Towards human-centric software testing

Samantha Catania
Department of Computer Science
University of Malta
samantha.catania.12 @um.edu.mt

Abstract—Software testing is widely perceived to be the main
activity in the software development process that provides con-
fidence in the quality of a product prior to release. However,
the term software testing itself provokes a multitude of different
definitions and opinions as to the nature of the profession, the
role of software testers and the utility of different processes and
tools that come with the territory [1][2]. We argue that in order
for researchers to effectively study the field and contribute to
its progress, a consensus first needs to be reached about the
entity being studied. In this paper we present an empirical study
based on the modified Delphi card sort method involving four
cohorts of testers in Malta and London. The result of this study
is a consolidated consensus-based mental model outlining how
software testers perceive their profession. This mental model can
be used to align any future research efforts and tool development
with testers’ own perception of their context.

Index Terms—Software testing, human factors and ergonomics,
mental models

I. INTRODUCTION

“Ergonomics [or human factors] is the scientific discipline
concerned with the understanding of interactions among hu-
mans and other elements of a system, and the profession
that applies theory, principles, data and methods to design
in order to optimise human well-being and overall system
performance.” [3]

Testing is a human-intensive activity, requiring constantly
changing information, in different formats, from various
sources with different levels of access and over a variety
of channels and tools. The level of experience and training
background adds up to the complex nature of the domain,
all of which contribute to high levels of cognitive workload.
To date, and to the best of our knowledge, testing as a
discipline in its various forms and shapes has never been
treated scientifically from an ergonomics and human factors
perspective. The terms ‘ergonomics’ and ‘human factors’ are
interchangeable, however their use implies either the imme-
diate physical environment (e.g. the workbench), or to the
wider context in which work is carried out (e.g. the process),
respectively [4].

In the past, we have attempted to treat this domain from
both an ergonomics perspective (e.g. augmented reality in
workbenches, just-in-time information and cognitive workload
as well as from a human-factors perspective (e.g. the impact
of training on tester performance [5], human-centred test

DOI reference number: 10.18293/SEKE2019-065

Chris Porter
Department of Computer Information Systems
University of Malta
chris.porter @um.edu.mt

Mark Micallef
Department of Computer Science
University of Malta
mark.micallef@um.edu.mt

frameworks). Throughout this period we also immersed
ourselves in practice within industry teams, as much as
possible, to be able to experience and discuss issues with
industry professionals.

It transpires that there is a more pressing need that needs
to be tackled first before we are able to further this line of
investigation. Due to the complexity of the domain, different
people will have different and often wide-ranging perceptions
and expectations of testing in practice and theory. Therefore,
to be able to reason in terms of human factors and ergonomics
in testing, we first need to build a clear picture of how testers
reason about testing in general. This paper aims to achieve
this. We therefore present a mental-model built following an
empirical exercise with software testing professionals in Malta
and London using the modified Delphi card sorting method.
This mental-model aims at providing a common vocabulary
through which we can study problems and propose solutions
which would ultimately benefit software testers and their well-
being.

A mental model or a conceptual model, represents the
“cognitive shorthand” [6] of how a person, or a group of
people, understand a complex product or domain. Looking at
this from the perspective of a website, this conceptual model
is enough to help users navigate and interact with the site,
however if the implementation varies widely from the users’
mental model, users will find it close to impossible to reach
their goals without having to think hard about their actions
and how the site is reacting.

