
Formalization and Verification of RTPS
StatefulWriter Module Using CSP

Jiaqi Yin1 Huibiao Zhu*1 Yuan Fei*2 Qiwen Xu3 Ruobiao Wu4

1Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai, China

2School of Information, Mechanical and Electrical Engineering
Shanghai Normal University, Shanghai, China

3Faculty of Science and Technology, University of Macau, China
4Huawei Technology Co., Ltd. China

Abstract—The Real Time Publish Subscribe protocol (RTPS),
as a Data Distribution Service (DDS) protocol for computer
systems, is composed of several modules. We focus on RTPS
StatefulWriter Module which has two patterns, reliable pattern
and best-effort pattern. As the main module of sending and re-
ceiving messages, its security and reliability are of great concern.
The formal method can analyze whether it is a highly credible
model from the mathematical point of view. Our research pays
attention to the reliable pattern. Thus it is of great importance to
model and verify whether the pattern is reliable through formal
methods. In this paper, we model seven components of the module
using Communicating Sequential Processes (CSP). By feeding the
models into the model checker Process Analysis Toolkit (PAT),
we verify four properties, divergence free, acknowledgement
mechanism, data consistency and sequentiality. Consequently, it
can be apparently concluded that the pattern of this module is
reliable, which totally caters for its specification.

Index Terms—RTPS StatefulWriter Module, CSP, PAT, Mod-
eling, Verification

I. INTRODUCTION

Data Distribution Service (DDS) is a new generation of
distributed real-time communication middleware technology
specification developed by Object Management Organization
(OMG) based on HLA and CORBA standards. It adopts
publish/subscribe architecture, emphasizes data-centric and
provides abundant quality of service strategies. The Real Time
Publish Subscribe protocol (RTPS), as a Data Distribution
Service (DDS) protocol for computer systems, transfers data
from publishers to subscribers. StatefulWriter module is one
module of RTPS protocol. It has two modes, which are reliable
pattern and best-effort pattern. Reliable pattern means the data
must be always transferred to subscribers in the specification.
Thus, we follow with interest the reliablity of the reliable
pattern in the module.

The behavior of the module contains acknowledgement
mechanism and heartbeat mechanism. The former guarantees
all messages to be received by subsceibers and the latter
assures the messages to reach the subscribers. Besides, data
consistency and sequentiality need to be ensured in the reliable
pattern. Our work is to model and verify the reliable pattern of

*Corresponding authors: hbzhu@sei.ecnu.edu.cn (H. Zhu).
yuanfei@shnu.edu.cn (Y. Fei).

the module. Thus, through formal modeling and verification of
StatefulWriter module, the specification can be more precisely
modeled and validated, avoiding the ambiguity of natural
language description, which has certain guiding significance.

The most related prior work we identifided is a study
by Liu et al. [5] that mainly verified the security, activity
and priority of DDS in ROS2. In addition, Alaerjan et al.
[1] defined the missing functional behavior in DDS dynamic
model and the semantics of the new operation using Object
Constraint Language (OCL). Some recent research projects
[2], [7], [10] have explored analysis and verification of many
aspects of DDS, such as real-time performance, security of
DDS-based middleware and so on. Our work focuses on the
communication dependability of the module’s reliable pattern
using formal methods.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to RTPS StatefulWriter Module,
the process algebra CSP and model checker PAT. In Section
III, we formalize the seven core components in the module
using CSP. We apply the model checker PAT to implement
the model and verify four properties in Section IV, including
divergence free, acknowledgement mechanism, data consis-
tence and sequentiality. Section V describes the conclusion
and future work.

II. BACKGROUND

This section detailedly describes the flows of the module
which are used in the next section and briefly introduces the
process algebra CSP and model checker PAT.

