
Semantic Analysis for Deep Q-Network in Android GUI Testing

Tuyet Vuong∗, Shingo Takada∗

∗Dept. of Information and Computer Science, Keio University, Yokohama, Japan

{tuyet, michigan}@doi.ics.keio.ac.jp

Abstract— Since the big boom of smartphone and conse-
quently of mobile applications, developers nowadays have many
tools to help them create applications easier and faster. How-
ever, efficient automated testing tools are still missing, especially
for GUI testing. We propose an automated GUI testing tool
for Android applications using Deep Q-Network and semantic
analysis of the GUI. We identify the semantic meanings of GUI
elements and use them as an input to a neural network, which
through training, approximates the behavioral model of the
application under test. The neural network is trained using the
Q-Learning algorithm of Reinforcement Learning. It guides the
testing tool to explore more often functionalities that can only
be accessed through a specific sequence of actions. The tool
does not require access to the source code of the application
under test. It obtains higher code coverage and is better at fault
detection in comparison to state-of-the-art testing tools.

Keywords: Automated Android Testing; GUI Testing;
Reinforcement Learning, Deep Q-network

I. INTRODUCTION

In 2017, the number of monthly active Android devices
reached a new milestone of 2 billion [1], accompanied by
about 3 million applications in the Google Play Store [2]. The
mobile application market is on-demand and so competitive
that a small bug in the software can cause users to uninstall
the product and opt for another. Assuring application quality
is hence very important. Even though a lot of effort has
been made to develop automated testing techniques, we still
heavily rely on manual testing in practice, with only 3%
of developers fully engaging in automation [3]. Developers
also admitted in recent surveys that Graphical User Interface
(GUI) testing is especially labor-intensive, time-consuming,
and challenging to automate because GUI tests must be
constantly rewritten when changes, even small, are made [3].

Android application’s GUIs contain various types of com-
ponents such as button, text input, slide bar, switch, etc.
Moreover, users can interact with each type of component
in multiple ways through events: click, long click, swipe,
scroll, etc. This complexity makes GUI testing techniques
like random testing inefficient because it attributes a uniform
probability distribution to all combinations of components
and events, while an efficient testing strategy should select
and follow the specific paths that reveal application’s func-
tionalities.

DOI reference number: 10.18293/SEKE2019-080.

In our previous work [4], we presented an automated
testing tool implementing the classic Q-Learning algorithm
of reinforcement learning, which demonstrated positive im-
provements in code coverage. In this paper, we continue to
follow the reinforcement learning approach and propose two
main contributions:

• Improve the learning of the application’s behavioral
model by analyzing the semantic representations of GUI
components.

• Use Deep Q-Network [5] to approximate the behavioral
model of the application under test.

The remainder of this paper is organized as follows:
Section II reviews related work in Android automated testing
and the application of reinforcement learning in software
testing. Section III provides a brief introduction to Deep Q-
Network. Section IV elaborates our proposed approach and
implementation details. Section V analyzes the evaluation
results and finally section VI concludes the paper along with
suggestions for future works.

II. RELATED WORK

In recent years, researchers have tried different approaches
to test Android applications, among the most popular trends
are random testing, model-based testing, and heuristic-based
testing. Tools such as Puma [6] and A3E [7] build a model
of the application under test then systematically explore the
application based on this model. On the other hand, Evodroid
[8] and Acteve [9] use special algorithms such as symbolic
execution and evolutionary algorithms to test the application.
As our paper proposes a black-box GUI testing method, we
investigate further in black-box GUI testing tools.

Monkey [10] is a random event generator which is em-
bedded in the Android Development Toolkit. It is therefore
commonly used thanks to its simplicity and availability. It
performs tests by sending thousands of events per second
to the application and usually obtains high code coverage
in comparison to other testing tools [11]. Despite the high
code coverage, faults discovered by Monkey are hard to
locate because tests are hard to reproduce and closer to
stress tests than functionality tests. Dynodroid [12] improves
random testing strategy by analyzing the context of the
application then executes the most relevant event at each
step (RandomBiasedStrategy). Developers can provide inputs
such as authentication information beforehand to the tool to

unblock some steps. Dynodroid is also capable of generating
system events by analyzing the listeners of the application.