Although we understand that testing is complex in nature,
we present a mental model based on a consensus-driven em-
pirical exercise which elicits testers’ beliefs about the domain
and its various aspects. This aims to inform human factors
and ergonomics researchers and designers in their effort to
contribute towards this domain. Through an understanding of
how testing professionals perceive this domain, contributions
could be better aligned and communicated to resonate with
the nature of their work. A designer’s primary goal is to build
user interfaces that map as closely as possible with the users’
mental models, abstracting away the internal complexities
[7]. This same principle applies for research efforts, whereby
we first need to understand the primary stakeholders’ beliefs
and perceptions driving everyday work before being able to
improve working conditions. Closing the gap between testers’
mental models and researchers’ perceptions or beliefs about
the domain increases the chances of (a) improving the tester’s

well-being by solving the right problems at the right level,
and (b) adoption of research outcomes in industry. As in
design, research efforts need to be aligned with the user’s
mental model. For this to happen, researchers need to use
their expertise in research and frame their efforts as closely to
the testers’ mental model as possible, building a model which
bridges their knowledge and efforts with testers’ perceptions.
Cooper defines this as the “represented model” which is “one
of the designer’s most important goals“. Cooper states that “it
is critical that designers understand in detail how their target
users think about the work they do with the software” [6].

II. SOFTWARE TESTING

Software testing is an activity predominantly associated with
ensuring that a product meets a certain level of quality before
it is released to customers. Despite its widespread use and
numerous practitioners worldwide, software testing is arguably
the least understood part of the development process [2]. In the
two decades that we have studied and practised in the field, the
lack of consensus on the nature of the field, its processes, tools
and practitioners’ role has been an ever palpable characteristic.
Many conversations that we have had about software testing
decisions in the industry have involved phrases like “I do not
believe in automated testing”, “that is not what I think your
role as a tester should be” or “we need to release tomorrow,
can you test this quickly please?”.

Even definitions by respected authorities differ, albeit with
some overlap. The British Standards Index refers to software
testing as the activity of exercising software with the intent
of finding errors and verifying that is satisfies specified re-
quirements [8]. The IEEE has a similar definition but includes
the notion that a system can be tested without being exercised
(inspection). The ISTQB syllabus [9] (the de facto standard
for tester certification) makes reference to testing being a
measurement of software quality.

Within the field itself, there are a multiplicity of roles,
taxonomies, strategies, techniques, processes and tools. The
correct time, place and usage of each of these elements is
the subject of frequent debate, which has also given rise to
different schools of thought within the industry. Engineering-
driven schools treat testing as a standards-driven industry
which practitioners can consequently be trained and certified
in. On the other end of the scale, the "Context-Driven” school
of thought claims that the value of any practice depends on
its context and the concept of a one-size-fits-all definition of
the field and its practices is misguided [10].

In a widely cited paper charting the progress and future
direction of the field, Bertolino [1] makes reference to the
multiplicity of meanings that arise from the term ‘“‘software
testing”, as well as the particular research challenges that
this fact generates. Bertolino goes on to set out the field’s
achievements to date, ongoing challenges and future dreams.
The first dream she outlines is that of the development of a
unified theory of testing.

This lack of clarity is a contributing motivation behind this
work. Before one can design research, tools and processes that

cater for the human tester more effectively, one first needs to
understand the role and subsequent needs of the human tester.
To this end, we undertook a consensus-based investigative
approach as discussed in the following section.

III. METHODOLOGY

Motivated by the objective of establishing a consensus-
based mental model amongst practitioners in the field about the
nature of software testing, we selected a methodology centred
around the Modified Delphi Card Sort method. The Delphi
technique is a widely used and accepted method for gathering
data from respondents within their domain of expertise [11].
Originally developed in the 1950s by Dalkey and Hemler [12],
it has been widely used and adapted in various disciplines as a
means of seeking out information that can generate consensus
amongst participants.

Whereas initial versions of the technique involved using
questionnaires with participants, we have chosen to use a card-
sort variant whereby participants are asked to group concepts
from their domain under categories using index cards. This
can be done in one of two ways. The first is to utilise an open
card-sort approach, whereby participants start with an empty
slate and build a representation from there. The second way
involves providing the first participant with a so-called seeded
deck, that is, an initial model of the domain which she may
choose to agree or disagree with in whole or in part. The
participant can make any changes she sees fit by changing
categories, adding terms and removing others. The result of
the first participant’s card sort are used as the seeded deck for
the next participant, and so on. This technique has been shown
to converge to a consensus with as little as 8-10 participants
[13].