A. RTPS StatefulWriter Module

RTPS StatefulWriter Module has seven components. There
are Publisher, DDSWriter, RTPSWriter, HistoryCache, Sub-
scriber, DDSReader and RTPSReader. Fig. 1 shows the 22
communications in the module. It can be divided into four
submodules, which are writing data, heartbeat mechanism,
reading data and removing data. Here we combine all of them
in Fig. 1. The detailed messages are as follows.

Writing data submodule contains the first six interactions.
Publisher writes data by invoking the write operation on

DOI reference number: 10.18293/SEKE2019-060

RTPSWriter

DDSWriter

Publisher

HistoryCache

1.data 6.complete

2
.
d
a
t
a

3
.
s
e
q
_
n
u
m

4.data & seq_num

5.complete
DDSReader

RTPSReader

Subscriber

16
.r
em
ov
e_
ch
an
ge

(s
eq
_n
um
)

1
7
.
r
e
t
u
r
n

12.return

11.get_data

9.
co
mp
le
te

.d
at
a
&
se
q_
nu
m

1
0
.
t
a
k
e

1
3
.
d
a
t
a

&

s
e
q
_
n
u
m

7.HEARTBEAT

14.ACKNACK

1
5
.
r
e
t
u
r
n
_
l
o
a
n
(
) 1

8
.
c
o
m
p
l
e
t
e

19.is_acked_by_all

(seq_num)

20. complete

22. complete

21. remove_data

8

Fig. 1. Communications of RTPS StatefulWriter Module

DDSWriter. Then, DDSWriter invokes the new change op-
eration on RTPSWriter to create a new CacheChange. Each
CacheChange has a unique sequence number. Also, DDSWrit-
er uses the add change operation to store the CacheChange
into RTPSWriter’s HistoryCache. When functions are invoked,
they return the message that means operation has been exe-
cuted successfully.

HeartBeat mechanism submodule is used to send message
heartbeat to Reader endpoint. If the message is received
smoothly within the specified time and checked by the
Subscribers, RTPSWriter receives the information ACKNACK
indicating confirmation.

Reading data submodule consists of four interactions. Sub-
scriber reads data by invoking the take operation in DDSRead-
er. Then, DDSReader accesses the changes with data and
sequence number from HistoryCache. Ultimately, the take
operation returns the data and sequence number to Subscriber.

Removing data submodule is composed of the remaining
communications. Subscriber invokes the return loan oper-
ation on DDSReader to notify that it no longer uses the
data. Next, DDSReader uses the remove change operation to
remove the data from HistoryCache. Then, DDSWriter invokes
the is acked by all operation to determine whether all the
changes are all received by the Reader endpoints. At length,
DDSWriter calls the remove change operation to remove the
data from HistoryCache.

B. A Brief Introduction to CSP and PAT

CSP [3], [4] is a process algebra proposed by Hoare in
1978. As one of the most mature formal methods, it is tailored
for describing the interaction between concurrent systems by
mathematical theories. For its well-known expressive ability,
CSP has been widely used in many fields [6], [8], [9]. CSP
processes are constituted by primitive processes and actions.
We use the following syntax to define the processes in this
paper, whereby P and Q represent processes, a and b denote
the atomic actions and c stands for the name of a channel.

P,Q = Skip | Stop | a→ P | c?x→ P | c!e→ P |
P�Q | P‖Q | P|||Q | P;Q | P[|X|]Q

where:

• Skip stands for a process which only terminates suc-
cessfully.

• Stop represents that the process does nothing and its
state is deadlock.

• a→ P first performs action a, then behaves like P.

• c?x → P receives a message by channel c and assigns
it to variable x, then behaves like P.

• c!e → P sends a message e through channel c, then
performs P.

• P�Q acts like either P or Q and the environment decides
the selection.

• P ‖ Q shows the parallel composition between P and
Q. The ‖ means that actions in the alphabet of both
operands require simultaneous participation of them.

• P;Q executes P and Q sequentially.