Reinforcement Learning was used in software testing
in the past and has shown its ability to improve random
exploration strategy. Mariani et al. proposed a tool called
AutoBlackTest [13], a black-box GUI testing tool for Java
desktop software. The tool uses Q-Learning algorithm to
build a behavioral model of the software, represented as a
multi-directional graph. Using this behavioral model, the tool
can plan its exploration route in order to get to hard-to-reach
GUIs (which can only be reached through a specific sequence
of actions). TESTAR [14] also uses Q-Learning to generate
test sequences based on GUI. The Q-Learning algorithm was
proven to be beneficial, provided that we choose an adequate
set of parameters.

There are currently two main approaches when applying
reinforcement learning to Android testing. The first approach
is proposed by Koroglu, et al. [15], where they train a single
matrix across multiple apps using random exploration then
use it to test other applications. The Q-value distribution
matrix is trained for two objectives: increasing activity cov-
erage and crash detection. Overall, their tool obtained higher
activity coverage and number of distinct crashes compared
to other state-of-the-art testing tools. The second approach is
presented in our previous work [4] and the work of D. Adamo
et. al [16], where a unique set of Q-value is calculated for
each application.

III. DEEP Q-NETWORK

Reinforcement Learning (RL) is a field in Artificial In-
telligence where an agent learns to behave optimally in its
environment through trial-and-error interactions [17], step by
step. At each time step t, it observes the state st of the
environment and takes an action at based on its policy π.
The environment then transitions to a new state st+1 based
on st and at. It also outputs a scalar reward rt+1 as feedback
that the agent then uses to update its knowledge. The goal
of the agent is to learn a policy π∗ that maximizes the
expected cumulative reward of a sequence of actions in the
environment.

The reinforcement learning problem can be formulated as
a Markov decision process [17], defined by:

• A set of possible states: S
• A set of possible actions: A
• A reward function for the next state given a (state,

action) pair: R(st, at, st+1)
• A transition probability i.e distribution over the next

state given a (state, action) pair: T (st+1|st, at)
• A discount factor γ ∈ [0, 1], where lower γ emphasizes

more on immediate rewards.
There are two major directions in solving RL problems:

algorithms based on value functions and algorithms based on
policy search [18]. Q-Learning falls into the first category.
For each policy π, we define an action-value function or
quality function (Q-function). The value Qπ(st, at) is the
expected cumulative reward that can be achieved by exe-
cuting a sequence of actions that starts with an action at

from a state st and then follows the policy π. The optimal
Q-function Q∗ is the maximum expected cumulative reward
achievable for a given (state, action) pair, over all possible
policies.

Q∗(st, at) = max
π

∑
t>0

(γtrt|s = st, a = at, π) (1)

Intuitively, if the optimal quality function Q∗ is known, at
each step st, the optimal strategy is to take the action that
maximizes the sum: r + γQ∗(st+1, at+1) where r is the
immediate reward of the current step. This is known as the
Bellman equation in dynamic programming [19]:

Q∗(st, at) = R(st, at) + γmax
at+1

Q(st+1, at+1) (2)

The Q-learning algorithm uses equation (2) to estimate the
value of Q∗ iteratively. The Q-function is initialized with a
default value. Every time the agent executes an action at
from state st to reach state st+1 and receives a reward rt+1,
the Q-function is updated as:

Q(st, at)← Q(st, at)+α(rt+1+γmax
a

Q(st+1, a)−Q(st, at))

(3)
In this formula, α ∈ [0, 1] is the learning rate and regulates
the impact of a new observation on the estimated values.
The Q-learning algorithm is guaranteed to converge to Q∗

if applied to a Markovian environment, with a bounded
immediate reward and with state-action pairs continually
updated [20].

The main motivation for the birth of Deep Reinforcement
Learning (DRL) is to scale the classic RL problems to more
complex state and action spaces [5] [18]. In brief, DRL trains
a neural network to approximate the optimal policy and/or
optimal value functions. In the case of Q-Learning, the state-
value function Q is estimated by a Deep Q-Network (DQN)
with weight w:

Q(st, at, w) ≈ Qπ(st, at) (4)

The weight of the DQN is updated based on a loss function
defined as:

L(w) = (rt + γmax
a

Q(st+1, a, w)−Q(st, at, w))
2 (5)

which leads to the following Q-Learning gradient:

(rt+γmax
a

Q(st+1, a, w)−Q(st, at, w))
∂Q(st, at, w)

∂w
(6)

The stochastic gradient descent method can then be used
to minimize the loss L(w) and the Q-Network will grad-
ually converge toward the optimal Q-function Q∗. In the
next section, we explain how we use Deep Q-Network to
incorporate the semantic representations of GUI states to the
reinforcement learning algorithm.