As depicted in Figure 1, two card sort exercises were carried
out: one during a meeting of professional testers in Malta and
another at a similar meeting organised by the British Computer
Society in London.

i Deck 1
Deck Seeded Deck First Card e Merge
Seeding Sort e
(Two Groups in Malta
Merged Deck
SeedtiDeds Second Card
Sort
on]
Deck 3 Deck 4
Analysis
Mental
Model
Fig. 1. An overview of the process used during the study.

Following an initial deck seeding exercise (Section III-A),
two parallel card sort exercises were carried out (Section
III-B) by two cohorts of participants, which resulted in two
sorted decks that were subsequently merged (Section III-C).
A second card sort (Section III-D) then took place, again
with two parallel cohorts, one using the original seeded deck

and the other using the merged deck from the first card sort.
This resulted in two final decks of cards which were fed into
an analysis process (Section III-E) in order to produce the
consolidated mental model. Each of these stages are discussed
in turn below.

A. Deck Seeding

The seeded deck was compiled from a subset of terms found
in a glossary published by the International Software Testing
Qualifications Board (ISTQB) [14]. Given that the glossary
contains over 600 terms, our initial processing of the glossary
involved the removal of outlier terms and synonyms. Whilst
outlier terms consisted of terms which we felt would not be
helpful as part of the seeded deck (e.g. Agile Manifesto and
Mpyers-Briggs Type Indicator), it is worth noting that should
we be mistaken, it was entirely permissible for the terms to be
reintroduced by participants during the card sort. At this point,
we carried out a manual categorisation of the remaining terms
into five broad categories: (1) Testware refers to entities that
exist in the most part to enable and/or support the planning and
execution of testing activities on a project; (2) Artefact refers
to entities that are created, used and manipulated by testers
or other stakeholders at some point during the testing process;
(3) Runtime: refers to terms which represent entities that come
into play in the period that a system is being executed as part
of a test; (4)Tools: refers to devices, typically embodied as
software systems that help support testers in a variety of tasks;
and finally (5) Test Strategy, a category containing terms that
identify different types of plans of action that testers can use
to achieve their goal during software testing.

Once these categories were identified, we manually reduced
the amounts of terms in each category based on our knowledge
of the testing domain. Therefore, whereas a category called
Test Strategy initially contained eighty terms, we manually
reduced this to seven by keeping the most common strategies
(e.g. Acceptance Testing) and removing the more obscure ones
(e.g. Monkey Testing).

The resulting seeded deck consisted of five categories and
twenty-five terms as shown in Table I.

TABLE I
THE CONTENTS OF THE INITIAL SEEDED DECK.

Category Seeded Terms

Testware Test Outcome, Test Data, Reports,
Documentation, Test Suite, Test Script

Artefact Features, Bugs, Code

. Configuration, System Under Test,

Runtime .
Environment, Tester
Static Analysis Tools, Coverage Tools,

Tools Performance Testing Tools, Bug Tracking Tools,
Automated Testing Tools
Acceptance Testing, Ad Hoc Testing, Branch Testing,

Test Strategy | Exploratory Testing, Integration Testing,
Performance Testing, Regression Testing

The materialisation of this seeded deck enabled us to move
on to the next stage of the study.

B. First Card Sort - Malta

Armed with two copies of the seeded deck, we attended
a gathering of software testing professionals in Malta and
recruited sixteen participants, who we split evenly into two
cohorts. Each participant was asked to reflect on their mental
model of software testing and subsequently spend as much
time as needed to modify the deck so that it accurately fit
his/her mental model. This was done by any combination of (1)
adding new terms or groups; (2) moving cards between groups;
and (3) removing terms or groups which they considered not to
be a fit for purpose. When a participant was finished, the next
participant was asked to come in and continue the exercise.

At the end of the exercise, the two decks were analysed
and merged into a single deck as discussed in the following
section.