• P[|X|]Q indicates that processes P and Q perform the
concurrent events on the set X of channels.

PAT Analysis Toolkit (PAT), is designed as an extensible
and modularized framework for automatic system analysis
based on CSP. It supports specifying and verifying systems
in many different modeling languages and there are already
various systems such as concurrent real-time systems, probal-
istic systems, activity recognition and in other domains that
have been verified in PAT. PAT can be applied in verifying
various properties such as divergencefree, reachability and
LTL propertites with assertions in distributed systems. Here
we list some notations as below.
• #define N 0 defines a global constant N with the initial

value 0.

• channel c 1 stands for a channel which has the name c
and the buffer size 1.

• var cond = false represents a boolean condition with
the initial value false.

• [cond] P indicates a guarded process, which only exe-
cutes when its guard condition is satisfied.

• #define goal n>0; #assert P reaches goal; defines an
assertion that checks whether process P can reach a state
where the condition goal is satisfied.

• #assert P() | = F; defines an assertion that checks
whether process P satisfies the formula F.

III. MODELING RTPS STATEFULWRITER MODULE

In this section, we give the formal model of RTPS State-
fulWriter Module. The formalization is proceeded based on
the communications in Fig. 1. Our model is constituted by
seven core components: Publisher, DDSWriter, RTPSWriter,
HistoryCache, Subscriber, DDSReader and RTPSReader.

A. Sets, Messages and Channels

Fig. 2 gives the channels of communication in the module.
For more convenience, we give the definitions of sets used in

the model. We define the set of Publisher of Publisher com-
ponent, DDSWriter of DDSWriter component, RTPSWriter
of RTPSWriter component, HistoryCache of HistoryCache
component, DDSReader of DDSReader component and RTP-
SReader of RTPSReader component. In addition, we define
the set: REQ of request, SEQ of sequence number messages
and DATA of data information; for simplicity, ALLSETS
defines the unions of all sets of RTPS StatefulWriter module.

Based on the sets defined above, the messages transmitted
among components are defined as follows:

MSG = MSGreq ∪ MSGrep ∪ MSGdata

MSGreq = {msgreq.A.B.content | A ∈ (ALLSETS-Publisher),

B ∈ ALLSETS, content ∈ REQ}
MSGrep = {msgrep.A.B.content | A ∈ ALLSETS,

B ∈ ALLSETS, content ∈ SEQ ∪ REQ}
MSGdata = {msgdata.A.B.content | A ∈ ALLSETS,

B ∈ ALLSETS, content ∈ DATA}

where, MSGreq represents the set of request messages,
MSGrep stands for the set of all kinds of response requests
and MSGdata represents the set of messages transmitting data.
Each message contains a tag from the set {msgreq , msgrep,
msgdata}.

Then, we give the definitions of channels. In this paper, the
channels using COM PATH to represent can be defined as
follows:

ComPW,ComWP,ComWR,ComRW,ComWC,
ComCW,ComCT,ComTC,ComRT,ComTR,
ComCD,ComDC,ComSD,ComDS,ComDT,ComTD

The declarations of the channels are as follows:

Channel COM PATH : MSG

Table I shows the meanings and functionalities of repre-
sentative messages transferred in the channels.

TABLE I
THE EXPLANATIONS OF TYPICAL MESSAGES OF THE MODEL

Messages Functionalities
data, DATA data transferred in the module

seq num, SEQ NUM sequence number
heartbeat judge whether data is received within required time
noinvoke judge whether invoke functions
complete judge whether execute the function

take read data from cache
remove remove data from cache

get change get changes from cache

B. Overall Modelling
System process is composed of all seven subprocesses

running in parallel through their own corresponding channel.
The subprocesses are Publisher, DDSWriter, RTPSWriter,
HistoryCache, Subscriber, DDSReader and RTPSReader. The
behavior of System process is modelled as below.