IV. PROPOSED APPROACH: SEMANTIC ANALYSIS OF
GUI AS AN INPUT FOR DEEP Q-NETWORK IN ANDROID

GUI TESTING.

In our previous work [4] we used Q-Learning algorithm
as an exploration strategy to test Android applications. We

dynamically built a behavioral model of the application under
test while interacting with it. With classic Q-Learning, we
calculated and constantly updated a dictionary holding the
Q-value of each pair of (state, event). Even though the
experiment demonstrated positive results, we noticed two
main weaknesses in our model:

• The purpose of the reinforcement learning algorithm is
to guide the exploration toward revealing and testing the
application’s hard-to-reach functionalities. However, a
path that reveals the application’s functionalities should
consider the semantic meaning of the components upon
which we take action. Take the example of an alarm
clock application: the sequence of actions that reveals
the functionality Change timezone should be described
as click on a menu component - scroll down the list
- click on setting - click on change timezone button,
instead of simply click - scroll - click - click. The latter
sequence of events would have very different outcomes
when being executed on different sets of components.

• The algorithm cannot scale well when the number
of states, GUI components in each state, and events
increase. Mobile applications are becoming more and
more complex and the Android OS can now support
more and more gestures (events). Our testing tool should
be able to handle large and complex GUIs.

The first point is addressed by a semantic analysis of GUI
components that we elaborate in the following section. As
for the second point, we propose using Deep Q-network to
potentially solve the complexity problem of reinforcement
learning.

A. Semantic classification of Android GUI components

GUI testing tools usually interact with the application
under test by sending events to UI components but few of
them have considered the meaning of the components they
interact with. QBE [15] took some initiatives by separating
the actions on hard buttons of the phone from the on-screen
events (click, long-click, etc). However, they didn’t consider
any semantic meaning of the GUI components on the screen.
In our approach, we use the semantic information of GUI
components as an input to guide the exploration.

Recent works of T.F. Liu et. al presented a guideline to
identify the semantic meaning of mobile app GUI [21]. They
established a lexical database of 25 types of UI components,
197 text button concepts and 135 icon classes. We’re inter-
ested in the classification of UI components in particular,
where components are separated into groups such as Input,
List Item, Toolbar, Background Image, etc. They employed
a code-based heuristics approach: using a lexical database,
they classified a component by examining its Android class
and the classes of its parent components.

In our testing tool, we use the same method to classify
components. However, instead of classifying all visible com-
ponents, we only classify actionable components, which are
either clickable, long-clickable, scrollable or checkable. If a
parent component is actionable, then all of its children nodes
are also actionable of the same type. We reduce the number

TABLE I
CLASSIFICATION OF UI COMPONENTS

Group Class name
Input EditText, SearchBox, AutoCompleteTextView,

AutoSuggestView, Field, Input, CheckBox, DatePicker,
RadioButton, CheckedTextView, Switch, SeekBar

Navigation Toolbar, TitleBar,ActionBar, Menu,
Navigation, SideBar, Drawer, AppBar, TabWidget

List ListItem, ListView, RecyclerView,
ListPopUpWindow, GridView, GroupView

Button Button, GlyphView, TextView, ImageView

of component types down to four main groups: Navigation,
Input, Button, and List, as these group can cover the majority
of actionable components [21]. The reference for classifying
each group is presented in Table I, inspired by the one
provided by T.F. Liu et. al.

We identify UI components in Navigation and List group
by their parent nodes. In other words, once we identify a
List or Navigation component by its class name, all of its
children fall under the same group respectively. The Input
group should be understood in a large sense, including all
components that receive information from the user. Finally,
only actionable TextView and actionable ImageView are clas-
sified as Button (Text Button and Image Button respectively).