C. Merging of Decks

The two decks resulting from the parallel card sorts carried
out in Malta were merged using a five-step process as follows.
The first step involved discarding replicated terms such that
terms which were added multiple times in the same deck
were earmarked for discarding so that only one instance of
each term remained. In cases where the terms appeared in
different categories, reference to the ISTQB Glossary [14]
was made in an effort to choose the category that best fit the
emerging mental model. The next step involved renaming of
synonyms to make sure that any instances whereby testers were
referring to the same concept using different labels, one term
was selected and used in place of all the synonyms. We then
turned our attention to categories and automatically retained
any categories that were common in both decks for the merged
deck. Similarly we also retained terms that appeared in both
decks. If the terms appeared in different groups, a judgement
was made as to which group was the best fit for that term.
Finally, we discarded any empty categories. Any categories
that contained no terms following the preceding steps in the
merge were discarded.

The two card sort exercises in Malta both retained the
original five categories from the seeded deck and added
four groups between them. However, the merging process
resulted in the four new categories having no terms and were
consequently removed. This resulted a merged deck with the
characteristics described in Table II.

TABLE II
THE NUMBER OF INITIAL (I), RETAINED (R), ADDED (A), DELETED (D)
AND FINAL (F) TERMS FOLLOWING THE FIRST CARD SORT AND MERGE.

Category I R A D F
Testware 6 5 (83%) 2 (33%) 1 (17%) 7 (+17%)
Artefact 3 2 (67%) 5(166%) 1 (33%) 7 (+133%)
Runtime 4 3 (75%) 2 (50%) 1 (25%) 5 (+25%)
Tools 5 4 (80%) 8 (160%) 1 (20%) 12 (+140%)
Test Strategy | 7 5 (71%) 7 (100%) 2 (29%) 12 (+71%)
Totals: 25 19 (76%) 24 (96%) 6 (24%) 43 (+72%)

The figures in Table II indicate that there was an overall
increase of 72% in the size of the mental model with about

24% of our initial seeded deck being rejected by participants.
The highest relative increases where in the Tools category
(+140%) and the Artefact category (+133%).

D. Second Card Sort - London

In order to further refine the emerging mental model, two
cohorts of seven volunteers attending a one-day software
testing conference organised by the British Computer Society
in London were tasked with carrying out a further card sort.
One cohort started with the original seeded deck whilst the
other one started with the merged deck. The exact same
protocol that was used in the first card sort was utilised in
the second card sort with the results being fed into the final
stage of the study.

E. Analysis

The card sort exercises generated 83 terms in total and each
was either seeded, added, removed or moved at one or more
points during this study. In order to make sense of this data,
a scoring system was devised whereby every time participants
interacted with a term, the term would gain or loose a certain
amount of points. Therefore, when a term was seeded by a
researcher, added by a participant or removed by a participant,
it gained 1 point, 2 points and lost one point respectively.
Whilst these values may seem arbitrary, they were designed
to (1) characterise each term’s journey through the study into
a single score; and (2) assign more importance to terms which
were added by participants without any prior mention.

The result was a ranked list of 83 terms in five categories
which was then analysed by researchers with a view of
establishing a cutoff point in each category that would indicate
which terms should be included in the consolidated mental
model. The cutoff decision was made based on (1) identifying
points in the list where a significant scoring gap occurred
between one term and the next; and (2) manually removing
terms which objectively did not fit the category or were
synonyms for other terms that were already included. The
result was a mental model with the same categories as those
designed in the original seeded deck.

IV. DISCUSSION

The mental model resulting from the research is respre-
sented in the form of a mind map in Figure 2. In this section,
we discuss characteristics of this mental model and comment
on its convergance, evolution and its implications on testers’
perception of their field.

A. Convergence

Consistent with other studies that used the Modified Delphi
Card Sort method, participants appear to converge towards a
consensus relatively quickly. As shown in Table III, whereas
the first card sort resulted in an increase in deck size from 25
to 43 terms (72%), there was only a net decrease of 2 terms
(-5%) in deck size following the second card sort. Also, as
shown in Table IV, more terms were retained, and less were
added or removed as research progressed from the first to the
second card sort.