System =df Publisher || DDSWriter || RTPSWriter ||
HistoryCache || Subscriber || DDSReader || RTPSReader

RTPSWriter

DDSWriter

Publisher

HistoryCache DDSReader

RTPSReader

Subscriber

ComPW ComWP

ComWR ComRW ComDT ComTD

ComWC

ComCW

ComCD

ComDC

ComRT

ComTR

Co
mC
T

Co
mT
C

ComSD ComDS

Fig. 2. Channels of RTPS StatefulWriter Module

C. Publisher
Publisher process is the core part in writing data submodule.

It is used to write data to HistoryCache and receives the com-
plete information from DDSWriter. The behavior of Publisher
process is modelled as below.

Publisher() =df ComPW!msgdata.P.W.data
→ComWP?msgrep.W.P.complete → Publisher()

D. DDSWriter
DDSWriter process plays an important role in writing data

and removing data submodule. First, it sends and receives
messages to write data from Publisher. Then, it applies the ac-
knowldgement mechanism to check if the data has been totally
received. If the return message is ACK, it invokes function to
remove data and sequence numbers from HistoryCache. The
behavior of DDSWriter process is modelled as below.

DDSWriter() =df ComPW?msgdata.P.W.data
→ComDR!msgreq.W.R.data

→GetSeqNum();ComRD?msgrep.R.D.complete

→ComWC!msgreq.W.C.data.seq num

→ComCW?msgrep.C.W.complete

→ComWP!msgrep.W.P.complete

→if (id acked by all(seq num)==true){
ComRD?msgrep.R.D.complete

→ ComWC!msgreq.W.C.remove

→ remove change(seq num);
ComCW?msgrep.C.W.complete

→ DDSWriter()} else {Skip}

In the above formula, GetSeqNum() is used to set the
number of the sequence; id acked by all(seq num) is a func-
tion that judges whether the data with the seq num is ac-
knowledged; remove change(seq num) is used to remove the
changes in the HistoryCache component.

E. RTPSWriter
RTPSWriter process works in writing data and heartbeat

mechanism submodule. First, it produces the unique sequence
number for the uploaded data. Second, it uses heartbeat
mechanism to send heartbeat to RTPSReader for assuring the
data can be transferred within the required interval. Finally, it
helps to check whether the sequence numbers are checked by

all Subscribers. The behavior of RTPSWriter is modelled as
below.

RTPSWriter() =df ComDR?msgreq.D.R.data

→ComRD!msgrep.R.D.complete

→DATAHeartBeat();ComRW?msgrep.R.W.ACKNACK

→if(head(ACKNACK)==ACK){
acked changes set(seq num);ComDR?msgreq.D.R.seq num

→ ComRD?msgrep.R.D.complete

→ RTPSWriter()} else {Skip}

ACKNACK contains ACK and seq num, so we
use head(ACKNACK) to retrieve the message ACK.
acked changes set(seq num) checks whether the changes are
set. HeartBeat mechanism is very important in the model. Its
detailed behavior is modelled as follows:

DATAHeatBeat() = Clock(0)|{time}|]SendHBeat();
Clock(i) = (tick → Clock(i+1))

�(time?request → time!i → Clock(i));
SendHBeat() = time!request → time?startTime1{

startTime=startTime1}
if (lastTime - startTime > HBeatInterval){
SendHBeat()}
else{ ComWR!msg req.W.R.heartbeat
→ event{lastTime=startTime; }
→ SendHBeat()}

time is the channel between Clock and SendHBeat();
Clock(i) process returns the current time if receives the request
message. SendHBeat() process sends the heartbeat message if
the time difference is less than HBeatInterval; otherwise, the
process cycle continues.

F. HistoryCache
HistoryCache process is like a database mainly for storing

data and corresponding sequence number. It functions in
every submodule, such as writing data and removing data.
When receiving the request from Publishers or Subscribers, it
invokes the homologous function to handle. The behavior of
HistoryCache process is modelled as below.