B. Deep Q-Network as an Android Testing Tool

Fig. 1. The overall architecture

Our testing tool QDroid, whose architecture is presented
in Figure 1, consists of 5 main modules: Environment,
Observer, Deep Q-Network (including a replay memory),
Planner, and Executor. QDroid interacts with the application
under test step by step in order to estimate a behavioral model
of the application, represented by the Deep Q-network.
The goal of the testing tool is to generate test cases that
test application’s hard-to-reach states, cover the most code
possible, and reveal faults, all in a limited amount of time.

A test case is created when the testing tool executes
a sequence of actions in the application under test, this
sequence is also known as an episode in reinforcement
learning. In our implementation, an episode ends when one
of the following conditions is met:

• It reaches the maximum number of 20 steps (transi-
tions). After an empirical study where we vary the
episode’s length from 10 to 50, the value 20 was chosen
because it gave the best average coverage across apps.

• Its last action leads to exiting the application.

• The screen is frozen (no changes in GUI) for the last
10 steps.

After an episode, the environment is reset, and the testing
tool jumps to a random activity of the application. We
reset the environment by killing all running processes in the
emulator, then uninstalling and reinstalling the application.
Each step of an episode proceeds as follows:

1) The Observer observes the application under test and
builds the abstract representation of the GUI (the
current state).

2) The Observer converts the current state into an input
that we then use to feed to the Deep Q-Network.

3) The Deep Q-Network outputs a probability distribution
over the next component that we should act on and
passes it to the Planner.

4) The Planner chooses the next component to execute
based on an ε− greedy policy.

5) The Executor executes an event on the chosen compo-
nent.

6) The Environment transitions to a new state and returns
the reward of the transition.

7) The transition, consisting of the old state, the new state,
the executed component, and the reward, is added to
the Replay Memory.

8) The Deep Q-network updates its weight by learning
from a sampled batch of transitions from the Replay
Memory.

This workflow is similar to the one in our previous work
because both of them follow the Q-Learning algorithm.
Nevertheless, the main difference with this architecture is
concerned with the Deep Q-Network and the Observer,
which also leads to changes in the Executor and the Planner.
The implementation details of each module are given below:

1) Environment: The Environment is an interface that
allows us to interact with the Android emulator and the
application under test. Besides communicating with the Ob-
server and the Executor, its most important role is to hold a
function that calculates the reward value for each transition.
We consider that a transition is better than another if it
triggers more UI changes [13] [4]. Given two states s1 and
s2, the reward function calculates the degree of change from
s1 to s2 by counting the number of GUI events in s2 but
not in s1, described as |s2\s1|. The relative change is then
defined by the ratio |s2\s1|/|s2| where |s2| is the number of
GUI events in |s2|.

2) Observer: During run time, the Observer extracts the
current screen’s GUI hierarchy using Android UI Automator
[22], obtaining the GUI tree. It then analyzes the GUI tree
and classifies all actionable UI components into semantic
categories as presented in Table I. It creates an abstract
representation of the screen, also known as a state. A state
consists of the activity’s name and a set of GUI components.
Each component is represented by a tuple containing the fol-
lowing information: semantic group, coordinates, class name,
resource id, and four booleans indicating if the component is
clickable, long-clickable, scrollable, checkable. The Observer

only acknowledges components that belong strictly to the
application under test in order to assure the accuracy of the
model. However, it also takes into account two hard buttons
of the phone: the menu button and the back button, which are
important and necessary to navigate in the application. The
two hard buttons are classified in the Navigation semantic
group.

The Observer creates a vector of length 4 where the
elements hold the number of components belonging to the
semantic groups given in Table I. The vector is then passed
as an input of the DQN.

3) Deep Q-Network and replay memory: Following Mnih,
et. al’s guidelines [8], we integrate a Deep Q-Network into
our testing tool while simplifying its structure, because the
dimension of our input is much smaller than in the case
of learning from raw images. Our Deep Q-Network has
two fully connected layers, each one is followed by ReLu
activation and the loss function is defined as in section III.
We implement a Replay Memory with a capacity of 500
transitions and a target Q-network which is updated every
20 learning steps. We train the Deep Q-Network every 5
transitions with a batch of 32 transitions sampled randomly
from the Replay Memory.