TABLE III
COMPARING MENTAL MODEL SIZE FROM THE SEEDED DECK (Ag)
THROUGH TO THE MERGED DECK (A,;,) AND THE FINAL MENTAL MODEL.

Seeded Merged Final
Category # # Ag # Ag Am
Testware 6 7 +17% 5 -17% -29%
Artefact 3 7 +133% | 10 +233% +43%
Runtime 4 5 +25% 6 +50% +20%
Tools 5 12 +140% | 9 +80% -25%
Test Strategy 7 12 +71% 11 +57% -8%
Totals: 25 43 +72% | 41 +64% -5%

TABLE IV
TERMS RETAINED, ADDED AND DELETED BETWEEN SUCCESSIVE DECKS.

Seeded — Merged Merged — Final

Retained 19 (76%) 37 (86%)
Added 24 (+96%) 4 (49%)
Deleted 6 (-24%) 6 (-14%)
Net Churn: 18 (+72%) -2 (-5%)

B. How the seeded model evolved

The contents of the Testware category remained mostly
unchanged with no terms being added and one term (Doc-
umentation) being moved to the Artefacts category. The Arte-
facts category itself grew threefold in size from three terms to
nine with practitioners strongly backing terms that the original
seeded model had left out. Interestingly, the term Features
was consistently removed by participants but was replaced
by multiple other terms such as Specification and Acceptance
Criteria.

The Runtime category retained all but one of its seeded
terms (7ester) and doubled in size from three to six terms with
the testers introducing the terms Mocking, User and Bugs.

Finally, practitioners retained most of the terms from the
Tools and Test Strategies categories, removing two terms
from each category but also supplemented each category
considerably. Six new types of tools were added, as well as
six new testing strategies. All terms added received consistent
backing from participants in successive card sorts.

C. Interesting Observations

The process of obtaining information about the mental
model of software testers from practitioners themselves pro-
vided some interesting insights.

Firstly, testers do not see themselves as part of their own
mental model. The term Tester was presented to three cohorts
as a result of being part of the seeded deck. However, it
was removed every single time. This indicates to us that
contrary to our view that the tester should be at the centre
of any discussion related to the testing process, the testers
take themselves out of the equation. This flies contrary to
many discussions we witnessed in the industry whereby testers
would express frustration at not being included enough in the
software development process.

Secondly, testers need to somehow effectively use as many
as eleven different testing strategies in their day-to-day job.
This is complemented by nine different types of testing tools,

[ReponsJ [Tesl Oulcomej (Test Da(a] (Test Script) [TestSuite]

Source Control Tools

/

Exploratory Testing
Security Testing

Test Strategies)

Software Testing

Gt s o)
\\—C

Test Management Tools
Proxy Testing Tools

Test IDE

Personas

Tools

Fig. 2. The tester’s mental model that resulted from the card sorts.

which hopefully make the testers’ lives easier. This indicative
of the highly complex nature of the testing profession.

In the multiple opportunities that presented themselves
throughout this study (from seeding through multiple card
sorts), the term Usability Testing was only mentioned once
and did not make it into the consolidated mental model. This
is interesting because it indicates that testers do not perceive
usability testing as a core part of their job. Rather, they are
concerned with ensuring that the product meets the stated
specifications, even if the specifications do not necessarily
provide the customer with the experience they desire. Given
the ease with which customers can move to competitors in
today’s dynamic online markets, this type of thinking could be
counterproductive and end up producing high quality software
that customers do not want [15].

V. RELATED WORK

In this section, we compare and contrast our work with simi-
lar research efforts. Different works in the literature concerned
with understanding the software testing domain exist for one
of three reasons: (1) understanding the application of testing in
a specific domain; (2) knowledge management; or (3) forming
a more coherent understanding for pedagogical purposes.