HistoryCache() =df ComWC?msgreq.W.C.data.seq num

→ComCW!msgrep.C.W.complete

→ComTC?msgreq.T.C.data.seq num

→ComCT!msgrep.C.T.complete

→complete12:=get changes(seq num);
ComCR!msgrep.C.R.complete12

→ComWC?msgreq.W.C.remove change

→complete23:=remove changes(seq num);
ComCW!msgrep.C.W.complete23

→HistoryCache()

In the above formula, function get changes(seq num) and
remove changes(seq num) is used to get and remove changes
from HistoryCache component, respectively. Both of them can
return the value 1 to indicate the operation is successful;
otherwise, they return 0.

G. Subscriber
Subscriber process is designed for reading data and remov-

ing data submodule. First of all, it calls take function to receive
data from HistoryCache. Next, it notifies other components
that the data will not be used and gets the corresponding
feedback. The behavior of Subscriber process is modelled as
below.

Subscriber() =df ComSR!msgreq.S.R.take

→DATA := take();ComRS?msgrep.R.S.DATA

→ComSR!msgreq.S.R.loan → noinvoke := return loan();

ComRS?msgrep.R.S.noinvoke → Subscriber()

In the above formula, function take() reads data from
HistoryCache component and return loan() indicates the data
is not invoked any more, whose value is assigned to noinvoke.

H. DDSReader
DDSReader process is used for reading data and remov-

ing data submodule. First, it helps the Subscriber get data
and sequence number from HistoryCache. Then, it invokes
remove change function to remove changes in HistoryCache.
The behavior of DDSReader is modelled as below.

DDSReader() =df ComSR?msgreq.S.R.take

→ComRC!msgreq.R.C.get change → ComCR?msgrep.C.R.complete

→ComRS!msgrep.R.S.DATA → ComSR?msgreq.S.R.loan

→ComRS!msgrep.R.S.noinvoke → ComDT!msgreq.D.T.remove

→noinvoke2 := remove changes();ComTD?msgrep.T.D.noinvoke2

→DDSReader()

In the above formula, function remove changes() is the
same as that in process HistoryCache. take and get change
are the messages to invoke take() and get changes() func-
tion, respectively; loan and remove message are to invoke
return loan() and remove changes() function, respectively.

I. RTPSReader
RTPSReader process is applied to hearbeat mechanism and

removing data submodule. First, it receives the heartbeat from
RTPSWriter and sends the timely feedback to RTPSWriter.
Then, it assists the Subscriber to remove the changes and data
in HistoryCache. The behavior of RTPSReader is modelled as
below.

RTPSReader() =df ComWR?msgreq.W.R.heartbeat

→ComTC!msgreq.T.C.data.seq num → ComCT?msgrep.C.T.complete

→ComRW!msgrep.R.W.ACKNACK → ComDT?msgreq.D.T.remove

→ComTD!msgrep.T.D.noinvoke2 → RTPSReader()

In the above formula, RTPSReader receives heartbeat, sends
data and seq num and most importantly, sends ACKNACK to
complete the procedure of the acknowledgement mechanism.

IV. IMPLEMENTATION AND VERIFICATION

In this section, the model in Section III is implemented in
the model checker PAT and the properties abstracted from the
specification are all verified.

A. Implementation

First, we need to define important channels, message type
flags and delivery objects as enumerations, and define mes-
sages communicated between channels as global variables. For
the definition of the above variables, we give the following list
as a reference:

channel ComPW 0; enum {msgreq , msgrep, msgdata};
enum {P, W, D, R, C, T, S}; var seq num;

var ACK = 0; var index = 0;

var DATA1; var SEQ NUM;

var dt[5][2]; #define HBeatInterval 5;

