
PRISM Code Generation for Verification of
Mediator Models

Weidi Sun and Meng Sun
LMAM & DI, School of Mathematical Sciences, Peking University, Beijing, China

{weidisun, sunm}@pku.edu.cn

Abstract—Component-Based Software Engineering (CBSE)
has played an important role in software industry for several
decades. The Mediator language is proposed to formally model
complex hierarchical component-based systems, which provides a
proper automata-based formalism for specifying both high-level
system layouts and low-level behavior units. In this paper, we
develop a framework for translating Mediator models into the
model checker PRISM, and build such a “translator” which can
generate PRISM codes from Mediator models automatically and
cooperates with PRISM to verify properties of Mediator models.
Keywords: Mediator, PRISM, Code generation, Model checking,
Verification

I. INTRODUCTION

Component-based software engineering has played an im-
portant role in software industry for several decades. Im-
plementation details inside components are encapsulated and
different components are composed together to construct
value-added systems through interfaces. Mediator [10] is a
hierarchical modeling language that provides proper formalism
for both high-level system layouts and low-level automata-
based behavior units of component-based software systems,
together with a full-featured type system and powerful co-
ordination mechanisms. However, having powerful modeling
languages does not mean correctness of the system models.
In practice, errors can still be introduced by the modeling
activities. Therefore, we need to investigate the formal analysis
and verification techniques for Mediator to guarantee the
correctness and reliability of Mediator models.

Model checking [5] is a widely adopted technique for
verification of both hardware and software systems. PRISM [9]
is a probabilistic model checker that provides a specification
language based on the Reactive Modules formalism [1] and
a powerful tool support for model checking properties spec-
ified in different temporal logics such as LTL, CSL, PCTL,
PCTL∗, etc. [14]. It has been successfully applied in many
areas, including network protocols [7], security protocols [8],
coordination languages [4], and so on.

In this paper, we present a framework for translating Me-
diator models into PRISM such that we can make analysis
and verification of Mediator model behavior by using the
probabilistic model checker PRISM. This is a further extension
to our previous work on the Mediator language [10] and its
Arduino C code generation [11].

DOI reference number: 10.18293/SEKE2019-069.

The following of this paper is organized as follows: Af-
ter this general introduction, we briefly review some main
concepts of the Mediator modeling language in Section II.
In Section III, we show how different elements in Mediator
can be translated into PRISM. Finally, Section IV concludes
the paper and discusses some future work.

II. A MEDIATOR PRIMER

In this section, we briefly review the primary concepts in
the Mediator language which concentrates on both high-level
system layouts and low-level automata-based behavior units.
More details about the language and its semantics can be found
in [10], [12].

The syntax tree of a Mediator program is defined as follows:

program ::= (typedef | function | automaton | system)∗

Typedefs. Mediator provides various data types that are
widely used in different formal modeling languages and pro-
gramming languages. Basic types such as Integer, Bounded
Integer, Boolean and Enumeration can be easily used to define
new data types in Mediator.

Functions. Functions can be either common functions which
have both interfaces describing inputs and return types of
the functions, and function bodies specifying the behavior of
functions, or native functions that have no function bodies but
only interfaces. More discussions about functions can be found
in [10].

Automata. Automata and system are the core modeling ele-
ments in Mediator. They are also called entities or components
in a Mediator program. The syntax of automata is shown as
follows.

automaton ::= automaton template? identifier (port∗) {
(variables {varDecl∗})?
transitions {transition∗}}

port ::= identifier : (in | out) type
transition ::= guardedStmt | group {guardedStmt∗}

guardedStmt ::= term −> (stmt | {stmt∗})
stmt ::= assignStmt | iteStmt | sync identifier+

assignStmt ::= term := term
iteStmt ::= if (term) stmt+ (else stmt+)?

varDecl ::= identifier : type (init term?)

An automaton consists of four parts: templates, interfaces,
local variables and transitions, which are interpreted as fol-
lows:

1) Templates. Templates include a set of parameter decla-
rations. A parameter can be either a type or a value.