4) Planner: The Planner is the principal actor that guides
the testing tool to explore the application. It receives a
probability distribution over the four GUI component groups
and decides which component to act on next based on a
ε − greedy policy. The policy selects a random component
with the probability ε and follows the prediction of the Deep
Q-Network with the probability 1−ε. At the beginning of the
testing process, we want to encourage exploration behavior
so that we can rapidly populate the state space. After a certain
number of episodes when the Deep Q-network has collected
enough transitions and has gained a certain knowledge about
the application under test, we encourage the exploitation
behavior: using the knowledge of the DQN to navigate in a
more intelligent way. Hence, we decided to set ε = 1 at the
first episode and gradually decrease ε to 0.5 over the first 100
episodes (equivalent to about 2000 transitions). The value of
ε is then maintained constant until the end of the testing
process. When the Planner acts according to the Deep Q-
Network prediction, it selects a component on the screen that
has the highest probability value. For example, if the DQN
outputs the probability distribution for (Input, Navigation,
List, Button) respectively as (0.6, 0.2, 0.1, 0.1), the Planner
will look for a component of group Input first. If there is not
any component of group Input, it will look for a component
of group Navigation and continue in the same manner until
finding a component.

5) Executor: Unlike the executor in the testing tool of
our previous work, which knows exactly which event to
send to which component on screen, in this approach the
executor only receives the information of which compo-
nent on the screen that it needs to take action on. Based
on the component’s semantic group and clickable/long-
clickable/checkable/scrollable information, the executor de-
cides the type of event that it needs to send to the component.

For example, if the component is in the group Input and class
EditText, the executor generates a random text to fill the input
field. If the component is in the List group and scrollable, the
executor executes a scrolling event. The testing tool currently
supports 7 types of events: click, long click, scroll up, scroll
down, swipe left, swipe right, text input.

V. EVALUATION

A. Overview

We aim to answer three research questions:
• RQ1: Does QDroid achieve higher code coverage than

our previous approach and state-of-the-art testing tools?
• RQ2: Does QDroid achieve high code coverage faster

than other state-of-the-art testing tools?
• RQ3: Can the tool reveal faults during test? Is it better

than other tools ?
We measure code coverage (line and method coverage) and
count the number of distinct faults as metrics for evaluation.
We compare the results of QDroid with our previous work
(ClassicQ) [4] and state-of-the-art testing tools: Dynodroid
(Dyno) [12], Puma [6], A3E [7] and GuiRipper (GuiR) [23].

We use AndroTest [11], a framework for comparing dif-
ferent automated testing tools to set up virtual machines
and run each testing tool separately. Each virtual machine
runs Ubuntu 32-bit, has 6114Mb of base memory and 2
processors. Each testing session is run for 2 hours, on a fresh
Android emulator with all the data from the previous session
removed. AndroTest also provides a set of instrumented
open-source applications. Because a lot of apps provided are
either too simple (containing only one activity with few GUI
changes) or fail to start before the testing begins, we selected
12 apps which are stable for most of the testing tools.

After each test session on an application, QDroid provides
developers with:

• The record of each action taken during each episode,
which can be used to reconstruct test cases.

• The evolution of coverage during test.
• Android execution log, which is used to detect faults.
• The number of crashes occurred during the test.

B. Results

1) RQ1: Does QDroid achieve higher code coverage than
our previous approach and state-of-the-art testing tools?:
Table II gives details of the average method coverage ob-
tained by each testing tool on each application. It also
calculates the p-value of the hypothesis that QDroid obtains
higher code coverage than each of the other testing tools in
average. Fig. 2 shows the distribution of line and method
coverage across target applications for QDroid, ClassicQ,
Dynodroid, Puma, A3E and GuiRipper.

QDroid performs better than our previous tool ClassicQ,
but it was not statistically significant (p = 0.14). As for
other tools (Dynodroid, Puma, A3E and GuiRipper), QDroid
obtained higher code coverage at a statistically significant
level (p < 0.05). Its best and worst coverage is also higher
than the best and worst coverage of all the other four tools.