With regards to domain-specific work, Nasser et al. [16]
present an ontology based on state machine based testing
whilst Sapna and Mohanty’s [17] work focuses on scenario-
based testing. Yu et al. [18] focus on understanding software
testing as a service (TAAS). Whilst such studies have value at
forming an in-depth understanding of testing within individual
domains, our work is more focused on forming a wider
practitioner-oriented understanding of the field. Nevertheless,

it is interesting to note how the organisation of different
models differs based on their focus. For example, Yu et al. [18]
proposed categories such as Test Type, Target Under Test, Test
Environment and Test Schedule. Whilst these categories bare
resemblance to those in our work and the work of others, the
emphasis can be seen to focus on scenarios whereby testing
is perceived (and even sold) as an outsourced service.
Focusing on increasing testcase reuse through knowledge
management, Guo et al. [19] develop an ontology centred soley
around the fest case. They develop and propose the use of
their unified standard format for test cases and argue that this
can promote reuse. Focusing on web services, Bai et al. [20]
propose a so-called Test Ontology Model that models testing
artefacts and relationships between them. Barbosa et al. [21]
propose OntoTest a collection of six sub-ontologies of testing
named as Testing Process, Testing Phase, Testing Artifact,
Testing Step, Testing Resource, and Testing Procedure.
Perhaps the work that is most closely related to this pa-
per is that by Arnicans and Straujums [22] who propose a
hierarchical model of the testing domain constructed from the
800 entries in the ISTQB Glossary [14], the same source used
for creating the seeded deck in our study. Using a technique
whereby each term in the glossary was assigned a weight and
subsequently related to other words, they converted the ISTQB
Glossary into a browsable hierarchical concept map. They
found that the ‘weightiest’ nine terms where testing, test, tool,
software, process, analysis, capability, technique and cover-
age. These top-level terms contain 425 (70%) of the glossary’s
entries between them. There are some similarities between
Arnicans and Straujums’ top terms and the categories in our
mental model but the mapping is not direct. For example, the

term fool maps to our tools category whilst software maps
to artefact and technique maps to test strategies. However,
the terms contained in each of these mapped categories are
not the same. One example is that some techniques that we
refer to as strategies, are referred to as being part of the
process category in Arnicans and Straujum’s work. One should
note that the scope behind the work differs from ours in that
whilst Arniscans and Straujum are concerned with making the
ISTQB Glossary more understandable, we are interested in
understanding the mental model held by practitioners in the
field.

VI. CONCLUSIONS AND FUTURE WORK

We motivated this study by arguing that since testing is
a human-intensive activity, the human tester needs to be at
the centre of research contributions to the field. This implies
that testing, as a discipline, would benefit from being treated
scientifically from an ergonomics and human-factors perspec-
tive. However, our initial work in this area uncovered a lack
of clarity as to what exactly constitutes software testing from
the tester’s perspective.

As a result of the study presented in this paper, we propose
a mental model elicited from practitioners using a consensus
building approach. Having this mental model available pro-
vides researchers with an insight into how testing practitioners
perceive their professional context and can thus form as a basis
for aligning research efforts with practitioners’ views. The

A. Future Work

With regards to future work, we would like to pursue two
main paths of research. Firstly, we would like to continue
to validate the model through further card sorts in order to
reduce external threats to validity whilst also gaining a deeper
understanding about whether cohorts of testers with specific
characteristics (e.g. experience testers or testers working in
a specific domain) would diverge from the model. Our initial
discussions with peers about the results presented here resulted
in questions regarding issues such as how the background of
participants might have affected the results or why certain
terms do not appear. It would be interesting to investigate these
questions and also repeat these exercises on a regular basis to
understand if and how practitioner perceptions evolve. Sec-
ondly, we would like to revisit our work on treating software
testing from an ergonomics and human factors perspective
(e.g. augmented reality workbenches, just-in-time information
and cognitive workload) in light of the mental model and
its implications. This will help us refocus such efforts so as
to increases the chances of (a) improving the tester’s well-
being by solving the right problems at the right level, and (b)
adoption of research outcomes by industry stakeholders.

mental model by no means covers the whole testing domain
but we argue that aligning research efforts to this model is
more likely to provide value to the practitioners who created
it.