2) Interfaces. Interfaces consist of directed ports and de-
scribe how automata interact with their contexts. Ports
can be regarded as structures with three fields: value,
reqRead, and reqWrite, which correspondingly denote
the values of ports, the status of reading requests and
the status of writing requests.

3) Local Variables. Each automaton contains a set of local
variables.

4) Transitions. The behavior of an automaton is defined by
guarded transitions. Each transition consists of a boolean
term guard and a sequence of statements. Transitions
encapsulated in a group are not ruled by priority in
Mediator. In other words, when the guards of two
transitions are both satisfied we cannot decide which
transition occurs. However the stmts in a guardedStmt
are ruled by priority, they will occur according to the
order in the sequence of statements.

The following three types of statements are supported by
our translation framework:

1) Assignment statement, including an expression and an
assignment target, that evaluates the expression and
assigns the result to its target if possible,

2) Ite (if-then-else) statement that acts as a conditional
choice statement in other programming languages,

3) Synchronizing statement, labeled with sync, that are the
flags requiring synchronized communication with other
entities.

Systems. A system organizes its sub-entities which can be
automata or systems. The syntax of system is as follows:

system ::= system template? identifier (port∗) {
(internals identifier+)?

(components { componentDecl∗ }?)
connections { connectionDecl∗ }}

componentDecl ::= identifier+ : systemType
connectionDecl ::= systemType params (portName+)

Besides the templates and the interface, a system contains
the following parts:

1) Components. Entities can be placed and instantiated in
systems as components. Each component is considered
as a unique instance and executed in parallel with other
components and connections.

2) Connections. Connections are used to connect the ports
of the system itself, the ports of components and the
internal nodes. Inspired by the coordination language
Reo [6], [3], [2], complex connection behavior can also
be determined by other entities.

3) Internals. Sometimes we need to combine multiple con-
nections to perform more complex coordination behav-
ior. Internal nodes declared in internals segments are
untyped identifiers which are capable to weld two ports
with consistent data-flow direction.

III. FROM MEDIATOR TO PRISM

In this section we introduce our framework for translation
from Mediator to PRISM. The aim of this work is to make
analysis of Mediator model behavior by using the probabilistic
model checker PRISM.

A Mediator entity will be translated into a module in
PRISM. First of all, we consider the “Flat” algorithm which
was proposed in [10] and can be used to flatten a hierarchical
system into a canonical automaton. The syntax of canonical
automata is as follows:

automaton ::= automaton identifier () {
(variables { varDecl∗ })
transitions { transition }}

transition ::= group {guardedStmt∗}
guardedStmt ::= term −> (stmt | {stmt∗})

stmt ::= assignStmt | iteStmt
assignStmt ::= term := term

iteStmt ::= if (term) stmt+(else stmt +)?

varDecl ::= identifier : type (init term)?

Such a flattening of Mediator system model has been proven
to be valid, and the syntax of the resulting canonical automaton
is similar to the corresponding PRISM model defined by a
module as follows:

model ::= module identifier

declaration+;
(transition;)∗

endmodule

Both the variables declarations and guarded statements for
the transitions in an automaton can be easily mapped to the
corresponding PRISM model as well.

In our framework, we have six components that work
together to generate PRISM code from Mediator models: entity
generator, typedef generator, term generator, virtual term
generator, transition generator and automaton generator. We
will show details about these generators, especially the last
two, in this section.

A. Generators for Entity, Typedef, Term and Virtual Term

The entity generator is designed for calling the algorithm
for flattening and fed the returning canonical automaton to the
automaton generator. The canonical automaton has no param-
eters and ports which indicates that it does not communicate
with the environment.

With the help of typedef, we can give an alias to an existing
definition to simplify the expression in Mediator. Although
we cannot use the typedef and alias in PRISM, the absence
of similar syntax can be overcomed by using the original
definitions directly. The typedef generator returns a map which
maps aliases to original definitions and helps us find the
original definition when meeting an alias.