TABLE II
METHOD COVERAGE AFTER TWO HOURS (%) AND P-VALUE FOR

QDROID PERFORMS STATISTICALLY SIGNIFICANT BETTER THAN EACH

OF THE STATE-OF-THE-ART TESTING TOOLS

Application Qdroid ClassicQ Dyno Puma A3E GuiR
Any Memo 35.09 35.36 15.39 - - 3.63

My Expenses 64.18 42.50 29.56 35.24 15.05 17.04
Who has my stuffs 89.01 88.09 58.93 67.48 51.15 29.92

Tippy Tipper 56.11 55.75 46.61 52.49 52.49 20.54
Munch Life 53.85 60.00 83.08 61.54 50.00 43.85

Mini Note Viewer 54.55 40.21 20.85 35.25 5.02 7.18
Mileage 35.29 34.73 26.85 34.06 2.99 16.38

Multi SMS sender 43.71 36.13 41.33 33.06 15.32 31.29
Hot Death 64.34 13.13 29.80 39.10 3.66 37.24

Random Music Player 58.73 58.73 58.73 58.73 3.17 41.27
Dalvik Explorer 83.51 83.40 23.82 70.87 41.08 5.39

Weight Chart 38.35 18.64 35.73 16.50 - 7.28
Mean 56.39 47.22 39.22 42.03 19.99 21.75

Standard deviation 16.64 22.02 18.80 20.23 20.98 13.96
p-value - 0.14 0.02 0.047 0.0008 0.00009

One exception is with Munch Life where QDroid performs
worse. In this case, we need to repeat the same action several
times on the screen where the GUI skeleton doesn’t change
to be able to unlock a new state. Because QDroid favors
the actions that trigger changes in UI and the test case is
designed to end early when no GUI change is detected,
QDroid isn’t able to unlock the new state.

Fig. 2. Distribution of average coverage of each testing tool across apps

2) RQ2: Does QDroid achieve high code coverage faster
than state-of-the-art testing tools?: The evolution of code
coverage for QDroid, Dynodroid, Puma, A3E and GuiRipper
(the average across all target applications and all runs) is
presented in Fig. 3. On average, QDroid kick-starts with
a high coverage and its performance improves over time.
This proves that QDroid learns the behavioral model of the
application gradually, and exploits this model more and more
at the later phase of the testing process.

Fig. 3. Evolution of code coverage during test

TABLE III
NUMBER OF UNIQUE FAULTS DISCOVERED ACROSS ALL RUNS

App Qdroid Dyno Puma A3E GuiR
Any Memo 11 9 0 0 0

My Expenses 0 0 0 0 0
Who has my stuffs 0 0 0 0 0

Tippy Tipper 0 0 0 0 0
Munch Life 0 0 0 0 0

Mini Note Viewer 1 1 1 0 0
Mileage 1 0 0 0 0

Multi SMS sender 0 0 0 0 0
Hot Death 2 0 0 0 0

Random Music Player 0 0 0 0 0
Dalvik Explorer 1 0 0 0 0

Weight Chart 1 1 0 0 0

3) RQ3: Fault detection ability: Table III gives the
number of distinct faults discovered by each testing tool.
The number of faults in each application before test is
unknown. Distinct faults are identified by their unique error
messages in the emulator’s log. QDroid is able to detect
faults during tests and outperforms the four other tools.
The majority of the exceptions discovered belong to six
main classes java.lang, java.io, java.net, android.database,
android.content and android.system. Notice that even though
different testing tools can have the same number of faults for
one application, the faults are not necessarily identical. This
is the case of Mini Note Viewer where the faults discovered
by QDroid, Dynodroid and Puma are all different. For Any
Memo and Weight Chart, the faults discovered by QDroid
and Dynodroid have overlaps. Note that the framework we
used, AndroTest, did not specifically state how many faults
existed in each of the apps. Thus, we cannot determine the
fault detection percentage of each tool. Nevertheless, QDroid
performed the same or better compared to all other tools.

C. Threats to validity

The number of applications used in our evaluation is
limited, hence raises a threat to external validity. Even though
the target applications are chosen of different sizes and
categories, it is unsure that the result can be generalized.

Training of a deep neural network can give very different
outcome between different runs, which introduces a threat
to internal validity. We ran each testing tool five times and
took the average as the final result to reduce this threat.