REFERENCES

[1] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in 2007 Future of Software Engineering. —1EEE Computer
Society, 2007, pp. 85-103.

[2] J. A. Whittaker, “What is software testing? and why is it so hard?” IEEE
software, vol. 17, no. 1, pp. 70-79, 2000.

[3] I. E. Association, “Definition and domains of ergonomics,” 2016.
[Online]. Available: https://www.iea.cc/whats/

[4] C. I. of Ergonomics and H. Factors, “What is ergonomics? find out
how it makes life better.” [Online]. Available: https://bit.ly/2SoLs]z

[5] M. Micallef, C. Porter, and A. Borg, “Do exploratory testers need
formal training? an investigation using hci techniques,” in 20/6 IEEE
Ninth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). 1EEE, 2016, pp. 305-314.

[6] A. Cooper, R. Reimann, and D. Cronin, About face 3: the essentials of
interaction design. John Wiley & Sons, 2007.

[7]1 J. Nielsen, “Mental models,” 10 2010.
https://www.nngroup.com/articles/mental-models

[8] S. C. Reid, “Bs 7925-2: The software component testing standard,” in
apags. BSI, 2000, p. 139.

[9]1 A. Roman, “2018 foundation syllabus overview,” in A Study Guide to the

ISTOB® Foundation Level 2018 Syllabus. Springer, 2018, pp. 3-11.

C. Kaner and J. Bach, “What is context-driven testing,” 2009.

C.-C. Hsu and B. A. Sandford, “The delphi technique: making sense of

consensus,” Practical assessment, research & evaluation, vol. 12, no. 10,

pp. 1-8, 2007.

N. Dalkey and O. Helmer, “An experimental application of the delphi

method to the use of experts,” Management science, vol. 9, no. 3, pp.

458-467, 1963.

A. Soranzo and D. Cooksey, “Testing taxonomies: beyond card sorting,”

Bulletin of the Association for Information Science and Technology,

vol. 41, no. 5, pp. 34-39, 2015.

I. ISTQB, “Glossary of testing terms,” ISTOB Glossary http://www.

istqb. org/downloads/finish/20/193. html, 2015.

E. Ries, The lean startup: How today’s entrepreneurs use continuous

innovation to create radically successful businesses. Crown Books,

2011.

V. H. Nasser, W. Du, and D. Maclsaac, “Knowledge-based software test

generation.” in SEKE, 2009, pp. 312-317.

P. Sapna and H. Mohanty, “An ontology based approach for test scenario

management,” in International Conference on Information Intelligence,

Systems, Technology and Management. Springer, 2011, pp. 91-100.

L. Yu, L. Zhang, H. Xiang, Y. Su, W. Zhao, and J. Zhu, “A framework of

testing as a service,” in 2009 International Conference on Management

and Service Science. 1EEE, 2009, pp. 1-4.

S. Guo, J. Zhang, W. Tong, and Z. Liu, “An application of ontology

to test case reuse,” in 2011 International Conference on Mechatronic

Science, Electric Engineering and Computer (MEC). 1EEE, 2011, pp.

775-7178.

X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, “Ontology-based test modeling

and partition testing of web services,” in 2008 IEEE International

Conference on Web Services. 1EEE, 2008, pp. 465-472.

E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado, “Towards the

establishment of an ontology of software testing,” in SEKE, 2006, pp.

522-525.

G. Arnicans and U. Straujums, “Transformation of the software testing

glossary into a browsable concept map,” in Innovations and Advances in

Computing, Informatics, Systems Sciences, Networking and Engineering.

Springer, 2015, pp. 349-356.

[Online]. Available:

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