There are some slight differences between terms in Mediator
and PRISM. For example, in Mediator we use “==” to denote
the equality operator, while in PRISM “=” is used instead.

Term generator and virtual term generator are designed for
dealing with such subtle distinctions and the only difference
between them is that the latter, as the name suggested, is for
virtual terms. More details of these two generators can be
found in [13].

B. Transition Generator

The transition generator is designed for generating tran-
sitions. There are two main differences between Mediator
transitions and PRISM transitions:

• In Mediator, the stmts in a guardedStmt are ruled by
priority. However, in PRISM we do not have priority
because of its assignment method. For example, if we
have a = 0, b = 0 and then make the assignment a,b:
‘‘a = 1, b = a’’. In Mediator the result is a=1, b=1,
because we first assign the value 1 to a and then assign
the value of a, which has been changed to 1, to b.
In PRISM the result is a=1, b=0 which is completely
different. Because the assignment statement is ‘‘(a’ =
1) & (b’ = a) ’’. We assign a’,b’ at the same time
and then assign values of a’,b’ to a,b.

• The ite statements can be nested in Mediator, but this is
not permitted in PRISM.

Transition generator cannot work while ignoring these two
problems. To solve the first problem we take the transition
apart and execute the transitions sequentially. Though the
execution of transitions in PRISM does not have priority, we
can create the priority by adding a “pedometer” to guards.
A new variable tranmark is provided, which is a counter
to record the number of executed stmts. For every transition
with at least two stmts, we separate it into several transitions.
In each new transition, the new stmt contains one original
transition’s stmt and an assignment statement: “tranmark i
= tranmark i + 1”, the new guard consists of the original
transition’s guard and a condition: “tranmark i=n”. Fig. 1
shows such an example of transition separation.

Fig. 1. Separation of transitions

In Fig. 1, we give every new transition a tranmark i and
initialize it to 0. When we want to execute a transition, the first
new transition’s guard "a = 0 & tranmark i = 0" must
be satisfied. If it is satisfied we can execute stmt1 and add 1

to tranmark i. After that, the second new transition’s guard
will be satisfied, and stmt2 will be executed. These steps will
be repeated until "tranmark i = n". Following these steps
we can execute every statement once and only once in order
and the priority will be guaranteed.

However only separating the transitions is not enough for
our framework. When we finish executing stmt1 (for example
stmt1 is"a’ = a + 1"), the value of variable a may change,
and the next new transition’s guard "a = 0" may not be
satisfied. Here we need a new concept virtual variable to
replace "a" in calculation. For example, "a’ = a + 1" in the
transitions will be substituted with "v a’ = v a + 1" so
that the original variables in guards will not change. Once all
the executions of the original transition are finished, we assign
the value of the virtual variables to the original variables. An
example of such virtual variables for transition separation is
shown in Fig. 2.

Fig. 2. Virtual variables for transition separation

The nesting problem for ite statements is entangled with the
priority problem and thus more complicated. In other words,
in the recursive generation, the nested iteStmt being treated as
a new transition (regard the condition of iteStmt as a guard)
shares all the troubles of the transition, the priority problem
is no exception. We introduce a new variable: layer to denote
the number of the current iteStmt’s nesting layers.

The new transition’s guard generated from the nested iteStmt
will be the combination of the old guard and the iteStmt’s
condition. Furthermore, we will give every iteStmt a new
tranmark as well, for example:

Once a new transition for iteStmt is created, the generating
process will enter a new layer, and the value of layer will be
increased by 1. A set of new virtual variables corresponding
to the virtual variables in the previous layer is also needed
so that the change of variable values does not affect the

satisfiability of the new guard which contains the iteStmt’s
condition. The generating process will exit the current layer
when the execution of the iteStmt is completed, and the value
of layer will be decrease by 1. We also introduce a variable
maxlayer to record the largest layer that appeared. Combining
with the above solution the example is shown in Fig. 3.

