataset C Activiti & ESPlorer & AbFab3D
& JComicDownloader 8.2MB 39886

io on Github. The project google guava is a Java project
marked with 26554 stars on Github. Dataset B consists of Java
files whose size is larger than 8K Bytes in the main module of
google guava. Dataset C are Java files whose size is larger than
40K bytes in projects Activiti (3909 stars), JComicDownloader
(188 stars), ESPlorer (733 stars). and AbFab3D (59 stars). The
evaluation results on Dataset C may truly reflect the ability of
each model because abstract syntax trees from Dataset C are
huge. The fourth column headed by Vocabulary in Table IV
means the quantity of unique tokens (the content of node on
AST) on the data set.

Evaluation: In this section, Tree Language Model using
the newly proposed encoding model: AccuredTreeGen model
(based on two-dimensional LSTM) is abbreviated into TLM.
Tree language model using TreeNN as the encoding model is
abbreviated into TLM-TNN. LSTM and the decoding module
in Tree2Tree [16] are also included in the baselines. The top-
k accuracy (value is in percentage, % is omitted to save the
space) is computed on every node in tree and the final top-
k accuracy is the average of top-k accuracy of all nodes in
all trees. When predicting next node, the model computes the
probabilities for all candidate tokens. If we rank all tokens
according to probabilities from large to small. For example,
the token with the highest probability ranks 1, the token with
the second highest probability ranks 2. The value in column
headed with mrr means the average of the reciprocal of the
rank for each token in a data set. This metric indicts the overall
prediction performance of the model. The larger the mrr, the
better the model. The column headed with enpy shows the
entropy (log2 value of the perplexity). The smaller the entropy,
the better the model.



Table I is the evaluation result of different models on test
set. On small data sets: DS1, TLM achieves 22.2%, 9.3%
higher top-1 prediction accuracy than tree decoding module in
Tree2Tree and LSTM. The performance of TLM and TLM-
TNN is similar, for top-1 accuracy and mrr, TLM performs
better. On large data set: DS2, Tree2Tree performs much
worse than other three models. TLM performs the best in
all measurements. As can be shown, if the models used for
code synthesis are directly applied to code completion tasks,
the performance is bad. The reason will be described later.
On large data set DS3, TLM achieves 40.3%, 13.8% higher
top-1 accuracy than tree decoding module in Tree2Tree and
LSTM. The performance of TLM and TLM-TNN is similar,
for top-1 accuracy, TLM performs better. For top-k accuracy,
as k becomes larger, performances of all models tend to be
closer to each other. For top-10 accuracy, performances of all
models are close. This indicates that for the top-k accuracy,
the smaller the k, the more effective is the top-k accuracy to
illustrate performances of different models. As can be seen,
both TLM and TLM-TNN performs better than the rest non-
TLM models. This demonstrates the advantages of the newly
proposed Tree Language Model framework which uses tree
encodings to encode the context to help predict code. In
future work, we may adopt other measurements to investigate
different models. By considering all conditions, on all 3 data
sets, Tree Language Model framework performs better than
other models. TLM performs the best on top-1 accuracy.

TABLE I
PREDICTION ACCURACY ON TEST SET

A

top-1 top-3 top-6 top-10 mrr enpy
Tree2Tree 38.6 57.4 63.7 67.6 0.49 4.3
TLM-TNN 46.1 61.4 66.5 69.3 0.54 4.0

LSTM 43.2 57.5 63.7 66.7 0.51 4.2
TLM 47.2 61.4 66.3 68.9 0.55 4.1

B

top-1 top-3 top-6 top-10 mrr enpy
Tree2Tree 39.3 60.8 70.3 75.6 0.52 3.5
TLM-TNN 68.6 81.3 85.8 87.9 0.76 2.6

LSTM 70.1 80.7 84.6.8 86.6 0.76 3.0
TLM 72.1 82.1 86.0 87.8 0.78 2.4

C

top-1 top-3 top-6 top-10 mrr enpy
Tree2Tree 34.7 54.0 61.7 66.1 0.46 6.2
TLM-TNN 46.2 60.5 65.9 68.0 0.53 5.8

LSTM 42.9 57.9 63.8 67.1 0.51 5.9
TLM 48.8 60.8 65.2 67.5 0.53 5.8

The reason for better performance of Tree Language Model
framework is adopting tree encoding model to capture the
characteristics of encountered trees or sub-trees. In Tree2Tree,
a tree must be converted to a binary tree. This step introduces
extra nodes. The extra introduced nodes make predicting more
difficult. When standing at a node, two LSTM models are
used for predicting the left child node and right child node of
that node separately at the same time. Predicting left without
using information of right (vice versa) causes the performance
declining. Current synthesis models pay much attention to
predicting code based on user-provided information but pay
little attention to predicting next code based on the already
decoded code (context). This paper investigates this problem.

V. CONCLUSION

This paper proposed a novel tree language model consisting
of decoding model and encoding model. Two-dimensional
LSTM is adopted to deal with the structural characteristics of
trees. The experiments demonstrate that tree language model
(TLM) achieves better top-1 prediction accuracy on large data
set compared to state-of-art models.

REFERENCES

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu,
“On the naturalness of software,” in ICSE 2012, June 2-9,
2012, Zurich, Switzerland, 2012, pp. 837–847. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2012.6227135

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen, “A statistical semantic language model for source
code,” in ESEC/FSE’13, Saint Petersburg, Russian Federation,
August 18-26, 2013, 2013, pp. 532–542. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491458

[3] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion
with statistical language models,” in PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, 2014, p. 44. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594321

[4] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in The
ACM Sigsoft International Symposium, 2014, pp. 269–280.

[5] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in ICSE 2015, Florence, Italy, May 16-
24, 2015, Volume 1, 2015, pp. 858–868. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2015.336

[6] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Ieee/acm Working
Conference on Mining Software Repositories, 2015, pp. 334–345.

[7] V. Raychev, P. Bielik, and M. T. Vechev, “Probabilistic model
for code with decision trees,” in OOPSLA 2016, part of
SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016, 2016, pp. 731–747. [Online]. Available:
http://doi.acm.org/10.1145/2983990.2984041

[8] H. K. Dam, T. Tran, and T. T. M. Pham, “A deep language model for
software code,” in FSE 2016: Proceedings of the Foundations Software
Engineering International Symposium. [The Conference], 2016, pp.
1–4.

[9] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Joint Meeting on Foundations of
Software Engineering, 2017, pp. 763–773.

[10] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[11] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1287–
1293.

[12] V. Raychev, P. Bielik, M. T. Vechev, and A. Krause, “Learning
programs from noisy data,” in POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, 2016, pp. 761–774. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837671

[13] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Mapping language
to code in programmatic context,” arXiv preprint arXiv:1808.09588,
2018.

[14] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv preprint arXiv:1704.01696, 2017.

[15] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,”
in Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, 2016, pp. 631–642. [Online]. Available:
https://doi.org/10.1145/2950290.2950334

[16] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” arXiv preprint arXiv:1802.03691, 2018.

[17] A. Graves, Supervised Sequence Labelling with Recurrent Neural Net-
works. Springer Berlin Heidelberg, 2012.

[18] “The source code of models in the experiments and all data sets,”
https://www.dropbox.com/s/8typta3a81htclr/TLM.zip.