All other channels in the model are defined by the above
channel format syntax like ComPW; the enumerated types are
the type of the flag message, including msgreq to represent the
request, msgrep to stand for the reply, and msgdata to represent
the data; P, W, D, R, C, T, S represent the English capital initials
of the seven modules in the RPTS StatefulWriter module
model section. Global variable ACK initialized to 0 means
no data received is checked by the Subscriber; global variable
index initialized to 0 means the number of the data stored in the
array in HistoryCache. seq num means the initialized sequence
number is zero; DATA1 and SEQ NUM are the variable repre-
senting data and sequence number in Subscriber component.
Array dt[5][2] stores data and corresponding suquence number
in HistoryCache component. Also, we give the definitions of
some constant variables, for example, HBeatInterval, whose
manual value is set to 5.

Then, we give the code of one of the processes in PAT as an
example. Here we take the implementation of the DDSWriter()
process as an example:

DDSWriter() = ComPW?msg data.P.W.data1{data=data1}
→ComWR!msg req.W.R.data → GetSeqNum();

ComRW?msg rep.R.W.complete3{complete=complete3}
→ComWC!msg req.W.C.data.seq num
→ComCW?msg rep.C.W.complete5{complete=complete5}
→ComWP!msg rep.W.P.complete
→ComWR!msg req.W.R.is acked all
→if (call(is acked by all,seq num)==1) {

ComRW?msg rep.R.W.complete21{complete=complete21}
→ComWC!msg req.W.C.remove
→Remove()} else {Skip};

From the above process execution code, it can be seen
that data1 event assigns variables and ensures variable values
of all processes in the entire system are consistently changed.
The function is acked by all is invoked by call. GetSeqNum()
and Remove() are other processes used to enhance the read-
ability. Apparently, GetSeqNum() is used to get the sequence
number; Remove() is used to remove the changes from the
HistoryCache component. Their details are as follows.

GetSeqNum() = getSeqNum{
seq num = seq num + 1; } → Skip;

If GetSeqNum() is executed once, seq num pluses 1, which
can keep the sequence number always different and unique.

Remove() = atomic{
if(call(remove change,seq num)==1) {
ComCW?msg rep.C.W.complete23{
complete=complete23} → Skip}
else{ ComCW?msg rep.C.W.nocomplete23{
complete=complete-1;
complete=nocomplete23} → Skip};

We use atomic to define Remove() process, which means
that the event cannot be disturbed until it is finished. com-
plete23 and nocomplete23 are the event used to transimitting
corresponding complete meassge.

Finally, the full definition of the entire system is given as
follows:

SYSTEM() = Publisher() || DDSWriter() ||
RTPSWriter() || HistoryCache() ||
Subscriber() || DDSReader() || RTPSReader();

B. Properties Verification

Based on the implementation of the model in PAT above,
we verify four properties as follows:

1) Divergence free

#assert System() divergencefree;

Divergence free means that any traces of the system can
diverge rather than behave chaotically.

2) Consistency
Property data consistency is so important that the data from

Publisher or HistoryCache or Subscriber component must be
completely identical. In the implementation, the original value
of the transferred data is equal to 2 and its corresponding
sequence number should be equal to 1. If the data and
sequence number are consistent in different components, the
property is satisfied. Thus, we give the definition and assertion
as follows:

#define goal1(dt[0][0]==1&&dt[0][1]==2)
&&(DATA1==2&&SEQ NUM==1)
&&(dt[0][0]==SEQ NUM&&dt[0][1]==DATA1);

#assert SYSTEM() reaches goal1;

3) Acknowledgement Mechanism
The reliable pattern has an acknowledgement mechanism. In

our model, if the final value of the global variable ACK and
index are all changed from 0 to 1, the property is satisfied.
Thus, we give the LTL formula and reachability to verify
whether the property is safe. Their definitions and assertions
are as follows:

#define goal2(ACK==1&&index==1);
#assert SYSTEM() reaches goal2;
#assert SYSTEM() | =<> goal2;