Fig. 3. Example of layer solution

The transition generator is designed as a recursive function
TGF , which is invoked when we generate a transition and
terminates when the generation process finishes. If we meet
an iteStmt on the sidelines of a TGF execution, a new TGF
will be invoked inside the old one.

To put it in a nutshell, the transition generator treats each
statement as an atomic operation , i.e., an operation which
cannot be interrupted and executes them in order.

C. Automaton Generator

The Automaton Generator’s goals are two-fold: adding
the global declarations and combining different parts of the
generated PRISM model.

Most types in global declarations which are supported by
the PRISM language are easy to define. For these types,
the only work we need to do is changing some grammar
formats in Mediator’s definitions. However, it does not work
for EnumType and ListType. The solving of EnumType and
ListType are similar, for EnumType, we define IntType
variables for every identifier in it and initialize them to 0,1,2...
in order. For ListType, we define IntType variables which is
named as “ListNamei” for every element in the list. It needs
to be pointed out that the list we defined is a fixed-length list
and all the elements in it are initialized to 0. Besides, before
defining such variables we need to change the user-defined
types to base types, and the changing approach is mentioned
in the typedefGenerator.

Then we have the model type, the model name, the global
declarations and the transitions which can be generated by
transition Generator; the final step is to combine these parts
to build the PRISM model. After finishing all these works, the
automaton Generator returns the result module in PRISM.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a code generator that converts
Mediator models to PRISM models. Mediator provides a
component-based modeling language in which components
and systems can be defined in a hierarchical way. With the
help of this code generator, the Mediator models for complex
systems can be transformed into PRISM automatically such
that properties of the Mediator models can be verified by using
the PRISM model checker.

In the future we plan to extend the Mediator language and
investigate more quantitative aspects of system models such
as reliability, security, etc., in Mediator. Providing support for
more hardware platforms and programming languages is in
our scope for future work as well.

ACKNOWLEDGEMENTS

The work is partially supported by NSFC under grant no.
61772038, 61532019, 61202069 and 61272160, and the
Guangdong Science and Technology Department (Grant no.
2018B010107004).

REFERENCES

[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999.

[2] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical structures in computer science, 14:329–366,
2004.

[3] Farhad Arbab, Christel Baier, Frank de Boer, and Jan Rutten. Models
and temporal logical specifications for timed component connectors.
Software & Systems Modeling, 6:59–82, 2007.

[4] Farhad Arbab, Sun Meng, Young-Joo Moon, Marta Z. Kwiatkowska,
and Hongyang Qu. Reo2mc: a tool chain for performance analysis of
coordination models. In Proceedings of ESEC/FSE’09, pages 287–288.
ACM, 2009.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[6] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Modeling
component connectors in reo by constraint automata. Science of
computer programming, 61:75–113, 2006.

[7] Marie Duflot, Laurent Fribourg, Thomas Hérault, Richard Lassaigne,
Frédéric Magniette, Stéphane Messika, Sylvain Peyronnet, and Claudine
Picaronny. Probabilistic model checking of the CSMA/CD protocol
using PRISM and APMC. ENTCS, 128(6):195–214, 2005.

[8] Salekul Islam and Mohammad Abu Zaid. Probabilistic analysis and
verification of the ASW protocol using PRISM. International Journal
of Network Security, 7(3):388–396, 2008.

[9] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Proceedings of CAV
2011, volume 6806 of LNCS, pages 585–591. Springer, 2011.

[10] Yi Li and Meng Sun. Component-based modeling in mediator. In
Proceedings of FACS 2017, volume 10487 of LNCS, pages 1–19.
Springer, 2017.

[11] Yi Li and Meng Sun. Generating Arduino C Codes from Mediator. In
It’s All About Coordination, volume 10865 of LNCS, pages 174–188.
Springer, 2018.

[12] Mediator github repository. https://github.com/mediator-team.
[13] Mediator to PRISM translator. https://github.com/Weidi-Sun/mediator-

master.
[14] PRISM. http://www.prismmodelchecker.org.