VI. CONCLUSION

In this paper, we present a new approach using semantic
analysis of GUI components and Deep Q-Network to conduct
tests on Android applications. Our automated testing tool
QDroid analyses the semantic information of GUI com-
ponents and uses it as input to train a Deep Q-Network.
The neural network, based on the principle of reinforcement
learning, estimates a behavioral model of the application
and exploits this model to guide the exploration inside the
application. Evaluation has shown that QDroid presents an
improvement in code coverage in comparison to state-of-the-
art testing tools and it is effective in detecting faults.

As the integration of Deep Q-Network in the testing tool
shows positive result, future work on this topic includes an

evaluation of QDroid on applications having more complex
GUI. Specifically, we plan on extending the action space (by
combining event and component as one action) and the state
space (for example, adding more information to distinguish
similar states).

REFERENCES

[1] Google’s announcement:
https://twitter.com/Google/status/864890655906070529.

[2] Total Apps on Google Play:
https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[3] M. E. Joorabchi, A. Mesbah and P. Kruchten, “Real Challenges
in Mobile App Development”. Proc. of ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement,
2013, pp. 15-24.

[4] Thi Anh Tuyet Vuong and Shingo Takada. 2018. “A reinforcement
learning based approach to automated testing of Android applications”.
Proc. of A-TEST 2018, 31-37.

[5] Mnih et al. “Human-level control through deep reinforcement learn-
ing” Nature. 518. 529-33, 2005.

[6] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh
Govindan.2014. “PUMA: programmable UI-automation for large-scale
dynamic analysis of mobile apps”. Proc. of MobiSys 2014, 204–217.

[7] Tanzirul Azim and Iulian Neamtiu. 2013. “A3E - Targeted and Depth-
first Exploration for Systematic Testing of Android Apps”. Proc. of
OOPSLA 2013, 641–660.

[8] R. Mahmood, N. Mirzaei, and S. Malek. 2014. “EvoDroid: segmented
evolutionary testing of Android apps” Proc. of FSE 2014, 599-609.

[9] S. Anand, M. Naik, M. J. Harrold, and H. Yang. 2012. “Automated
concolic testing of smartphone apps”. Proc. of FSE 2012, Article no.
59.

[10] Android Monkey:
https://developer.android.com/studio/test/monkey.html

[11] S. R. Choudhary, A. Gorla and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet?”, Proc. of ASE 2015,
pp. 429-440.

[12] A. Machiry, R. Tahiliani, and M. Naik. 2013. “Dynodroid: an input
generation system for Android apps”, Proc. of ESEC/FSE 2013, 224-
234.

[13] L. Mariani, M. Pezze, O. Riganelli and M. Santoro, “AutoBlackTest:
Automatic Black-Box Testing of Interactive Applications”, Proc. of
2012 IEEE Fifth International Conference on Software Testing, Veri-
fication and Validation, 2012, pp. 81-90.

[14] Anna I. Esparcia-Alcazar, Francisco Almenar, Urko Rueda Mirella
Martinez, and Tanja E.J. Vos. 2016. “Q-learning strategies for action
selection in the TESTAR automated testing tool”. Proc. of META
2016. 174–180

[15] Y. Koroglu et al., “QBE: QLearning-Based Exploration of Android
Applications”, Proc. of ICST 2018, pp. 105-115.

[16] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée
Bryce. 2018. “Reinforcement learning for Android GUI testing”. Proc.
of A-TEST 2018, 2-8.

[17] Richard S. Sutton and Andrew G. Barto (Eds.). 1998. “Reinforcement
Learning An Introduction”. MIT Press, Cambridge, MA.

[18] Arulkumaran, Kailash, Marc Peter Deisenroth, Miles Brundage and
Anil A. Bharath. “Deep Reinforcement Learning: A Brief Survey.”
IEEE Signal Processing Magazine 34 (2017): 26-38.

[19] Richard Bellman. “On the Theory of Dynamic Programming”. PNAS,
38(8): 716–719, 1952.

[20] Christopher J.C.H. Watkins and Peter Dayan. 1992. “Technical Note:
Q-Learning”. Machine Learning 8, 3-4 (May 1992), 279–292.

[21] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech,
and Ranjitha Kumar. 2018. “Learning Design Semantics for Mobile
Apps” Proc. of UIST 2018, 569-579.

[22] UI Automator for Python: https://github.com/xiaocong/uiautomator
[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon. 2012. Using GUI Ripping for Automated Testing of
Android Applications. Proc. of ASE 2012, 258–261.