4) Sequentiality
If the Publisher component sends several pieces of data

in sequence, the pattern needs to guarantee that the data
stored in the HistoryCache component must be in order. Thus,
we give three atomic processes SYSTEM02(), SYSTEM03()

and SYSTEM04() on the basis of process SYSTEM(). If their
storage order is correct in HistoryCache, the property is
satisfied. Their definitions and assertions are as follows:

SYSTEM02() = atomic{event{data=2;} → SYSTEM()};
SYSTEM03() = atomic{event{data=4;} → SYSTEM()};
SYSTEM04() = atomic{event{data=6;} → SYSTEM()};
SYSTEM05() = SYSTEM04()||SYSTEM03()||SYSTEM02();
#define goal3 (dt[0][1] == 2&&dt[1][1] == 4&&dt[2][1] == 6);

#assert SYSTEM05() reaches goal3;

C. Verification and Results

According to the definitions and assertions, we implement
the code in PAT and as a result, Fig. 3 shows the properties
are all valid, which means the pattern of the module with no
intruders is exactly reliable and also caters for the specifica-
tion.

V. CONCLUSION AND FUTURE WORK

RTPS StatefulWriter module is a vital component in RTPS
protocol. This paper has formalized seven components com-
prising the Publisher, DDSWriter, RTPSWriter, DDSWriter,
HistoryCache, Subscriber, DDSReader and RTPSReader with
CSP. Our work also has applied the model checker PAT to
implement the constructed model. Four properties abstracted
from the specification, including divergence free, acknowl-
edgement mechanism, data consistency and sequentiality, have
been verified. The results are all valid. Consequently, we
conclude that from the perspective of process algebra, the
constructed model meets these properties and the pattern is
absolutely reliable and caters for the specification.

It is naturally a great challenge to model and verify the
whole RTPS protocol. We will explore security analysis and
verification of the module by adding intruders in the future.

VI. ACKNOWLEDGEMNET

This work was partly supported by National Natural Science
Foundation of China (Grant No. 61872145), Shanghai Collab-
orative Innovation Center of Trustworthy Software for Internet
of Things (No.ZF1213) and Special Fund for International
Academic Conferences of Graduate Students in East China
Normal University.

REFERENCES

[1] Alaerjan, A., Kim, D., Kafaf, D.A.: Modeling functional behaviors of
DDS. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart
City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI
2017, San Francisco, CA, USA, August 4-8, 2017. pp. 1–7 (2017)

[2] Beckman, K., Reininger, J.: Adaptation of the DDS security standard
for resource-constrained sensor networks. In: 13th IEEE International
Symposium on Industrial Embedded Systems, SIES 2018, Graz, Austria,
June 6-8, 2018. pp. 1–4 (2018)

[3] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicat-
ing sequential processes. J. ACM 31(3), 560–599 (1984)

[4] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall
(1985)

[5] Liu, Y., Guan, Y., Li, X., Wang, R., Zhang, J.: Formal analysis and
verification of DDS in ROS2. In: 16th ACM/IEEE International Confer-
ence on Formal Methods and Models for System Design, MEMOCODE
2018, Beijing, China, October 15-18, 2018. pp. 62–66 (2018)

Fig. 3. Verification Result

[6] Lowe, G., Roscoe, A.W.: Using CSP to detect errors in the TMN
protocol. IEEE Trans. Software Eng. 23(10), 659–669 (1997)

[7] Pérez, H., Gutiérrez, J.J.: Modeling the qos parameters of DDS for event-
driven real-time applications. Journal of Systems and Software 104, 126–
140 (2015)

[8] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall
(1997)

[9] Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer
Science, Springer (2010)

[10] Youssef, T.A., Hariri, M.E., Elsayed, A.T., Mohammed, O.A.: A dds-
based energy management framework for small microgrid operation and
control. IEEE Trans. Industrial Informatics 14(3), 958–968 (2018)

